

Objectives

In the context of climate change and changing agricultural practices, the aim of this study is to:

> identify factors controlling variability of Soil Respiration (SR) over croplands

> assess contributions of Heterotrophic Respiration (HR) and Autotrophic Respiration (AR) in SR over croplands

> predict seasonal dynamics of SR over croplands using semimechanistic model

Dataset

		Texture [% sand; % silt; % clay]	Mean annual T [°C]	Annual rain [mm]	Soil C content on 15cm [kg/m ²]
Lamothe	43°49'N, 01°23'E	12 ; 34 ; 54	13.1	615	2.4
Lonzée	50°33'N 4°44'E	5;75;20	9.1	772	2.3
Ottawa	45°22'N ,75°43'W	31 ; 49 ; 20	6.3	914	3.9

Inputs data / Parameterization

Soil and climatic data : soil moisture, soil temperature, texture, soil carbon content, soil hydrologic properties Plant data: biomass, biochemistry

\rightarrow available on each site

Soil respiration fluxes to validate model :

		Lamothe	Lonzée	Ottawa
HR dataset	Bare soil			
	<u>Automated</u> <u>measurements</u>	Eddy Correlation	-	Eddy Correlation
	Measurement frequency	Half hourly	-	Half hourly
	Root exclusion zones			
	<u>Automated</u> <u>measurements</u>	-	4automated chambers	-
	Measurement frequency	-	Half hourly	-
	<u>Manual</u> <u>measurements</u>	1 manual chamber	-	-
	Measurement frequency	About once a week	-	-
SR dataset	Wheat planted Area			
	<u>Automated</u> <u>measurements</u>	-	4automated chambers	1 automated chamber
	Measurement frequency	-	Half hourly	Half hourly
	<u>Manual</u> <u>measurements</u>	1 manual chamber	-	1 manual chamber
	Measurement frequency	About once a week	-	About once a week

The soil heterotrophic respiration component (Parton et al., 1987) Semi-mechanistic formalism: parameterization based on processus • Validated on numerous sites for soil C stocks • Classical approach : Four layers (soil surface, top soil (0-15cm), subsoil (15-30cm) and undersoil (30-45cm)) containing 3 to 5 carbon pools each with different turnover and different décomposition rates. • Assumption: produced CO_2 = outgoing CO_2 : no diffusion between the different layers Crop Structural fractio residues Outputs Inputs daily carbon flows Daily soil etabolic fraction among pools (Fig. 1) temperature Daily soil moisture and respiration ctive poo Initial soil C content fluxes (thick arrows in Fig. 1). in each pool Passive poo Fig.1 – Carbon flows in a model layer. The soil autotrophic respiration component •Simulates carbon flow resulting from Maintenance Root Respiration and <u>Growth Root Respiration</u> using above-ground biomass Growth respiration (Rvan 1991) Abov Grov Gro Main Above Initialization phase set the carbon pool contents, as their proportions are <u>Objective:</u> unknown. Method: the model was run until equilibrium (constant total soil carbon) by means of the repetition (20 times) of one climatic year (2007). It was considered that wheat was cultivated each year, the residues being incorporated into the soil at harvest. Ottawa Lamothe Lonzée 0-15 cm 48 41 active C slow C 54 38 15-30cm *C* proportions after 20 years [%] for each site

MODELING SOIL RESPIRATION IN WHEAT FIELDS

Emilie Delogu¹, Valérie Le Dantec¹, Patrick Mordelet¹, Pauline Buysse², Marc Aubinet², E. Pattey³, Eric Ceschia¹, Tiphaine Tallec¹ ¹ Centre d'Etudes Spatiales de la BIOsphère, CESBIO, 18 Av. Édouard Belin bpi 2801, 31401 Toulouse Cedex 9, France. E-mail: emilie.delogu@cesbio.cnes.fr ² Unit of Biosystem Physics, Gembloux Agro Bio-Tech (GxABT), University of Liège, Belgium ³Agriculture and Agri-Food Canada · Eastern Cereal and Oilseed Research Centre, Ottawa (ON), Canada

Inputs	Assumptions	Outputs	
eground biomass	Linked to energetic	Growth respiration	
wing degree day	production cost to synthesize		
owth respiratory	proteins to produce biomass		
quotient			
tenance respiration	<u>(McCree 1970)</u>		
Inputs	Assumptions	Outputs	
eground biomass -R/S	Linked to maintenance cost to	Maintenance	
Root N dynamic	ensure enzyme survival (N =	respiration	
oil temperature	marker of enzyme quantity)	·	
owth respiratory quotient tenance respiration Inputs eground biomass -R/S Root N dynamic Soil temperature	proteins to produce biomass (McCree 1970) <u>Assumptions</u> Linked to maintenance cost to ensure enzyme survival (N = marker of enzyme quantity)	Outputs Maintenance respiration	

>Great modeling of HR : level of carbon well-predicted, seasonal dynamic well-reproduced for different soils, and different climatic conditions

> Only some particular points with high standard deviation are not reproduced

>Great reproducibility of total SR on multiple different sites - Root/Shoot dynamics parameterization is a crucial issue

Partitioning SR components							
	Period (seedbed to harvest)	HR [gC/m²]	AR [gC/m²]	SR [gC/m²]	TER [gC/m²]	% HR/SR	% SR / TER
Lamothe	18/10/2006 to 15/07/2007	239	131	370	902	64.5	41
Lonzée	13/10/2006 to 05/08/2007	291	152	443	1055	65.6	42
Ottawa	20/05/2007 to 03/09/2007	187	89	276	Missing data	67.7	Missing data
Ottawa	11/05/2011 to 29/08/2011	240	111	351	Missing data	68.3	Missing data

> High HR contribution in SR(~65%) among sites during crop periods

> HR contribution not higher on Ottawa whereas highest soil C content (3.9kg C/m² but mostly passive C = protected organic matter) \rightarrow importance of C proportions in modeling

>SR / TER ~40% (during crop periods!) \rightarrow important contribution in TER \rightarrow importance of agricultural soil in GES balance \rightarrow scenarii, management need to be study

Prospects

- > Addition of cultural management process
- Scenarii survey (crop rotation, irrigation, ploughing)

> Comparison between empirical and mechanistic modeling : partitioning and understanding SR/TER, AR and HR / SR (see poster session BG2.11 Green Poster area, board G44)