

Numerical simulations of the sound propagation in non rectilinear streets

Euronoise 2009, Edinburgh Scotanld, 26-28 october

A. Billon	University of Liège, Belgium
J. Picaut	LCPC-Nantes, France
V. Valeau	LEA University of Poitiers, France
A. Sakout	LEPTIAB University of La Rochelle, France

1. Introduction

- Integrating all these physical phenomena;
- Minimizing the computation time;
- Dealing with complex geometries.
- Comparison of ray-tracing's and diffusion model's results and experiments on scale models for non-rectilinear streets

2. Models presentation

- Diffusion model
- Starting with the motion of sound particles
- Using an asymptotic development (Le Pollès, 2003)
 - Transport equation

Diffusion equation

Solving using finite elements (Colle, 2006)

2. Models presentation

Sound pressure level

$$SPL(\mathbf{r}) = 10\log_{10}\left[\frac{\rho c}{p_{ref}^2}\left(\frac{W_s}{4\pi \mathbf{r}_0^2} + (1-\alpha_s)\frac{W_s}{4\pi \mathbf{r}_1^2} + cw(\mathbf{r})\right)\right]$$

 Good agreement in terms of SPL with numerical and experimental results for rectilinear streets
Inability to predict sound decay (Billon & Picaut, 2008)

Broadband ray-tracing Salrev (Embrechts, 2000)

- Scale 1/10th
- Ø 65 mm dodecahedric sound source
- 1/4" free field microphone
- Varnished plywood fitted with sound diffusors
- Measurements between 100 Hz and 8 kHz (full scale)
- Atmospheric attenuation compensed with a time-varying filter
- Evaluation of SPL and reverberation times (RT10)

27th october 2009

Tree straight configurations

Two configurations with varying cross-section

Intersection

4. Numerical parameters

Ray-tracing

- Ø 1 m sound receivers
- 10⁸ rays
- Computation time 1h~1h30
- Diffusion model
- 10⁴ Lagrange linear elements
- Computation time < 20 s
- 630 Hz third octave band (full scale)
- Boundary conditions evaluated from the rectilinear configurations

	Configuration 1 (width 4m)	Configuration 2 (width 7m)	Configuration 3 (width 10m)
α	0.16	0.07	0.02
S	0.55	0.5	0.65
Mean error on SPL	1.1 dB	1.0 dB	1.1 dB
Mean error on RT	6.0%	6.9%	8.8%

27th october 2009

5. Results

Good agreement for the 7 and 10 m streets
The diffusion model is inaccurate for the 4 m wide street

	MD	Sr		
4 m	4.1	1.1		
7 m	1.3	1.0		
10 m	1.4	1.1		
Mean error (dB)				

27th october 2009

5. Results

Good agreement for both models

	MD	Sr		
1	1.4	1.5		
2	1.6	1.1		
Mean error (dB)				

5. Results

Intersection

- Good agreement for Salrev (1.1 dB)
 - The diffusion model overestimates the sound attenuation in the last section

27th october 2009

5. Results

Intersection

- Fair agreement for Salrev (2.6 dB)
- The diffusion model overestimates the energy flowing through the side streets

27th october 2009

6. Conclusions

- Experiments on scale models have been carried out on various geometries
- Scattering and absorption coefficients have been deduced from the rectilinear streets' results
- Simulations have been made using the diffusion model and Salrev
- Salrev gives good results with a mean discrepancy around 1 dB
- The diffusion model's results are unrealistic around street corner, neglecting the directionality of the reverberant sound field

Acknowledgements:

The author would like to thank the ADEME (french agency for environmental studies) for supporting part of this work.

27th october 2009

Edinburgh, Euronoise 2009

ADEME