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Abstract While the value of ‘schematic representations’ in problem solving requires no
further demonstration, the way in which students should be taught how to construct these
representations invariably gives rise to various debates. This study, conducted on 146 grade
4 students in Luxembourg, analyzes the effect of two types of ‘schematic representation’
(diagrams vs. schematic drawings) on the solving of arithmetical problems. The results show
that the presence of schematic representations has a clear positive effect on overall student
performance and that a non negligible proportion of students manage to reuse the represen-
tations encountered in order to solve new problems. While showing an effect slightly in
favor of diagrams as opposed to schematic drawings, our results do not really permit us to
draw any conclusions about the form that these representations should take, in particular
since a differential effect was observed depending on the type of problem.

Keywords Arithmetical problem solving . Schematic representations . Diagrams . Schematic
drawings . Non-routine problems

1 Introduction

The role of representations in the problem solving process is now widely recognized by the
scientific community in the field of mathematics teaching and learning. In recent decades, the
value of representations, generally defined as a configuration of symbols, images or concrete
objects standing for some other entity (Dewindt-King & Goldin, 2003; Monoyiou,
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Papageorgiou, & Gagatsis, 2007), has been highlighted by different strands of research in
mathematics education. In cognitive psychology, several authors (Julo, 2002; Schoenfeld,
1992; Thevenot, Barrouillet, & Fayol, 2010) have shown that an expert problem solving
approach is defined as a multistep process in which the phase of representing the problem is
a central element. In this context, effective representations consist of ‘schematic representa-
tions’ (Hegarty & Kozhenikov, 1999) which bring out the problem’s main data and the
relationships between them. In the field of arithmetical problems, Julo (2002) explains that
two series of complementary work led to the emergence in the 1980s of a research focus on the
role of these ‘schematic representations’ in problem solving: firstly, the work of Vergnaud
(1983) on the conceptual field of addition and multiplication problems, and secondly, the work
of Schoenfeld (1992), showing that a key feature of expertise was the ability to categorize the
problems presented. Thus, according to Julo (2002), numerous studies have sought to analyze
the possibilities of using representational tools to help students to distinguish certain classes of
problems. The studies conducted in the tradition of research in cognitive psychology have thus
mainly emphasized the teaching of predefined representations corresponding to categories of
problems as an ‘external aid’ in problem solving.

More recent studies, conducted from a sociocultural perspective, have brought out the
reciprocal link between meaning in mathematics and the construction of ‘models’ (Cobb,
Yackle, & McClain, 2000; Gravemeijer, Lehrer, van Oers, & Verschaffel, 2002). The authors
emphasize that the value of models lies mainly in the modeling activity itself, in that it is the
construction of models that enables a person to make sense of mathematical situations and
vice versa. From this perspective, models, like representations, are symbolic configurations,
but in this case there is the idea that models represent not so much entities as the actions
undertaken in the context of the teaching/learning situations in question (Gravemeijer et al.,
2002; van Dijk, van Oers, & Terwel, 2003). Rather than provide students with ‘predefined’
models or representations as problem-solving aids, it is thus up to the students themselves to
construct the symbols which will help them to create meaning in communication situations.
The production of models is seen not as an external aid to problem solving, but as an internal
process developed by students and forming part of the problem solving process itself.

These debates on the issue of representations or models reflect the very nature of all
symbolization which, as Stylianou (2010) recently pointed out, refers both to a final product
and to a process, i.e. both to the act of capturing a mathematical concept or relationship in a
given form and to the form of this symbolization itself.

The overall objective of this article is to analyze the impact of ‘schematic representations’
on the solving of ‘non-routine’ problems. These are defined as problems where the solution
does not appear immediately and the resolution of which does not involve applying a
procedure which has just been presented in class (Diezmann, 2002; Pantziara, Gagatsis, &
Elia, 2009). More specifically, the empirical study that is the subject of this paper seeks to
assess firstly the effect of the presence of ‘schematic representations’ on the solving of
arithmetical problems by grade 4 students (effect of the product), and secondly the manner in
which these same students reuse these ‘schematic representations’ later on (effect of the
product on the process).

2 Theoretical framework

While the value of ‘schematic representations’ or ‘models’ in problem solving requires no
further demonstration, the way in which students should be taught to represent a situation or
a problem invariably gives rise to various debates. Several studies (Hegarty & Kozhenikov,

150 A. Fagnant, J. Vlassis



1999; Uesaka, Manalo, & Ichikawa, 2007; van Garderen & Montague, 2003) show quite
clearly that the construction of an appropriate representation (mentally or externally on
paper) is a factor related to performance in problem solving. ‘Schematic’ representations
(which bring out the problem’s main data and the relationships between them) are effective
whereas ‘pictorial’ representations (which represent the overall situation and emphasize the
visual appearance of objects rather than the mathematical relationships) are relatively
ineffective (Hegarty & Kozhenikov, 1999). Several questions remain unanswered, in partic-
ular concerning the precise form that these ‘schematic representations’ should take, and how
students can be effectively led to construct them.

From the early 1980s, research in cognitive psychology showed the effectiveness of
teaching predefined schemas corresponding to categories of problem in order to improve
students’ performance in problem solving. The objective of this theory of ‘problem schemas’
was to teach students schemas that they were supposed to select and reproduce in order to
solve a problem. More recently, especially in France, the diagrams proposed by Vergnaud
have been seen as significant in making explicit the relational structure characterizing each
class of problem (Julo, 2002). In this type of approach, these schemas are regarded as more
or less directly linked to problem solving procedures, in that they reflect the different
categories of problem, and their use (mentally or externally on paper) enabling problems
to be solved (Thevenot et al., 2010). Several studies have shown the effectiveness of this
‘problem schema’ approach (see in particular Levain, Le Borgne, & Simar, 2006 for
multiplication problems inspired by the typology of Vergnaud, 1983; Willis & Fuson,
1988 for problems inspired by the typology of Riley, Greeno, & Heller, 1983).

While adhering to this concept of ‘problem schemas’ and the importance of categorizing
problems, Julo (2002) criticizes this type of teaching approach by raising questions about the
complex status of the ‘schematic representations’ proposed. He believes that this approach is
risky, in that ‘problem schemas’ could be created by students using very different logic to
that proposed. In other words, Julo (2002) calls into question the didactic approach which
aims to teach predefined schematic representations, but does not really appear to question
the notion itself of ‘problem schemas’ in the sense of a mental representation used to
categorize types of problem and which is a sign of expertise.

We may note that other recent research, also in the context of cognitive approaches, now
questions this theory of ‘problem schemas’. Thus a study by Coquin-Viennot and Moreau
(2003) in particular showed the impact of context on the use of problem solving procedures,
thus suggesting the use of representations that are less formal than ‘schemas’ corresponding
to different categories of problem, involving instead a ‘mental model’ (or ‘episodic situation
model’) which takes into account the context in which the mathematical situation is set
(Thevenot et al., 2010). Furthermore, the predefined schemas only seem to work for a
limited number of problems which correspond to the categories they represent. After
carrying out a literature review focusing especially on arithmetical problems, Verschaffel,
Greer and De Corte (2007) also point very clearly to the limits of these schematizations (and
hence of the experiments based on teaching them): although they seem effective and well
suited to routine problems which can be symbolized by an arithmetical operation using the
numbers drawn from the problem, it is questionable whether they are able to represent all the
arithmetical problems that might be encountered in the real world. In other words, rather
than being aids to solving varied and non-routine problems, Verschaffel et al. (2007) hold
that “most of this research has instead used a very restricted set of scholastic word problem
versions of the real world, without much reflection on the complexities from a sociocultural
perspective” (p. 584). Moreover, from our point of view, there are also reasons for fearing
that the systematic teaching of this type of schematization can lead to the development of
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superficial strategies in students (trying to ‘guess’ the appropriate schema rather than
actually constructing a representation of the situation). On the basis of the results mentioned
above, Thevenot et al. (2010) think it would be preferable to have children work on a wide
variety of problems (with the emphasis on analysis and interpretation of problem situations)
rather than having them mechanically learn procedures relating to particular types of
problems. Thus they propose in particular that children should be encouraged to construct
schematic representations themselves to represent the relationships between the various
elements of the problem.

Another body of research has also looked at ‘schematic representations’, but from a
different perspective than that described above. Rather than relying on categories of prob-
lems, Novick and colleagues (Novick, 2006; Novick, Hurley, & Francis, 1999) propose an
analysis of various schematizations that they call ‘spatial diagrams’, which would seem to
cover a wide range of problems and adapt well to complex and non-routine problems.
Figure 1 illustrates the four types of ‘spatial diagram’ identified by these researchers.

The original aspect of this approach is the idea that these ‘spatial diagrams’ are not tied to
a specific type of problem, firstly because the same schema can be used to represent two
different problem structures (e.g. the matrix for a logic problem and for a multiplicative
combination problem) and, secondly, the same problem structure can be represented by two
different types of diagram (e.g. a matrix or a hierarchical schema for a multiplicative
combination problem). In addition, work which has focused on teaching students to use this
type of diagram (see in particular Diezmann, 2002; van Garderen, 2007) shows that they
seem to allow flexibility which takes into account the situational context, as evidenced in
particular by the illustrations in Fig. 2. In this sense, this kind of ‘schematic representation’
seems to us to meet some of the criticisms made of the theory of ‘problem schemas’, and to
allow representations to be constructed that are more akin to the concept of the ‘episodic
situation model’ which has emerged in recent work in cognitive psychology (Thevenot et al.,
2010). They also seem to us to enable a broader set of problems to be handled than the
schematizations directly based on problem typologies (Verchaffel et al., 2007).

Network type diagrams Matrix type diagrams Hierarchy type 
diagrams 

Part-whole type 
diagrams 

Networks allow 
information to be 
arranged in a 
chronological or 
geographic sequence, 
such as timelines or train 
route maps respectively. 
These diagrams consist 
of sets of nodes (points) 
with one or more lines 
linking the nodes 
together.  

Matrices accommodate 
categories of information. 
They are useful in 
combinatorial or deductive 
problems. Matrices use the 
two dimensions to convey 
the relationships between 
two sets of problem data, 
thereby making implicit 
relationships within the 
information more explicit. 

Hierarchies represent 
levels of information 
that either increase or 
decrease. Tree 
diagrams, family trees, 
genetics and 
probability are some 
useful applications of 
hierarchies.  

Part-whole diagrams
show the relationship 
between a referent and 
at least one of its parts. 
For example, a diagram 
of a chocolate bar and a 
piece of chocolate is a 
part-whole diagram. 
Venn Diagrams are also 
part-whole diagrams 

Fig. 1 Spatial diagrams proposed to represent non-routine problems (from Diezmann, 2002, pp. 4–5)
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Several studies have shown the effectiveness of educational programs based on learning this
type of schematization (Diezmann, 2002; van Garderen, 2007), including for students with
learning disabilities (Jitendra, DiPipi, & Perron-Jones, 2002; Montague, Wagner, & Morgan,
2000). However, these results are qualified by the work of Pantziara et al. (2009). These authors
examined the effect of the presence of these diagrams on solving non-routine problems by
contrasting the results obtained by students when solving these problems freely with those
obtained when the same students were confronted with diagrams to complete. The results show
in particular that while the presence of these schemas helps some students, it seems to confuse
others. Moreover, it also appears that the presence of schemas affects the hierarchy between
problems, which we believe shows the importance of taking into account the structure of the
problems presented. Finally, Pantziara et al. (2009) suggest that the ability to interpret and
choose a ‘diagram’which relates to a given problem can be an obstacle for some students, as the
diagrams may be incompatible with the mental representations that they have constructed. The
criticisms often directed at the teaching of predefined representations relate to students’
difficulty in making sense of the conventions used, which belong to an adult way of thinking
which is not necessarily meaningful to them (van Dijk et al., 2003).

From this perspective, the research carried out in the tradition of sociocultural approaches
provides more support for the idea of having students produce their own models (Bednarz,
Dufour-Janvier, Poirier, & Bacon, 1993; Gravemeijer, 1997; van Dijk et al., 2003). The
production of models (or schematic representations) aims, as in the other approaches, to enable
students to make sense of mathematical problems and to assist them in the process of solving
them, but it occurs more specifically in communication situations involving argument and
negotiation about ‘taken-as-shared’ meanings (Gravemeijer, 1997) which will enable students’
mathematical reasoning to develop from the starting point of their informal symbolizations. The
emphasis is more on the ‘process’ (the construction of the schematic representation and
communication relating to this construction) than on the ‘product’ (the type of schematic
representation produced) (van Dijk et al., 2003), the idea being that the meaning and the
activity of modeling co-emerge (Cobb et al., 2000).

The debate on the different approaches that may be promoted in order to teach schema-
tization could be further highlighted by the field of research which examines cognitive
flexibility in problem solving strategies and, more recently, in representations (Heinze, Star,
& Verschaffel, 2009). From this perspective, it is contended in particular that one charac-
teristic of mathematical competence is the ability to “choose flexibly and adaptively between
available representations” (Heinze et al., 2009, p. 537). In this sense, both schematizations
produced by the students themselves (‘self-generated drawings’) and schematizations de-
rived from the typology of Novick et al. (1999) should permit greater flexibility than those

Network diagram Hierarchy diagram 

Fig. 2 Schematizations produced by ten-year-old students who had followed a training program based on
spatial diagrams (from Diezmann, 2002, p. 8)
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derived from research on schemas which are tied to specific categories of problems (schemas
from the typologies of Riley et al., 1983 or Vergnaud, 1983).

Furthermore, although recent studies (van Dijk et al., 2003; Diezmann, 2002; van
Garderen, 2007) broadly favor the construction of representations by students and hence
the importance of ‘process’, the question remains as to the starting point of this construction
process. Is it a good idea to give students ‘predefined representations’ so that they can
subsequently reappropriate them in their own way (Diezmann, 2002; van Garderen, 2007),
or is it better to take their own models as the starting point (Gravemeijer, 2002; van Dijk et
al., 2003)? Starting from students ‘self-generated drawings’ could be an interesting alterna-
tive to the teaching of predefined schematizations. The few studies on the construction of
models by students in problem solving seem to demonstrate a positive effect (Mousoulides,
Christou, & Sriraman, 2008; van Essen & Hammaker, 1990; van Dijk et al., 2003; Van
Meter & Garner, 2005).

According to van Dijk et al. (2003), having students produce models implies that they
must invent something new: they must produce models which emerge from their own work.
Two questions thus arise: Can students create such models from scratch (van Dijk et al.,
2003) and what should one do if they do not invent the mathematical models that need to be
taught (Gravemeijer, 1997)?

By means of an empirical study in the fourth grade of primary school in Luxembourg
(grade 4, students aged around 10 years), our study aims to provide data to clarify some of
the gray areas left by previous research. It aims to analyze the effect of two types of
‘schematic representation’ on students: ‘diagrams’ belonging to the typology of Novick
(2006) and highly contextualized ‘schematic drawings’ which are close to the informal
models that students might construct themselves. While the ‘diagrams’ can represent an
obstacle for some students because of the conventions they use (Gravemeijer, 1997) and/or
incompatibility with their mental models (Pantziara et al., 2009), the ‘schematic drawings’
which are closer to students’ self-generated drawings use fewer conventions and could prove
more accessible to students. These ‘schematic drawings’ are more contextualized and could
in this sense be consistent with the theory of ‘episodic situation models’ (Thevenot et al.,
2010) and allow greater flexibility (Verschaffel et al., 2007); on the other hand, they could
also complicate the emergence of categories of problems and hinder (or at least not help) the
construction of a ‘problem schema’ (Julo, 2002).

This study aims to measure the effect of two types of ‘schematic representation’ (diagrams
vs. schematic drawings) on the solving of arithmetical problems. More specifically, three
research questions were defined: (1) What is the effect of the presence of each type of
‘schematic representation’ (diagrams vs. schematic drawings) on the solving of arithmetical
problems (effect of the product)? (2) How do students reuse each of these schematic represen-
tations in problem solving (effect of the product on the process)? (3) To what extent, if at all,
does the presence and/or production of these schematic representations have a differential effect
on the hierarchization of problems?

3 Method

A paper and pencil test was given to 11 grade four classes in six Luxembourg primary
schools. A total of 146 students participated in the three parts of the test. The students in the
sample were not very familiar with creating representations in order to solve problems. A
recent analysis of mathematics textbooks widely used by teachers in Luxembourg reflects
the lack of emphasis on this skill in problem solving (Fagnant & Burton, 2009). The tests
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were conducted between 18 January and 6 February 2010. Testing took place in three parts,
each consisting of four problems. The first two parts of the test were performed one directly
after the other, with the third part being given after a slight delay (in the afternoon of the
same day or on another day of the same week).

The first part was the same for all students. It contained four complex problems which
students were asked to solve, putting down their workings on the sheet. No specific
instructions were given on how to solve the problems. On the basis of the analysis of
textbooks mentioned previously (Fagnant & Burton, 2009), these four problems can be
described as non-routine for the students being tested due to the type of the problems (their
mathematical structure), the position of the unknown quantity, and lack of familiarity with
the wording. Table 1 presents the four problems and describes their characteristics.

In the second part, four problems with the same structure were given to the students.
These consisted of parallel versions of the problems in Part 1, similar in terms of mathe-
matical structure and the size of the numbers involved, but with few surface similarities. This
time, each problem was accompanied by one of the two ‘schematic representations’ (dia-
gram or schematic drawing). Two different versions of the test were set depending on the
type of schematization associated with the problem, and were randomly distributed in the
classes (in each class, half the students received Version A and half received Version B).
Version A had diagrams based on the classification of Novick (2006), while Version B had
schematic drawings inspired by free drawings produced by students in the fourth grade of
primary school during another research project (Demonty, Fagnant, & Lejong, 2004).
Table 2 shows the types of problem, the types of diagram or drawing proposed and the
codes used to identify the problems in the rest of this paper. Examples of schematic
representations are given in Appendix 1.

The third part of the test presented four new problems parallel to those set previously.
This time, students were invited to solve them by producing a representation of the same
type as those they encountered in the second part of the test. Once again, two versions of the
test were set, differing in the specific instructions given to the students on how to construct
representations. The goal was to see to what extent students are able to make effective reuse
of the types of representation previously encountered.

The first two steps of the test procedure (Parts 1 and 2) will enable us to analyze the first
research question (effect of the product). These steps ‘reproduce’ the approach proposed by
Pantziara et al. (2009), while adding the possibility of a comparison between two modes of
schematization.

In addition, the use of a three-step procedure allows us to throw light on the second
research question (effect of the product on the process) by bringing us closer to a quasi-
experimental design in which Part 1 corresponds to a pretest phase, Part 2 to a (kind of)
intervention phase in which we present students with a problem solving tool and Part 3 to a
post-test phase. From this standpoint, it will be interesting to compare the results obtained in
Part 1 with those obtained in Part 3. Obviously, the second phase is not really a ‘teaching
experiment’: the students were given a problem solving tool, but no explanation was
provided and no discussion/confrontation/correction phase was organized following the
completion of this step.

Light will be thrown on the third research question (the differential impact of representations
according to the type of problem) with the help of an item response model (the Rasch model)
which will enable all the problems (the two versions and three parts) to be placed on a common
scale.

Finally, as the chosen procedure does not preclude a possible ‘testing effect’, precautions
were taken to ensure that students did not identify the parallelism between the problems in
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the three parts of the test too readily. Thus the problems were set in different contexts (i.e.
they had few surface similarities), and the problem types were mixed up from one part of the
test to another. For example, for problem ‘P2’ (see Table 1 and Figure 5, Appendix 1), there
is a window cleaner in Part 1, a snail climbing up a wall in Part 2 and a flea trainer in Part 3.
To achieve parallelism, all three cases involve an addition problem with several steps, with
the unknown quantity relating to the last step and number sizes of less than 20.

4 Results

Before analyzing the impact of the schematic representations, two questions are worth
asking: firstly, whether the problems set were sufficiently complex to require the construc-
tion of an externalized representation and, secondly, whether the students spontaneously use
this type of representation. When problems are too simple, schematic representations seem
to make them harder to solve by increasing the cognitive load without providing any genuine
help (Berends & Van Lieshout, 2009; Elia, Gagatsis, & Demetriou, 2007). Moreover, if
students spontaneously use effective representations, one might ask whether it is appropriate
to seek to suggest other representations to them.

The analysis of the students’ results for the four problems in Part 1 reveals significant
difficulties in solving these non-routine problems. Success rates varied, depending on the
problem, between 19 % and 34 %. It should be remembered that no special instructions were
given regarding the problems and that the students were not explicitly asked to produce
schematic representations. The 146 students were each presented with four problems, giving
584 opportunities to construct representations. However, only nine schematic representations
were produced spontaneously. These nine schematic representations were drawings which
mainly related to the ‘multiplicative combination’ type problem. This involved combining
types of bread (white, brown, and wholemeal) with loaf shapes (square loaf, round loaf or
baguette). The students generally drew the different possibilities or, in incorrect cases, only
some of them. Out of the nine schematic representations, six led to a correct answer.

The vast majority of students had difficulty solving these types of problems, but did not
spontaneously resort to schematic representations externalized on paper, despite the fact that
these should potentially help them deal with these complex tasks. We will therefore
investigate this in the next part of this article, following the directions of analysis which
correspond to our research questions. Section 4.1 looks at the overall results relating to the

Table 2 Schematic representations corresponding to the four types of problems set in the two versions of the
test (with the codes used subsequently)

Type of problem Familiarity Diagram
(version A)

Schematic drawing
(version B)

Code used

P1 Change type addition
problem (Change)

F Network Contextualized representation
of states and transformations

Change-F

P2 Change type addition
problem (Change)

NF Network Contextualized representation
of states and transformations

Change-NF

P3 Problem involving products
and a part-whole type
relation (P-whole)

F Part-whole
diagram

Contextualized representation
of parts and whole

P-whole-F

P4 Multiplicative combination
type problem (Combine)

NF Matrix Contextualized representation
of all possible combinations

Combine-NF
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effect of schematic representations and their reuse (questions 1 and 2). Section 4.2 considers
the potential impact of the type of problem set, and whether there is a differential impact
according to the type of problem and the type of schematization proposed (question 3).

4.1 The effect of schematic representations and their reuse

To measure the impact of the presence of schematic representations given along with the
problems, we compared the mean scores of the two groups between Part 1 of the test (problems
only) and Part 2 (problems accompanied by schematic representations). Then, to measure the
possible ‘reuse’ of representations, we compared the scores between Part 1 of the test (problems
only) and Part 3 (explicit invitation to produce a schematic representation of the same type as
that found in Part 2). In both cases, we calculated an ‘effect size’ in order to quantify the
magnitude of the difference between the two parts of the test, that is to say, the ‘gain’
contributed by the representations. Generally, following Cohen (1992), we consider an effect
size of 0.2 as small, of 0.5 as moderate and of 0.8 as high. The effect size provides information
on the size of the difference between two observed means, but does not necessarily allow
generalizations to be made. These results are presented in Table 3 below.

Comparison of the mean success rates between Parts 1 and 2 shows that the presence of
schematic representations immediately and clearly increases the students’ overall success
rates for problems, although these were still relatively low. The figures for the effect size
reflect the non negligible impact of the presence of these representations; this positive effect
occurs for both types of schematic representation investigated, diagrams (0.69) and sche-
matic drawings (0.65), with diagrams coming out slightly better.

Students’ mean scores are lower in Part 3 than in Part 2, which is contrary to what one
would expect from a simple ‘testing effect’. This suggests that, in the context of the test, the
presence of schematic representations is a more effective aid for solving problems than
encouragement to produce a representation oneself, even if such representations have been
presented previously. It should be recalled that in the third phase of the test, students were
explicitly asked to solve problems by generating schematic representations similar to those
they had encountered in Part 2. In Version A, students were given three examples of
diagrams (without data) as a reminder, but no indication was given about the type of diagram
to be used for any given problem. In Version B, it was stated that drawings needed to be
made which could take any form but must contain certain information (the main numerical
data, the unknown quantity that needs to be worked out and an indication of the connections
between the information).

Our results show that after very limited input, consisting simply of exposing students to a
possible tool to help with problem solving, they were partially able to produce schematic
representations and improve their problem solving performance (see comparison between

Table 3 Mean results of students for the four problems in Parts 1, 2 and 3 and effect size

Average % success
(and standard deviation)

Effect size

Part 1 Part 2 Part 3 Comparison of
parts 1 and 2

Comparison of
parts 1 and 3

Version A (diagrams) 27 % (30 %) 49 % (34 %) 42 % (32 %) 0.69 0.48

Version B (schematic
drawings)

23 % (27 %) 42 % (33 %) 37 % (34 %) 0.65 0.46
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Parts 1 and 3 of the test, with an effect size of 0.48 and 0.46 respectively). These results seem
to indicate considerable potential for schematic representations as an aid to problem solving
and a possibility for teaching their use in an effective manner.

In order to examine in greater depth the reuse of the schematic representations given, we
need to look at whether the improvement in scores can be attributed to the construction of
schematic representations by the students. Table 4 shows the percentage of representations
produced by the students in the two groups, on average for the four problems in Part 3 of the
test, as well as the proportion of correct representations, whether complete (containing all the
data in the problem and the relationships between them) or partial1.

In response to the explicit request made in Part 3, a large majority of students produced
schematic representations to solve the problems. Hardly any diagrams were produced in Part 1,
whereas in Part 3 an average of more than 90 % of the group receiving Version A produced
diagrams and nearly 85 % of the group receiving Version B.

Approximately 40 % of the students on average produced correct representations (44 %
for Version A and 36 % for Version B), but fewer of them produced complete representations
(30 % on average for Version A and 15 % for Version B). In Version B, the low percentages
are partly explained by the large proportion of ‘pictorial’ representations (Hegarty &
Kozhenikov, 1999; van Garderen & Montague, 2003) illustrating the context described in
the problem but neglecting the numerical data.

Finally, it should again be noted that only the representations put down on paper could be
analyzed, and that it is also possible that the effect of the presence of schematic represen-
tations in Part 2 also played a role in the construction of mental representations in Part 3.
This hypothesis could explain the fact that the success rates in Part 3 (42 % for diagrams and
37 % for schematized drawings: see Table 3) exceed by far the percentages for complete and
correct representations (30 % for diagrams and 15 % for schematized drawings: see Table 4).

Finally, the results described here show an overall positive effect of schematic represen-
tations on students’ success in solving the problems. So far, however, the results have been
analyzed in overall terms, and the question arises of whether there is a differential effect
according to the type of problems. This is discussed in the following section.

4.2 Do the different types of schematic representation have a differential impact according
to the type of problem?

To analyze the impact of schematic representations according to the structure of problems
(P1, P2, P3 and P4, see Table 1), we have used an item response model (the Rasch model)

1 The procedure for assessing the representations was, on the one hand, to identify the presence of the
numerical data (the presence of figures or drawings representing the elements to be counted) and, on the other
hand, to identify the presence of indicators of relationships between the data (eg, a set to represent a part-
whole relationship, an arrow to represent a change, a crossed out element to signify a withdrawal, …).

Table 4 Mean percentage of representations produced by the students for the four problems in Part 3 of the
test

Version A—diagrams
N=74

Version B—schematic
drawings N=72

Percentage of representations 91 % 84 %

Percentage of correct representations, either complete
or partial

44 % 36 %

Percentage of correct and complete representations 30 % 15 %
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which will enable us to analyze all the problems in the test on the same hierarchical scale,
although some of them were given to different samples of students. The model makes it
possible to create an anchor on the basis of the four problems common to the 146 students
(the four problems in Part 1), and then to position the other 16 problems on the same scale
(the four problems in Parts 2 and 3, considering the problems in Versions A and B as
different since they are not accompanied by the same representations and the same in-
structions). In this analysis, we will look at how the twenty problems relate to one another
hierarchically, thus moving away from the previous analyses which focused primarily on
comparisons between Parts 1 and 2 (effect of the product) and between Parts 1 and 3 (effect
of the product on the process). In order to do this, we will refer to the three parts of the test as
‘the problems on their own’ (Part 1), ‘the problems accompanied by a representation
provided from the outset’ (Part 2) and ‘the problems accompanied by explicit encourage-
ment to produce a representation’ (i.e. ‘after having been shown this same type of represen-
tation before, in Part 2’) (Part 3).

The item hierarchy as revealed by the Rasch model is given in Appendix 2. The most
complex problems are found at the top of the graph and the simplest at the bottom. The crosses
represent the students, positioned in relation to the problems for which they have a 50 %
probability of success. The problems are named as explained in Table 2, and in addition, the
numbers 1, 2 and 3 specify the parts of the test concerned and the letters a and b specify the
version of the test (a for the diagrams and b for the schematic drawings). For example, the
problem Combine_NF_2a, relates to the ‘multiplicative combination’ type problem with ‘Non-
familiar’ presentation, from Part 2, Version A—diagrams (see Table 2 above).

Figure 3 distinguishes the three parts of the tests and the two kinds of schematic representation
(Versions A and B). Part 1 is clearly distinct from the two other parts (the four problems in this
part are the most complex in the test), which testifies to the help provided by the two types of
schematic representations, under both conditions (schematizations given at the outset or explicit
encouragement to produce a schematization). The diagram also shows extensive overlap in
degree of difficulty between Parts 2 and 3, both for Version A (diagram) and Version B
(schematic drawing). Finally, it can also be seen that the hierarchy of the four problems varies
from one version to the other (A or B) and from one part of the test to another (Parts 1, 2 or 3),
indicating a differential effect of the impact of representations on different types of problem.

Figure 4 arranges the items so as to illustrate the observed hierarchies for each type of
problem.

For problems of the type ‘part-whole familiar’ (P-whole_F): in both versions (A and B),
representation provided at the outset was more effective than encouragement to generate a
representation (2a was slightly easier than 3a and 2b was slightly easier than 3b). The diagrams
were more effective than the schematic drawings (2a was easier than 2b, and 3a easier than 3b).

For problems of the type ‘change familiar’ (change_F): in both versions (A and B),
encouragement to generate a representation was more effective than representation provided
at the outset (3a was easier than 2a and 3b easier than 2b). The diagrams were more effective
than the schematic drawings (2a was easier than 2b) or were equally effective (3a and 3b
were of equal difficulty).

For problems of the type ‘change—non-familiar’ (change_NF): in both versions (A and
B), representation provided at the outset was more effective than encouragement to generate
a representation (2a was very clearly easier than 3a and 2b was clearly easier than 3b). The
diagrams were more effective than the schematic drawings (2a was clearly easier than 2b and
3a slightly easier than 3b).

For problems of the type ‘multiplicative combination—non-familiar’ (combine_NF): in
Version B, representation provided at the outset was more effective than encouragement to
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generate a representation (2b was clearly easier than 3b), while in Version A the two
alternatives were slightly similar in effectiveness (2a was slightly similar in difficulty to 3a).
The schematic drawings were more effective than the diagrams when provided at the outset
(2b was clearly easier than 2a), while they were of a comparable level of effectiveness when
students had to produce them themselves (3a and 3b were of equal difficulty).

Ultimately, in most cases there is a hierarchy across the three versions of the test: a
problem on its own is more complex than a problem where the student is encouraged to
produce a representation, which is more complex than a problem accompanied by a
representation provided at the outset. The problems of the ‘change-familiar’ type were
the only ones that really deviated from this hierarchy, since in both versions the students
progressed in Part 3 of the test by seeming to make effective reuse of the representations
that had been suggested, whether these were diagrams or schematic drawings. For this
type of specific problem, the results are therefore very encouraging with regard to the
possible effectiveness of teaching students to use schematic representations effectively in
problem solving.

Finally, looking again at the comparison between the two forms of schematic represen-
tations, we find confirmation, in line with the results presented earlier, that diagrams appear
to be slightly more effective than schematic drawings, with the exception of the matrix
diagram for the problem involving a multiplicative combination (combine_NF_2a).

Fig. 3 Hierarchy of problems established by the Rasch model, showing the ranking of parts of the test as a
function of the types of schematic representation

Fig. 4 Hierarchy of problems established by the Rasch model, showing the ranking of types of problems
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While the general trends observed across the whole sample (results in Parts 2 and 3 better
than those observed in Part 1) are found in the vast majority of classes (an increase in mean
scores is observed between Parts 1 and 2 of the test in ten out of eleven classes for Version A
and in eight out of eleven classes for Version B, and an increase in scores between Parts 1
and 3 of the test in nine out of eleven classes for both kinds of representation), the same is
not true at the individual level. Additional analyses show fluctuations in students’ results in
the three parts of the test: although the schematic representations seem to have helped some
students, they seem to have confused others. Table 5 shows these fluctuations in results for
the four types of problem. The three-digit code corresponds to the three parts of the test and
the digits 0 and 1 respectively indicate failure or success for each problem (for example, 0-1-
1 indicates failure in Part 1 and success in Parts 2 and 3).

On average for all problems, the effect of schematic representations was positive for 39 %
of students: 14 % failed at the first problem, then succeeded with the next two and 25 %
failed in Part 1 but succeeded in either Part 2 (15 %) or Part 3 (10 %). Conversely, there was
on average a negative effect for 5 % of students (success in Part 1 followed by failure in Parts
2 and 3) and a fairly negative effect for 7 %. For the 10 % of students on average who
managed to solve only the problems in Part 3 correctly, while a possible ‘testing effect’
cannot be totally excluded (although it should be recalled that the problems were mixed up,
that their superficial characteristics differed from one part to another, and that Part 3 was set
at a different time from the other two parts), it can be hypothesized that the presence of
representations in Part 2 somehow ‘equipped’ students to construct effective representations
themselves (either mentally or externally on paper) in Part 3. With regard to the effect of the
two forms of schematic representation, there was again a more positive overall effect for
Version A (diagrams) than for Version B (schematic drawings), except for the multiplicative
combination problem.

5 Discussion and conclusion

This study examined the impact of two types of schematic representation on the
performance of grade 4 students in solving non-routine arithmetic problems. The

Table 5 Fluctuations in results between the three parts of the test

No effect
(0-0-0)

Fairly
negative
effect

Clear negative
effect (1-0-0)

Fairly
positive
effect

Clear positive
effect (0-1-1)

Help not
needed
(1-1-1)

(1-1-0) (1-0-1) (0-1-0) (0-0-1)

P-whole-F A 38 % 4 % 3 % 4 % 11 % 11 % 16 % 14 %

P-whole F B 49 % 3 % 3 % 4 % 10 % 6 % 14 % 13 %

Change-F A 27 % 3 % 3 % 7 % 9 % 16 % 18 % 18 %

Change-F B 38 % 4 % 7 % 4 % 4 % 14 % 19 % 10 %

Change-NF A 24 % 3 % 1 % 3 % 36 % 3 % 18 % 12 %

Change-NF B 39 % 8 % 3 % 3 % 21 % 8 % 13 % 6 %

Combine-NF A 43 % 4 % 1 % 9 % 8 % 12 % 3 % 19 %

Combine-NF B 33 % 3 % 7 % 7 % 22 % 7 % 13 % 8 %

Mean 36 % 4 % 3 % 5 % 15 % 10 % 14 % 12 %
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initial results showed that without specific instruction, the students in this study did
not spontaneously use any schematic representations to solve these problems, complex
though they were, as the low success rates show. After these initial findings which
confirmed the interest of the study, questions focused on the influence of the presence
of schematic representations, their possible reuse, and whether there was a differential
effect according to the type of problem.

With regard to the effect of the presence of schematic representations, we found a
non negligible positive effect (effect size greater than 0.65) on overall student
performance, for both diagrams and schematic drawings. These results contradict those
of the study of Pantziara et al. (2009), who found no overall positive effect when
problems were accompanied by predefined diagrams to be completed (schematic
drawings were not used by these authors). This could be explained by the classroom
practices of Luxembourg students unaccustomed to these problems and to schematic
representations, whereas some of the types of problems used by Pantziara et al.
(2009) were found in the students’ textbooks. Their greater familiarity with the
contents could therefore have counteracted the effect of the schematizations in some
way. Another explanatory hypothesis is that the schemas suggested in our study were
fairly complete and explicit, whereas in the other study they were rather abstract and
incomplete (barely outlined in some cases).

With regard to the reuse of these schematic representations, we found that a large
majority of students produced or attempted to produce representations in Part 3 of the
test. The problems in this last part were generally answered more successfully than
those in the first part of the test. If one regards Part 2 to be a (very brief) educational
intervention, the comparison of results between Parts 1 and 3 reveals the potential for a
genuine intervention with the aim of teaching students to produce schematic represen-
tations. Even if, despite all the precautions that were taken, we cannot completely
exclude a testing effect due to the three versions, our results suggest that this improve-
ment in scores would seem to be related to the more effective use of the representa-
tions, whether drawn on paper or internalized. We may also note that the results were
generally lower in Part 3 than in Part 2, which is not in accordance with an interpre-
tation in terms of a testing effect. Finally, as the three versions of the test were
relatively close, the reuse of representations in Part 3 appears at best to be a ‘near
transfer’, both in terms of time and in terms of the type of task. To evaluate a possible
‘far transfer’ effect, it would have been interesting to set one or two problems with
another mathematical structure in Part 3 and possibly also to set a delayed post-test a
few weeks later.

With regard to types of problem, we found, like Pantziara et al. (2009), differences
in impact depending on the type of problem and the category of predefined schema,
as well as a change in the hierarchy of problem types. Regarding the diagrams, we
observed a clear positive effect for three types of problem (especially the ‘change’
type problems), but no effect for the matrix diagram provided along with the ‘mul-
tiplicative combination’ problem. This result can be explained by the relatively
abstract nature of a matrix diagram, where the implicit rules need to be properly
decoded. By contrast, the ‘network’ and ‘part-whole’ type diagrams present very few
implicit rules to be understood. Regarding the schematic drawings, the presence of
representations had a positive effect for each type of problem, without any particularly
marked distinction.

Schematic representations are an important aid for students in solving complex
problems. The results reveal a clear overall improvement in student performance,
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despite the fact that they had encountered such representations only once and without
any explicit teaching or discussion among the children having taken place. Overall, the
results are slightly in favor of diagrams derived from the typology of Novick et al. (1999) rather
than schematic drawings similar to self-generated drawings. At first sight, one might
think that this difference is explained by the fact that these representations are closer
to the production of an arithmetical operation. However, this explanation seems rather
narrow, since it is fairly clear that the transition from schematic representation to
solving the problem seems to go beyond mere ‘translation’. On average for all
problems combined, 36 % of students did not derive any benefit from the schematic
representations, since they failed all three parts of the test. The results are relatively
similar for both forms of representation and vary more depending on the type of
problem. They demonstrate the inadequacy of the method consisting of presenting a
predefined schematic representation (diagram or schematic drawing) and reinforce the
idea that these should be constructed with the students (van Dijk et al., 2003).

A key challenge is to get students to realize the importance of this potentially
powerful tool for problem solving. Explicit learning of different forms of representa-
tion could be integrated into the teaching of problem solving, whether spontaneous
representations to be used and discussed in class or more conventional schemas to be
constructed gradually with the students. While our results show an effect slightly in
favor of diagrams rather than schematic drawings, they do not really allow us draw
conclusions about the form which these representations should take, since variations
are observed not just according to the type of problem, but also according to the
particular student. Like the study of Pantziara et al. (2009), our results also show that,
for each type of problem and for both forms of schematization, schematic represen-
tations seem to have helped some students (39 % on average), but they also appear to
have confused others (7 % on average). Pantziara et al. (2009) argue for complemen-
tarity between the diagrams and other more ‘inventive’ constructions: ‘teachers could
give students opportunities not only to use presented diagrams but also to invent or
search for their own solution strategy’ (Pantziara et al., 2009, p. 56).

Along the same lines and with reference to research on cognitive flexibility in the use of
representations (Heinze et al., 2009), it would also be worth looking at which forms of
teaching/learning best allow this ‘representational flexibility’ to be developed. Our results
show a differential effect for representations not only according to the type of problem but
also according to the individual student. It is also possible that the results vary according to
certain characteristics of classes and other sociocultural factors that we have not analyzed
here. In this sense, further studies are needed to investigate the extent to which students
should be taught to use ‘the representation that best suits a particular type of problem’, or
whether it is better to aim for greater flexibility of practice, following the example of Nistal,
Van Dooren, Clarebout, Elen, and Verschaffel (2009) for whom the choice of an appropriate
representation depends not only on the type of problem, but also on student characteristics
and the particular context.

Showing the value of not being too rigid and allowing an adaptability which takes
into account the situational context (Diezmann, 2002), the diagrams drawn from the
classification of Novick (2006) appear to be assimilable to the concept of the
‘episodic situation model’ highlighted in recent work in cognitive psychology
(Thevenot et al., 2010). However, where these are imposed on students as the only
models of the situations that they represent, these diagrams will always be open to
the criticisms made by Julo (2002) of research aiming to teach students to construct
schematic representations directly inspired by problem typologies: this type of
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approach consists of immediately associating a particular form of symbolism with the
formation of a particular mental schema corresponding to one or more abstract
categories of problem. Spontaneous symbolization, which is particularly in line with
work done within a sociocultural approach (Bednarz et al., 1993; Gravemeijer, 1997;
van Dijk et al., 2003), would meet such criticism but may not lead readily to the
formation of problem categories if it remains too contextualized and hence does not
allow the decontextualization which is necessary for the emergence of the invariants
on which these categories are based. From this point of view, it would probably be
useful to consider whether an approach to teaching and learning could be developed
that aims to start from the symbolizations produced spontaneously by the students
and to lead them gradually, with the teacher supporting the construction process, to
more conventional symbolization which helps in the abstraction of these categoriza-
tions. From another point of view, questions might also be asked about the impact of
these categories of problems on young students. Although categorizations are a sign
of expertise, are young students really capable of such a level of abstraction and is it
really appropriate to focus teaching on the emergence of these categorizations? In
this sense, interventionist research should be carried out to compare the effect of the
various methods of teaching/learning schematizations according to whether or not
they take the students’ spontaneous symbolizations as the starting point.

Appendix 1

Non-familiar change type problem Non-familiar multiplicative combination type 
problem

A snail tries to climb a brick wall. First it climbs up the 
first four bricks, but is then exhausted, stops and falls 
asleep. While it is asleep it slips down one brick. 
When it wakes up it climbs up six bricks, then goes to 
sleep again and slips down two bricks. On its last 
attempt it reaches the tenth brick. How many bricks 
did the snail climb on its last attempt?

The ice-cream seller where I live sells scoops of 
strawberry, vanilla, chocolate and pistachio ice-
cream. He has two types of cone: small and large. 
How many different kinds of one-scoop ice-cream 
can the seller make?

Diagram (network type) Diagram (matrix type) 

Schematic drawing Schematic drawing 

Fig. 5 Examples of problems and schematizations proposed in Part 2
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