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MICROSCOPIC DIFFUSION IN STELLAR PLASMAS

Thoul A.1 and Montalban J.1

Abstract. We review the basic equations describing the microscopic dif-
fusion of elements in stars. We describe the two formalisms commonly
used to describe a stellar plasma, i.e., the Chapman-Enskog method
and the Burgers equations. We point out the underlying assumptions
about the physical state of the plasma itself. We briefly describe the
different approximations which are often used to solve these equations,
and discuss their validity. One of the major problems lies in the calcu-
lation of the collision integrals, and we discuss the different approaches
to solving these integrals, emphasizing on their domain of validity.

1 Introduction

We give an overview of the different formalisms which have been used by astro-
physicists to describe stellar plasmas, without going into too many details. We do
not intend here to give a complete bibliography on the subject of diffusion in stellar
plasmas; the references which appear have been chosen amongst many others, and
the reader can find more references on the subject in those papers. The literature
dealing with this topic is however sometimes quite confusing, and we try here to
point out the major points where it is necessary to be particularly attentive.

The methods described in this paper are based on the following assumptions:
negligible radiative forces, complete ionisation, no magnetic fields, Maxwellian
velocity distributions and same temperature for all ions and electrons, diffusion
velocities much smaller than the mean thermal velocities, collisions dominated by
classical interactions between two point particles, plasma can be considered as a
dilute gas, i.e., the ideal gas equation of state applies.

Another review paper in this volume (Alecian 2007) is dedicated to the treat-
ment and effects of the radiative forces. The effects of diffusion on the evolution
and seismology of the Sun and of main sequence stars are reviewed in other papers
of this volume (Christensen-Dalsgaard and Di Mauro 2007, Chaboyer 2007) .
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We start by some reminders about basic plasma physics and the concept of
Debye shielding. We then give a brief presentation of the two formalisms commonly
used to describe transport processes in stellar plasmas, namely the Chapman-
Enskog and the Burgers approaches. We then give a review of the existing formulae
and numerical results that can be found in the literature for the collision integrals.

2 Some basics on plasma physics: Debye shielding and the Debye-

Hückel potential

A plasma is defined as “a gas of charged particles in which the potential energy
of a typical particle due to its nearest neighbours is much smaller than its kinetic
energy” (see, e.g., Nicholson 1983). Another definition often found is that a plasma
is “a quasineutral gas of charged particles which exhibits collective behaviour”.
These two definitions are in fact equivalent, as we briefly show now.

Consider a test charge particle Q in a plasma. The Poisson equation is given
by

∇2φ = −4πρe = 4πe(ne −
∑

i

Zini) (2.1)

where φ is the electrostatic potential, ρe is the charge density, ne and ni are the
electron and ions number densities, and Zi is the charge of ion i. At equilibrium

ni = n0ie
−Zieφ/kBT (2.2)

ne = n0ee
eφ/kBT (2.3)

where kB is Boltzmann’s constant and we assumed that ions and electrons have
the same temperature T .

If the particles kinetic energy is much larger than the potential energy, i.e., if
eφ ≪ kBT then

ni ≈ n0i(1 − Zieφ/kBT ) (2.4)

ne ≈ n0e(1 + eφ/kBT ) (2.5)

and Poisson’s equation can be rewritten as

∇2φ ≈ 4πe2

kBT
(n0e +

∑

i

n0iZ
2
i )φ = λ−2

D φ (2.6)

where we have assumed that the gas is quasineutral, i.e., n0e −
∑

i Zin0i ≈ 0 and

λD =

(

kBT

4πe2
∑

s Z2
sns

)1/2

(2.7)

the sum over s being over all species, including electrons. The solution of equation
(2.6) is given by

φ =
Q

r
e−r/λD . (2.8)



Thoul A., Montalban J.1: Microscopic diffusion in stellar plasmas 3

In a plasma the potential due to a test charge falls off much faster than in vacuum.
The electrostatic potential is “shielded” on a distance of the order of the Debye
length λD. This is called the “Debye shielding”.

It is easy to verify that the condition eφ ≪ kBT is equivalent to ΛP = n0λ
3
D ≫

1, i.e., for a ionised gas to be a plasma there must be many particles in a Debye
sphere.

Table 1. Typical parameters for different plasmas

T ρ n a0 λD ΛP

K g/cm3 cm−3 cm cm
Thermonuclear reactor 108 1015 10−3 106

Interstellar gas 104 1 103 108

Solar corona 106 109 0.2 107

Solar atmosphere 104 1014 10−4 40
Solar convective zone 4 × 106 1 6 × 1023 7 × 10−9 10−8 1

Solar centre 1.5 × 107 150 1026 10−9 10−9 1

In astrophysics papers, the plasma parameter is often defined as

Λ =
e2

kBTλD

(∑

i niZ
2
i

∑

i ni

)

(2.9)

which, to a factor 4π, is the inverse of ΛP . Therefore, in astronomy papers, an
ionised gas is a plasma if Λ ≪ 1. Plasmas with Λ ≪ 1 are called “dilute plasmas”
or “weakly coupled plasmas”.

In a dilute plasma, an excellent approximation of the interaction between two
classical particles of charges Zs and Zt is given by the static screened Coulomb
potential, also called the Debye-Hückel potential

Vst(r) = ZsZte
2 e−r/λD

r
. (2.10)

As long as Λ ≪ 1, the Boltzmann equation is rigorously valid, and the ideal
gas equation of state applies.

Typical values of the temperature T , the mass density ρ, the number density
n, the interionic distance a0, the Debye length λD, and the plasma parameter ΛP

are given in Table 1 for different plasmas. Plasmas present in thermonuclear reac-
tors, the interstellar gas, the solar corona, and the solar atmosphere are obviously
weakly coupled plasmas, and the “classical plasma theory” applies. However, in
the solar interior the plasma parameter is of order 1, and the classical concept of
the Debye length, shielding, and collective behaviour of the particles is no longer
strictly valid. It is customary however to extend the results obtained in the weakly
coupled regime to denser plasmas.

According to Monchick (1985) the inclusion of quantum effects and dynamical
shielding reduces the diffusion coefficient in the Sun by about 40-50%, most of it
due to dynamical shielding.
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3 Descriptions of stellar plasmas

Transport coefficients in stellar plasmas are evaluated in the limit of the dilute-
gas approximation. The collisions are treated classically and transport equations
are obtained from approximate solutions of the Boltzmann equation for binary or
multiple gas mixtures:

∂fi

∂t
+ ~vi ·

∂fi

∂~r
+ ~Fi ·

∂fi

∂~vi
=

∂efi

∂~vi
(3.1)

where fi = fi(~r, ~v, t) is the distribution function of species i, ~Fi are the external
forces per unit mass, and the right-hand side represents the binary collision term.

Two different formalisms have been commonly used, those based on the Chapman-
Enskog theory (Chapman & Cowling 1970), and those based on Burgers’ theory
(Burgers 1969). In both methods, the diffusion coefficients can be written as func-
tions of the collision integrals, which depend on the exact nature of the interaction
between colliding particles.

A good discussion of the domain of validity of those methods can be found in
Paquette & al. (1986, hereafter P86).

3.1 Descriptions based on Chapman-Enskog’s theory

The Chapman-Enskog theory (Chapman & Cowling 1970) assumes that the total
distribution function of a given species can be written as a convergent series,
each term in the series representing a successive approximation to the distribution
function:

fi(~r, ~v, t) = f
(0)
i (~r, ~v, t) + f

(1)
i (~r, ~v, t) + f

(2)
i (~r, ~v, t) + ... (3.2)

with

|f (n)
i | ≪ |f (n−1)

i |. (3.3)

Substituting into Boltzman’s equation and linearising gives a series of equations for

each f
(n)
i in terms of the lower order approximations f

(n−1)
i , f

(n−2)
i , ... The lowest-

order approximation f
(0)
i is a Maxwellian distribution function characterised by

ni, T , and v0. The transport coefficients are obtained by taking moments of the
first-order approximation of the distribution function.

Good estimates of the transport coefficients are given by the so-called “first-
order” and “second-order approximations” to the transport properties, obtained by
expanding the first-order distribution function on the basis of Soline polynomials,
which gives a very rapidly convergent series. For a binary mixture, the diffusion
velocity can be written as (Chapman & Cowling 1970):

v2 − v1 =

−D12

{

n2

n1n2

∇
(

n1

n2

)

+ m1−m2

µ ∇ ln p + n2

n1n2

Dth

D12

∇ lnT − m1m2

µkBT (F2 − F1)
}

(3.4)
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where D12 is the molecular diffusion coefficient, Dth is the thermal diffusion coef-
ficient, n1 and n2 are the number densities of the two gases, n = n1 + n2, m1 and
m2 are their atomic masses, µ is the reduced mass, F1 and F2 are external forces
on atoms 1 and 2.

In the atom-test approximation (n2 ≪ n1) this expression reduces to

v2 = −D12

{

∇ ln c + (1 − m2

m1
)∇ ln p + αT∇ lnT − m2

kBT
(F2 − F1)

}

(3.5)

where c = n2/n and αT = (1/c)(Dth/D12). For a discussion on these expressions,
see, e.g., Vauclair & Vauclair 1982.

The diffusion coefficients D12 and Dth are functions of the collision integrals,
which will be discussed in Section 4.

3.2 Descriptions based on Burgers’ equations

The method developed by Burgers (1969) is based on the Grad 13 moment approx-
imation and the use of a Fokker-Planck collision term in the Boltzmann equation.

The main advantage of Burgers’s formalism is that it provides a more conve-
nient way to treat multicomponent gases. In Burgers’s formulation, all species are
treated symmetrically, so the equations are valid for any number of constituents.

Burgers’s equations are given by:
– the mass conservation equation

∂ni

∂t
+

1

r2

∂

∂r
(n2niwi) =

(

∂ni

∂t

)

nucl

, (3.6)

– the momentum conservation equation

∂pi

∂r
+ ρig − ρeiE =

∑

j 6=i

[

Kij(wj − wi) + zijKij
mjri − mirj

mi + mj

]

, (3.7)

and the energy conservation equation

5

2
nikB

dT

dr
= −5

2

∑

j 6=i

Kijzij
mi

mi + mj
(wj − wi) −

2

5
Kiiz

′′
ijri

−
∑

j 6=i

Kij

(mi + mj)2
(3m2

i + m2
jz

′
ij + 0.8mimjz

′′
ij)ri

+
∑

j 6=i

Kij
mimj

(mi + mj)2
(3 + z′ij − 0.8z′′ij)rj . (3.8)

In these equations, pi is the gas pressure of species i, ρi is its mass density, ρei is
its charge density, E is the electric field, g is the gravitational acceleration, wi are
the diffusion velocities, ri are the so-called “residual heat flow vectors”, and Kij ,
zij , z′ij , and z′′ij are the resistance coefficients.
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The resistance coefficients are related to the collision integrals:

Kij =
16

3
ninj

mimj

mi + mj
Ω

(11)
ij (3.9)

zij = 1 − 2

5

Ω
(12)
ij

Ω
(11)
ij

(3.10)

z′ij =
5

2
−

10Ω
(12
ij ) − 2Ω

(13)
ij

5Ω
(11)
ij

(3.11)

and a similar expression for z′′ij . Expressions for the collision integrals can be
found, e.g., in Michaud & Proffitt (1993, hereafter MP93). In addition there are
constraints due to local mass conservation

∑

i

miniwi = 0, (3.12)

current neutrality
∑

i

qiniwi = 0, (3.13)

and charge neutrality
∑

i

qini = 0. (3.14)

The Burgers equations with the constraints form a closed system of equations
for the diffusion velocities wi, the residual heat flow vectors ri, the gravitational
acceleration g, and the electric field E, in terms of the pressure p, the temperature
T , and the concentration gradients Ci = ni/ne. Although it is long and tedious,
this system can in principle be solved analytically. In practice, it is either solved
numerically, or it is simplified using additional approximations.

An approximate solution to Burgers’s equations can be obtained easily if the
heat fluxes are neglected, ri = 0. In that case, the energy equation becomes
unnecessary and the equation of momentum conservation becomes much easier to
solve:

∂pi

∂r
+ ρig − ρeiE =

∑

j 6=i

[Kij(wj − wi)] . (3.15)

For a pure Hydrogen-Helium-electrons plasma, ignoring the collisions with the
electrons, and assuming me/mi ≪ 1 the solution is

wH =
kBTnH

KHHe

1 − X

1 − 2X

[

5

4
(1 − X)

d ln p

dr
+

(X + 3)

(X + 1)(5X + 3)

d lnX

dr

]

(3.16)

where X and Y are the hydrogen and helium mass fractions and p is the total
pressure. This is identical to the simplified formula obtained for fully ionised
H-He mixtures by MP93 (see equation (14) in their paper) if Y ≪ X .
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The system of equations (3.6)-(3.8) and (3.12)-(3.14) can also be solved nu-
merically, with no approximation. A Fortran routine (Thoul & al. 1994, hereafter
TBL94) which solves the Burgers equations is freely available at the following web
sites:

http://www.sns.ias.edu/~jnb/

(follow the following links: solar neutrinos, software and data, diffusion subroutine)
and

http://www.astro.ulg.ac.be/orientation/asterosis/article/article_e.html

The equations solved in this routine are the Burgers equations obtained using
resistance coefficients zij = 0.6, z′ij = 1.3, z′′ij = 2, calculated with a truncated
Coulomb potential (see Section 4):

∂pi

∂r
+ ρig − ρeiE =

∑

j 6=i

Kij [(wj − wi) + 0.6(xijri − yijrj)] (3.17)

5

2
nikB

dT

dr
=

∑

j 6=i

Kij

{

3

2
xij(wj − wi) − yij [1.6xij(ri + rj) + Yijri − 4.3xijrj ]

}

(3.18)
where xij = µij/mi, yij = µij/mj , Yij = 3yij + 1.3xijmj/mi and

Kij =
23/2

√
π

3
e4Z2

i Z2
j ninj

(

mimj

mi + mj

)1/2

(kBT )−3/22 lnΛij . (3.19)

In TBL94’s routine, the Coulomb logarithms ln Λij are those given by Iben &
MacDonald (85). Please note a typo in equation 9 of TBL94, which should read

ln Λst =
1.6249

2
ln

[

1 + 0.18769

(

4kBTλ

ZsZte2

)1.2
]

. (3.20)

4 The resistance coefficients

Whichever of the two methods is used to obtain the transport coefficients, one
of the main difficulties lies in the calculation of the collision integrals. Those
integrals diverge when a pure Coulomb potential is used. The easiest solution to
the convergence problem is to use a pure Coulomb potential for the interactions
between charged particles, with a long-range cutoff at the Debye length λD. In this
case, the collision integrals can be calculated analytically. A better, more realistic
solution is to use a shielded Debye-Hückel potential of the form (see equation 2.10):

Vij =
ZiZje

2

r
e−r/λD . (4.1)
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As explained in Section 2, this interaction potential is only valid if there are many
particles in a Debye sphere. In dense plasmas this is no longer the case and it is
better then to replace the Debye length λD by the interionic distance ao, with

a0 =

(

3

4π
∑

ions ni

)1/3

. (4.2)

A good solution is to use the so-called modified Debye-Hückel potential given by

Vij =
ZiZje

2

r
e−r/max(λD ,a0). (4.3)

Finally, quantum corrections can be added (Schlattl and Salaris 2003).
If a truncated Coulomb potential is used, the collision integrals can be calcu-

lated analytically. This gives zij = 0.6, z′ij = 1.3, z′′ij = 2 (see, e.g., P86).
Numerical solutions have been obtained by P86 for the resistance coefficients

zij ,z
′
ij ,z

′′
ij , calculated using a modified Debye-Hückel potential. The results for

zij , z′ij , z′′ij , are plotted in figure (3) of MP93. At low densities, the results agree
with those obtained using a truncated pure Coulomb potential, but differ at higher
densities. In that regime, they agree well with Monte-Carlo results obtained by
Hansen (1978) using as theoretical model a one-component plasma in which clas-
sical ions interact strongly in a uniform non-interactive neutralising background of
degenerate electrons. P86 argue that since their results agree with those obtained
in the two extreme regimes (Λ ≪ 1 and Λ ≫ 1) they are probably also quite
good in the intermediate regime (Λ ∼ 1), although they admit that there is no
physical justification for this to be true. The numerical results of P86 were fitted
by MP93, and more accurate calculations were performed by MacDonald (1991)
at high densities using the same formalism.

There are many different approximations and fits for the Coulomb logarithm
ln Λij . The value used in TBL94’s routine is a fit by Iben & MacDonald (1985)
of numerical results obtained by Fontaine & Michaud (1979) using a modified
Debye-Hückel potential at low densities and a Thomas-Fermi potential at high
densities:

2 lnΛij = 1.6249 ln

[

1 + 0.18769

(

4kBTλ

ZiZje2

)1.2
]

(4.4)

where λ = max(λD, a0).
MP93 replace the Coulomb logarithm by Cij which is a function of

(2kBTλ/ZiZje
2):

Kij =
23/2

√
π

3
e4Z2

i Z2
j ninj

(

mimj

mi + mj

)1/2

(kBT )−3/2Cij . (4.5)

They showed that using ln Λij as an approximation for Cij is valid in the low
density limit. It is important to note that there is a factor 2 difference in the
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definition of ln Λij in different papers. In particular, ln Λij in TBL94 is different
from ln Λij in MP93, with

(2 ln Λij)TBL94 = (ln Λij)MP93. (4.6)

Fig. 1. Left panel: difference between friction coefficients calculated by TBL94’s routine

(KT
ij ) and those calculated using P86’s resistance coefficients as done in CESAM2k B

(KP
ij ), for the internal structure of the CLES Task3.2 A’s model. The elements i and

j are H, He , Z (all fully ionised) and electrons. Right panel: the heat flux terms zij,

z′

ij and z′′

ij calculated in CESAM using P86’s results, for the same stellar structure and

species as in left panel. The horizontal lines corresponds to the low density asymptotic

values adopted in TBL94’s routine.

In the low density limit, neglecting the heavy elements in the calculation of
the Debye length, and assuming that the electrons are non-degenerate, it is easy
to show that ln ΛXY can be written as (see, e.g., MP93):

ln ΛXY = −19.95− 1

2
ln ρ +

3

2
lnT − 1

2
ln

X + 3

2
(4.7)

where X and Y are the Hydrogen and Helium mass fractions.
P86 showed that their result for the self-diffusion of Helium agrees perfectly

in a dilute plasma with that obtained with a truncated pure Coulomb potential,
but is very different at high densities. Their fit is however the closest approximate
solution to the “exact” solution at high densities.

Iben et al. (1992) compare the fits by Iben and MacDonald (1985) with those
of P86. They conclude that they are very close, except at high densities.

Schlattl and Salaris (2003) introduced quantum corrections. They compared
several classical calculations, showing that they are all very close, and they com-
pared their quantum results with the classical ones for the Sun. The corrections
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are largest for ion-electron collisions, which give a small contribution to the dif-
fusion coefficients. The quantum corrections on the ion-ion collisions are more
pronounced at higher densities, as expected. They compared the results obtained
for the sound speed in the Sun using different prescriptions for the diffusion coef-
ficients. They show that the results obtained using the most accurate resistance
coefficients with quantum corrections are very close, by chance, to those obtained
using TBL94’s routine.

5 Example: Task 3.2 Comparisons for the resistance coefficients and

the diffusion velocities

For a selected stellar structure (Task3.2A computed with CLES, see Montalban
& al. 2007 in this volume) we have compared the values of the coefficients Kij ,

Fig. 2. Ratio between the helium diffusion velocity for the Task3.2 A’ model derived from

TBL94 and the one obtained using Michaud & Proffitt (1993)’s formalism (dashed and

dot-dashed lines), the one obtained from Burgers’ equations and P86’s collision integrals

(solid line), and those obtained from Chapman & Cowling approximation (dotted line)
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zij z′ij and z′′ij (i and j being fully ionised H, He, Z, and electrons) provided by
TBL94’s routine with those provided by the CESAM routine, which uses the P86’s
results. The comparisons are plotted in Fig. 1. We see that for this stellar model,
the resistance coefficients from TBL94’s routine (KT

ij) are larger by 5 to 15% than

those provided by P86’s calculations (KP
ij). The heat flux terms are also quite

different from their asymptotic values (horizontal lines) as adopted in TBL94.
We have also computed the He diffusion velocity (VY) for the same stellar

structure and for five different approaches: TBL94, TBL94 with P86’s coefficients,
MP93 (their Eqs. 17 – 19), and the Chapman & Cowling approximation (eqs. (5)–
(8) in P86). Their relative values are plotted in Fig. 2. We see that the TBL94’s
calculations overestimate the diffusion velocity by 6 to 20% (at the stellar centre)
with respect to the computations with P86’s coefficients.

6 Conclusions

The descriptions of stellar plasmas are all based on the Boltzmann equation, and
are therefore valid for classical plasmas, i.e., plasmas with Λ ≪ 1. However in the
interior of main-sequence stars, the plasma parameter is of the order 1, and the
Boltzmann equation is no longer strictly valid. No physically correct theory exists
in that regime.

There are two families of descriptions of stellar plasmas: those based on the
Chapman-Enskog theory, and those based on Burgers’ theory. The Burgers’ the-
ory is equivalent to the second-order approximation in the Chapman & Cowling
approximation. They are valid for weakly coupled plasmas. More accurate results
could be obtained with higher-order approximations in the Chapman-Cowling for-
malism, but these are intractable for multicomponent gases. The Burgers equation
have the advantage to be the easiest to use for multicomponent gases.

Independently of the description used, there remains the problem of the calcu-
lation of the collision integrals and thus the resistance coefficients. These quantities
are easy to calculate in weakly coupled plasmas, where a simple pure Coulomb po-
tential truncated at the Debye length gives very good results. A shielded potential
gives more accurate results, but these are also valid only for weakly coupled plas-
mas. A modified Debye-Hückel potential gives good results up to high densities,
even though there are no real physical arguments to justify this result. Finally,
recent quantum calculations have been made available.
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