received a single CBT and 124 (60%) had a double CBT. Thirty percent of CBU had 0-1 HLA mismatch (A, B, DRB1), 67% received Fludarabine and 71% received a double CBT. Median infused TNC was 3.7x10^7/kg. Pre-transplant serum was tested for HLA-Ab with a panel of fluorescent beads coated with single HLA-antigen using Luminex® platform. Results were interpreted as fluorescence intensity (MFI) against donor-specific mismatch (>1000 MFI was the threshold for positivity). Overall 48 pts (33%) had anti-HLA-Ab before CBT and those were donor specific anti-HLA-Ab (DSA) in 16 pts. Among the 16 pts withDSA (11 females, 5 males), 9 had single and 7 double-CBT (none had DSA directed to both CBT units). Seven pts had DSA vs to HLA-Class-I, 5 vs to HLA-Class-II and 4 to both HLA-Class-I and-II. DSA threshold ranged from 1620-17529 MFI. Results. Cumulative incidence (CI) of day-60 neutrophil engraftment was 78%. It was 44% for recipients with DSA and 81% in pts without DSA (p=0.006). There was no difference for pts with anti-HLA-Ab non donor-specific (77% vs 69%). Multivariate model showed DSA (RR 2.7, p=0.01) and CBT before 2008 (RR 1.49, p=0.03) independently associated with GF. Seven pts withDSA engrafted, 4 after double CBT and chimerism analysis showed the engraftment of the CBU with DSA in 1 case. Among 50 pts who failed engraftment, 9 (20%) pts had DSA specific for donor HLA-Class-I (n=4) or Class-II (n=2) or both Class-I and Class-II (n=3). CI of platelet recovery at day-180 was 62%, 12 of 16 patients with DSA did not achieve platelet recovery. CI of 1-year TRM was 35%. DSA was associated with higher TRM (p=0.002). Overall survival at 3-years was 44%, it was 41% and 45% for pts with non-malignant and malignant disease respectively. OS was 47% for recipients without DSA and 25% for those with DSA, p=0.006. In multivariate analysis, the absence of DSA was the only factor associated with better survival (RR 2.41, p=0.005). Conclusions. Donor-specific anti-HLA-Ab in recipients of CBT is associated with failed engraftment and lower survival. Screening for DSA may be included in the algorithm of donor choice for cord blood transplantation.

Background. The impact of the type of reduced intensity conditioning regimen used on immune recovery after allogeneic hematopoietic cell transplantation (allo-HCT) is poorly determined. Aims. We analyzed immune reconstitution in patients enrolled in a BHS-HCT sponsored randomized study comparing two non-myeloablative conditioning regimens for allo-HCT for which cell samples were prospectively collected. Patients and Methods. The conditioning regimen consisted of either 2 Gy TBI with 90 mg/m^2 fludarabine (=TBI arm, n=21), or 8 Gy TLI plus thymoglobulin (ATG) 7.5 mg/kg (=TLI arm, n=19). Median ages at HCT were 59 yrs and 61 yrs in the TBI and TLI arms, respectively. Immune reconstitution was assessed by flow-cytometry phenotyping, signal joint T-cell Receptor Excision Circle (sTREC) quantification, and T-cell spectratyping. Written informed consent has been obtained for each patient included. Results. Absolute T cell counts were lower in the TLI arm than in the TBI arm on day 28 after HSCt (P=0.04) but not thereafter. Further, B cells, as well as CD4+, CD4+CD45RA+ and CD4+CD45RO+ T cell reconstitution lagged behind in the TLI arm compared to the TBI arm the first year after HCT (B cells: p=0.0295 and others: p<0.0001). In contrast, reconstitution of CD8+ T cells, NK cells, Tregs and iNKt cells were similar in the 2 groups. For the thymic function, while sTREC levels were higher in the TBI arm than in the TLI arm on day 100 (P=0.002) and on day 365 (not significant) after HCT, the increase in sTREC levels from day 100 to day 365 was similar in the 2 groups of patients. The diversity of the TCR repertoire was similar in the 2 groups of patients on day 100 after HCT. Finally, we found that ATG persists in patients up to 17 days after allo-HCT in TLI patients (median of [ATG] at day 17=0.62 mg/l (TLI arm, n=19) while sTREC levels were higher in the TBI arm than in the TLI arm on day 100 (P=0.002) and on day 365 (not significant) after HCT, the increase in sTREC levels from day 100 to day 365 was similar in the 2 groups of patients. The diversity of the TCR repertoire was similar in the 2 groups of patients on day 100 after HCT. Finally, we found that ATG persists in patients up to 17 days after allo-HCT in TLI patients (median of [ATG] at day 17=0.62 mg/l and for one patient at day 20=0.53). Conclusions. These preliminary results suggest that ATG may be responsible for the delay of immune reconstitution of CD4+ T cells in the TLI arm. Furthermore, ATG probably destroyed grafted sTREC+ T cells, explaining the difference of sTREC levels at days 100 and 365 between the two groups while sTREC increment from day 100 to day 365 was similar in the 2 groups. Finally, TLI conditioning has no impact on immune regulatory populations (Treg and iNKt) after the transplantation.