Asteroseismology of β Cephei stars: effects of the chemical composition

A. Thoul University of Liège

Helas II - Göttingen - August 20071

Variable MS stars in the HR diagram

about 200 known β Cephei stars

Helas II - Göttingen - August 20072

Excitation of modes in B stars

Two major updates/uncertainties:

Revised solar metal mixture

Asplund et al. 2005 A&A Cunha et al. 2006 ApJ

Fe, Ni 💦 🦯

 Updated opacities from OP

Badnell et al. 2005 MNRAS

Miglio et al. 2007 MNRAS 375 L21

Helas II - Göttingen - August 20073

Excitation of modes in B stars

Miglio, Montalban, Dupret, 2007 CoAst

Excitation of modes in B stars

- Larger hot wing of opacity bump: Bluer border of SPBs and β Cephei instability strip
- Larger number of hybrid SPB-β Ceph pulsators
- More β Cephei modes excited at Z=0.01
- Red border of SPBs instability strip almost unchanged

Miglio, Montalbán, Dupret, 2007 MNRAS Helas II - Göttingen - August 20075 A. Thoul

Pulsations of β Cephei stars

- Multiperiodic: a few radial and non radial pulsation modes of low degree and low order are excited
 (∽≅ mechanism in iron-group opacity bump around 10000 degrees)
- sparse spectrum
- multiplets are resolved and well separated
- short period pulsators (a few hours)
- p, g and mixed modes info on the internal structure

Asteroseismology of β Cephei stars

- Strategy: Forward modelling
- Parameters: X, Z, α_{ov} , M, age
- Try to fit the observed frequencies
- If problems: try to improve the physics
 - different chemical composition
 - different opacities
 - diffusion and radiative accelerations
 - mixing
 -

A case study: v Eri

- Many observed frequencies (latest results: Jerzykiewicz et al 2005)
- Identified modes and multiplets
- Well-studied by several independent groups (Pamyathnykh et al. 2004, Ausseloos et al. 2004)
- Problematic star: no satisfactory solution

vEri: Observations

Observed spectrum of oscillations: f1=5.7633c/d l=0,m=1

- f2=5.6200c/d l=1,m=-1 5.6372c/d l=1,m=0 5.6539c/d l=1,m=1
- f3=6.2236c/d l=1,m=-1 6.2438c/d l=1,m=0 6.2629c/d l=1,m=1
- f4=7.8982c/d l=1,m=-1 7.9138c/d l=1,m=0 7.9299c/d l=1,m=1

+low-frequency modes: fA=0.433c/d fB=0.614c/d

 \rightarrow v Eri is both a β Cephei and a SPB star

Position in the HR diagram: logT_{eff}=[4.33,4.38] logL=[3.6,4.18]

Metallicity: [0.0083,0.0127] (Morel et al. 2006)

Helas II - Göttingen - August 20079

Fitting of 1 frequency: fixes the age (or X_c) Fitting of two frequencies: for each X, α_{ov} : M-Z relation Fitting of three frequencies: for each X, α_{ov} one M and one Z Fitting of four frequencies: for each X, one α_{ov} , one M, and one Z

The solution(s) has to fit in the error box in the HR diagram and the observed modes have to be excited

Previous studies of v Eri

- Pamyathnykh et al. 2004: fit 3 frequencies
 - Opal opacities, GN93, Opal eq. of state
 - Solution: X=0.70 (fixed), α_{ov} =0 and 0.1 (fixed), Z=0.015, M=9.8 and 9.2
 - Only 2 excited frequencies (I=0 p1 and I=1 g1)
 - Ad-hoc enhancement of iron in excitement region: 4 modes excited
 - Problems remain for the low-frequency high-order g modes
- Ausseloos et al. 2004: fit 4 frequencies
 - Opal opacities, GN93, CEFF eq. of state
 - Solution: X=0.70 (fixed), α_{ov} =0.3, Z=0.016, M=7.8

BUT: Too cold (outside error box) AND none of the four frequencies is excited

New analysis of v Eri

• We re-analyze v Eri using

- new abundances (AGS05)
- Neon from Cunha et al 2006
- OP opacities

• For 2 values of X:

- X=0.7211 (solar calibration with the new abundances)
- X=0.70 (value used in previous studies)

New fitting of v Eri for X=0.7211

X=0.7211
Z=0.021
≃ α_{ov}=0.22

- M=9.1
- Red: I=0
- Green: I=1
- solution: at an avoided crossing

A. Thoul

New fitting of v Eri

- X=0.7211; Z=0.021; α_{ov}=0.22; M=9.1
 Y=0.258
- X=0.70; Z=0.022; α_{ov}=0.22; M=8.9
 Y=0.278

Fitting of four frequencies: for each X, one α_{ov} , one M, and one Z : DONE

The solution(s) has to fit in the error box in the HR diagram and

the observed modes have to be excited

Position of the solutions in the HR diagram

Helas II - Göttingen - August 200716

Fitting of four frequencies: for each X, one α_{ov} , one M, and one Z : DONE

The solution(s) has to fit in the error box in the HR diagram: DONE : OK!

and the observed modes have to be excited

Excitation of the modes

- X=0.70 and X=0.7211:
 - f1 (I=0 p1), f2 (I=1 g1), f3 (I=1 p2) are excited;
 - f4 (I=1 p3) not excited
 - low-frequency high order g modes excited in range 0.55-0.91 c/d (obs: 0.43 c/d and 0.61 c/d)

Fitting of four frequencies: for each X, one α_{ov} , one M, and one Z : DONE

The solution(s) has to fit in the error box in the HR diagram: DONE : OK!

and the observed modes have to be excited DONE: almost OK!

Conclusions

- New abundances and OP opacities help solve the problems of vEri.
- BUT some problems remain:
 - Z higher than observed (diffusion?); independent of X!
 - highest frequency mode not excited (Fe accumulation?)
 - range of excited high-order g modes