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Lyapunov-based sufficient conditions for
exponential stability in hybrid systems

A.R. Teel, F. Forni, L. Zaccarian

Abstract—Lyapunov-based sufficient conditions for exponen-
tial stability in hybrid systems are presented. The focus is
on converting non-strict Lyapunov conditions, having certain
observability properties, into strict Lyapunov conditions for
exponential stability. Both local and global results are considered.
The utility of the results is illustrated through an example.

I. I NTRODUCTION

This technical note is motivated by analysis problems that
arise in tracking and estimation problems for mechanical
systems with impacts (see, e.g., [19], [17] and references
therein). For such problems, in [7], [8], [6], it has been shown
how to construct a radially unbounded Lyapunov function that
does not increase during flows, does not increase at impacts,
and whose zero level set corresponds to zero position tracking
error. Moreover, the derivative of the Lyapunov function is
negative semidefinite with an observability property: constrain-
ing the derivative equal to zero on any time interval of non-
zero length implies that the Lyapunov function’s value must
be identically zero. This fact, coupled with provable absence
of Zeno solutions and the hybrid invariance principle [21],
leads to the conclusion that the zero level set of the Lyapunov
function is globally asymptotically stable. However, we wish
to establish the stronger result that the zero level set of the
Lyapunov function is globally exponentially stable. For such
a conclusion, we rely on the results in this note.

Our contribution has connections to the hybrid invariance
principle [15], [3], [21], [10], although in the absence of
some homogeneity properties [12], the invariance principle is
typically not strong enough to conclude exponential stability.
There are also connections to Matrosov conditions for asymp-
totic stability in hybrid systems [16], [22]. In addition, there
is a connection to a result from linear systems theory, often
called the “Squashing” Lemma [20], [4].

The paper is organized as follows. In Section II we charac-
terize exponential stability and its Lyapunov formulation. In
Section III we formulate relaxed Lyapunov conditions. Later
we show how homogeneity (Section IV) and observability with
partially linear flow maps (Section V) are situations where
those relaxed conditions are sufficient for exponential stability.
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II. D EFINITIONS AND INITIAL OBSERVATION

We consider a hybrid system with statex ∈ R
n of the form

H :

{
x ∈ C ẋ ∈ F (x)
x ∈ D x+ ∈ G(x) .

(1)

A solution to a hybrid system is any hybrid arcx : domx→
R
n, where the domain is a subset ofR≥0×Z≥0, that satisfies

the constraints imposed in (1). See [9, pp. 39-42] for a precise
definition of a hybrid arc and a solution to a hybrid system.
A solution is said to becomplete if its domain is unbounded.

Given a closed setA ⊂ R
n and a vectorx ∈ R

n, the
quantity |x|A denotes the distance ofx to A, that is,|x|A :=
infa∈A |x − a| where | · | is a vector (e.g., Euclidean) norm
on R

n. Givenµ > 0, A + µB◦ := {x ∈ R
n : |x|A < µ}. For

a setC ⊂ R
n, C denotes the closure ofC.

For the system (1), a closed setA ⊂ R
n is said to be

(locally) exponentially stable if there exist strictly positive
real numbersµ, k, λ such that each solutionx satisfying
|x(0, 0)|A < µ also satisfies, for all(t, j) ∈ domx,

|x(t, j)|A ≤ k exp(−λ(t+ j))|x(0, 0)|A . (2)

It is said to beglobally exponentially stable if there exist
strictly positive real numbersµ, k such that each solutionx,
regardless of the size of the initial condition, satisfies (2).
Nothing in the definition of exponential stability guarantees
that solutions exist or have unbounded time domains. Rather,
the definition simply imposes a bound on the distance of the
solution to the setA for each time in each solution’s domain.
A simple illustration of this fact is discussed at the end of
Example 4 in Section V-B of this note.

A simple sufficient condition for exponential stability is
given in the following theorem, the proof of which follows
standard arguments extended to hybrid systems.

Theorem 1: For the system (1), the closed setA ⊂ R
n is

locally exponentially stable if there exist positive real numbers
α, α, λ, µ, p, and a functionV : domV → R, whereC ∪
D∪G(D) ⊂ domV , that is continuously differentiable on an
open set containingC and satisfies

α · |x|pA ≤ V (x) ≤ α · |x|pA ∀x ∈ (C∪D∪G(D))∩(A+µB◦ )
(3)

〈∇V (x), f〉 ≤ −λV (x) ∀x ∈ C∩(A+µB◦), f ∈ F (x) (4)

V (g) ≤ exp(−λ)V (x) ∀x ∈ D∩(A+µB◦), g ∈ G(x). (5)

If these bounds hold withµ = ∞ then the setA is globally
exponentially stable.

Proof: Consider the evolution of a solutionx satisfying
|x(0, 0)|A < (α/α)

1
pµ. Sincex(0, 0) ∈ C ∪ D by definition

andV is continuously differentiable onC, it follows from (3)
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that V (x(0, 0)) < α · µp. Also note, according to (3), that
V (x) < α · µp implies thatx ∈ A + µB◦. Thus, as long
asV does not increase along the solution, we will have that
x(t, j) ∈ C ∩ (A + µB◦) for eachj and almost allt such
that (t, j) ∈ domx and we will have thatx(t, j) ∈ D ∩
(A + µB◦) whenever(t, j), (t, j + 1) ∈ domx. A flowing
solution would take some positive amount of time to reach
the conditionV (x(t, j)) ≥ α · µp. Due to (4), for almost all
time in that interval, the derivative oft 7→ V (x(t, j)) is not
positive. Hence, it is impossible forx to leave the setA+µB◦

by flowing. Condition (5) rules outx leaving the setA+µB◦

by jumping. Thus,x never leaves the setA+µB◦ and we can
apply (4) and (5) and a comparison principle [1, Lemma C.1]
to conclude that, for all(t, j) ∈ domx,

α · |x(t, j)|pA ≤ V (x(t, j)) ≤ exp(−λ(t+ j))V (x(0, 0))
≤ α exp(−λ(t+ j))|x(0, 0)|pA

so that if |x(0, 0)|A < (α/α)
1
pµ then, for all(t, j) ∈ domx,

|x(t, j)|A ≤ (α/α)
1
pexp

(
−λp−1(t+ j)

)
|x(0, 0)|A

This bound establishes the result.

III. E XPONENTIAL STABILITY UNDER RELAXED

LYAPUNOV CONDITIONS

The purpose of this note is to provide relaxed Lyapunov-
based conditions for exponential stability. In particular, mo-
tivated by results in [7], [8], [6], we consider the situation
where a non-strict Lyapunov function has been found, in other
words, a function satisfying the conditions of Theorem 1 with
the caveat that the conditions (4) and (5) are weakened to

〈∇V (x), f〉 ≤ −ρ(x) ∀x ∈ C ∩ (A+µB◦), f ∈ F (x) (6)

whereρ : C → R≥0 is a continuous function, and

V (g) ≤ V (x) ∀x ∈ D ∩ (A+µB◦), g ∈ G(x) . (7)

The conditions (6)-(7) guarantee thatA is stable. In particular,

|x(0, 0)|A < (α/α)
1
pµ =⇒ |x(t, j)|A ≤ (α/α)

1
p|x(0, 0)|A .

On the other hand, in general the conditions are not sufficient
for exponential, or even asymptotic, stability. Several things
can go wrong. For example, without extra structure imposed
on the hybrid system, there may exist a solution that only
jumps and never flows. Since the only information we have
about jumps is thatV does not increase, there is no hope of
concluding thatV (x(t, j)) converges to zero ast + j → ∞.
A simple example where (3), (6)-(7) hold yet convergence of
V to zero fails isn = 1, A = {0}, C = ∅, D = R, G(x) =
x and V (x) = x2. Another possibility is that we may have
convergence ofV (x(t, j)) to zero ast+ j → ∞ at a rate that
is slower than any exponential function, even ifρ is positive
definite with respect toA. A simple example where (3), (6)-(7)
hold withρ positive definite with respect toA yet convergence
of V to zero is slower than exponential isx ∈ R (namelyn =
1), A = {0}, C = R, F (x) = −x3, D = ∅ andV (x) = x2.
In light of these examples, we look to impose extra structure
on the hybrid system to ensure exponential stability.

IV. U SING ASYMPTOTIC STABILITY PLUS HOMOGENEITY

In this section we illustrate how (global) exponential stabil-
ity can be established using the properties of homogeneous
hybrid systems. In particular, for hybrid systems that have
an appropriate type of homogeneity property [12], one path
that is available is to prove a weaker asymptotic stability
property and then rely on homogeneity to establish exponential
stability. Proving asymptotic stability can then be done by
relying on the invariance principle [21], as illustrated inthe
examples discussed next. Note that using homogeneity, one
does not have, in general, an explicit Lyapunov function (as
in Theorem 1). An alternative route is taken later in SectionV,
where we rely on different assumptions. For those results, an
explicit Lyapunov function is derived.

A. Homogeneity with respect to the partially standard dilation

Using [12, Lemma 4.2], it is possible to pass from asymp-
totic to exponential stability for hybrid systems with an
appropriate type of homogeneity. For example, consider the
system (1) and let the integersn1 ∈ Z≥1 and n2 ∈ Z≥0

satisfy n1 + n2 = n. Given λ > 0, define the matrix
M(λ) := diag(λIn1 , In2), which characterizes a partially
standard (non-proper) dilation. The hybrid system (1) is said
to behomogeneous of degree zero with respect to the partially
standard dilation M if, for eachλ > 0,

M(λ)C = C, M(λ)D = D,

F (M(λ)x) = M(λ)F (x) ∀x ∈ C,

G(M(λ)x) = M(λ)G(x) ∀x ∈ D.

The necessity of the next result is a straightforward conse-
quence of the bound in (2), while the sufficiency can be proven
as in the proof of [12, Theorem 7.1], which pertains to systems
with logic modes, given in [12,§7.2]. Indeed, solutions to
the homogeneous hybrid system can be scaled as suggested
in [12, Lemma 4.2] and, following the proof technique of
[12, Proposition 4.3], the scaled solutions allow establishing a
uniform contractivity property over a sequence of hybrid time
intervals of sizet + j = T . Note that while [12, Proposition
4.3] refers only to the origin, generalizing the results to the set
A, which allows for the extran2 states, is straightforward as
illustrated in [12,§7.2] where those extran2 states correspond
to suitable logic modes indexes.

Proposition 1: Suppose the system (1) is homogeneous of
degree zero with respect to the partially standard dilation
M(λ) := diag(λIn1 , In2). Then the setA = {0} × R

n2

is globally exponentially stable if and only if there exist
0 < r < R and T > 0 such that |x(0, 0)|A ≤ R,
(t, j) ∈ domx, andt+ j ≥ T imply |x(t, j)|A ≤ r.

The condition for global exponential stability in Proposition
1 is guaranteed if the setA is uniformly locally asymptoti-
cally stable. Proposition 1 can also be applied to a “conical
approximation” of a hybrid system, like in [12], to derive local
exponential stability results.

B. Uniform asymptotic stability from non-strict Lyapunov conditions

Several tools can be invoked to characterize extra structure
sufficient to get asymptotic stability from non-strict Lyapunov
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conditions. A popular tool from the hybrid systems literature,
often found under the title “multiple Lyapunov functions” [5],
involves establishing conditions under which the Lyapunov
function strictly decreases eventually, although not necessarily
monotonically; see also [18] and the references therein. An
alternative tool, which has been developed recently for hybrid
systems, is based on the construction of a family of Matrosov
functions [22], [16], where in the latter reference strict Lya-
punov functions are constructed from non-strict ones. Finally,
in the case where the setA is compact and the data of the
hybrid system satisfies appropriate regularity properties[11],
[9], the hybrid invariance principle [21] (cf. [15], [3]) can
be invoked to establish asymptotic stability. To illustrate the
latter approach, in concert with Proposition 1, we considertwo
examples based on material in [18].

Example 1: (Cf. [18, Example 3]) LetM,H,K ∈ R
n×n

be symmetric withK positive semidefinite andM,H positive
definite. Suppose the pair(K,M−1H) is observable. Let
λ0, λ1 ∈ R>0 satisfyλ0λ1 ≤ 1. Let 0 < T1 ≤ T2. Consider
the system withx = (q, p, α, τ) ∈ R

n × R
n × R× R where

C = R
n × R

n × {0, 1} × [0, T2]
D = R

n × R
n × {0, 1} × [T1, T2]

F (x) =

[
M−1p

−Hq−αKM−1p
0
1

]
G(x) =

[
λaq:|λa|≤λα

λbp:|λb|≤λα

1−α
0

]
.

(8)

The constraints on the evolution of the stateτ dictate that
the jumps, which toggleα in the set{0, 1}, are spaced by at
leastT1 time units and no more thanT2 time units. We first
study global asymptotic stability of the compact setAc :=
{0}× {0}× {0, 1}× [0, T2]. Consider the Lyapunov function
candidateV (x) = λα

(
qTHq + pTM−1p

)
. Sinceλα > 0 for

eachα ∈ {0, 1} and H and M are positive definite,V is
radially unbounded and positive definite with respect toAc

when restricted to the setC∪D∪G(D). Like in [18], it is easy
to verify that 〈∇V (x), F (x)〉 = −2λααp

TM−1KM−1p ≤ 0
for all x ∈ C. Moreover, using thatλ1−αλα ≤ 1, for all
x ∈ D and allg ∈ G(x), we have

V (g) ≤ λ1−αλ2α
(
qTHq + pTM−1p

)

≤ λα
(
qTHq + pTM−1p

)
= V (x) .

Let x be a complete solution so that, for somec ≥ 0,
V (x(t, j)) = c for all (t, j) ∈ domx. Due to the nature of the
flow set and the jump map forα, there existsi ∈ Z≥0 and a
ti ≥ 0 such thatα(s, i) = 1 for all s ∈ [ti, ti + T1] and thus,
from the expression for〈∇V (x), F (x)〉, KM−1p(s, i) = 0
for all s ∈ [ti, ti + T1]. Following [18] and the references
therein, by repeatedly differentiating this equality and using
the flow dynamics for(q, p), we getK(M−1H)jq(s, i) = 0
for all s ∈ [ti, ti + T1] and all positive integersj. By
the assumed observability of(K,M−1H), it follows that
M−1Hq(s, i) = 0 for all s ∈ [ti, ti + T1]. SinceM and
H are positive definite,q(s, i) = 0 for all s ∈ [ti, ti + T1].
Differentiating this equality and using the flow dynamics for
q yields thatp(s, i) = 0 for all s ∈ [ti, ti + T1]. Then, by the
definition ofV , we must havec = 0. Consequently, according
to the invariance principle in [21], the compact setAc is
globally asymptotically stable. According to [11, Theorem

6.5], the setAc is uniformly globally asymptotically stable.
Then, it follows that the closed setA = {0}×{0}×R×R is
uniformly globally asymptotically stable, since|x|Ac

= |x|A
for all x ∈ C∪D∪G(D). Finally, we note that the system (8)
is homogeneous with respect to the partially standard dilation
M with n1 = 2n andn2 = 2. We conclude from Proposition
1 that the setA is globally exponentially stable. y

Example 2: (Based on [18, Examples 1 and 4]) Let
λ0, λ1 ∈ R>0 satisfy λ0λ1 ≤ 1. Let ψ1, ψ2 : R → R be
continuous functions that satisfysψi(s) > 0 for all s 6= 0 and
i ∈ {1, 2}. In addition, suppose thatψ1(z) = a+z for z > 0
andψ1(z) = a−z for z < 0 wherea+, a− ∈ R>0. Consider
the system with statex = (z, v, α) ∈ R

3 where

C = (R× R≥0 × {0}) ∪ (R× R≤0 × {1})
D = (R≥0 × {0} × {0}) ∪ (R≤0 × {0} × {1})

(9)

F (x) =
[ v
−ψ1(z)−αψ2(v)

0

]
G(x) =

[
λz:λ∈[0,λα]

0
1−α

]
. (10)

Initially, we study global asymptotic stability of the compact
setAc := {0}×{0}×{0, 1}. Consider the Lyapunov function
candidateV (x) = λα

(∫ z
0 ψ1(s)ds+ 0.5v2

)
(see also [14,

Example 4.8]). Due to the properties ofψ1, the functionV
is radially unbounded and positive definite with respect toAc

when restricted toC ∪ D ∪ G(D). Also 〈∇V (x), F (x)〉 =
−αvψ2(v) for all x ∈ C. Moreover, usingλαλ1−α ≤ 1 and
the properties ofψ1, we get that, for allx ∈ D andg ∈ G(x),

V (g) ≤ λ1−αλ
2
α

∫ z

0

ψ1(s)ds

≤ λα

(∫ z

0

ψ1(s)ds+ 0.5v2
)

= V (x) .

It can be verified that if there exists a complete solutionx and
c ≥ 0 that satisfyV (x(t, j)) = c for all (t, j) ∈ domx then
necessarilyc = 0. Indeed, supposec > 0. Then there exists
i ∈ Z≥0, ti ∈ R≥0 andT ∈ R>0 such thatα(s, i) = 1 for all
s ∈ [ti, ti + T ]. In turn, v(s, i) = 0 for all s ∈ [ti, ti + T ] and
thus, from the properties ofψ1, z(s, i) = 0 for all s ∈ [ti, ti+
T ]. This observation contradicts the assumption thatc > 0.
Global asymptotic stability ofAc then follows from the hybrid
invariance principle [21], and thus uniform global asymptotic
stability of the closed setA = {0}×{0}×R×R follows like in
the previous example. Whenψ2(θv) = θψ2(v) for all v ∈ R

and θ > 0, system (9)-(10) is homogeneous of degree zero
with respect to the partially standard dilationM with n1 = 2
andn2 = 1. In that case, we conclude from Proposition 1 that
the setA is globally exponentially stable. Alternatively, when
ψ2 is differentiable at the origin andψ′

2(0) > 0, we conclude
from Proposition 1 and a straightforward generalization ofthe
results in [12], analogous to the generalization discussedin
[12, Section 7], that the setA is locally exponentially stable,
in addition to uniformly globally asymptotically stable. y

V. OBSERVABILITY AND PARTIALLY LINEAR FLOW MAPS

In this section, we consider hybrid systems with a special
form that is motivated by systems that appear in [7], [8], [6].
(A self-contained motivational example is given in SectionV-B
below.) Differently from Section IV, we assume partially linear
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flow maps with a suitable observability condition involving
the functionρ(·) in (6). Then, under a suitable average dwell-
time condition, we show how to construct a Lyapunov function
satisfying the conditions of Theorem 1.

A. Main result

Consider the following assumption.
Assumption 1: The following conditions hold:
1) The statex ∈ R

n can be decomposed asx = (xT1 , x
T
2 )
T

wherex1 ∈ R
n1 , n1 ∈ {1, . . . , n},

2) A = {0} × R
n−n1 ,

3) F has the formF (x) =
[
F1x1
F2(x)

]
whereF1 ∈ R

n1×n1 ,

4) Conditions (3), (6)-(7) hold withp = 2 and ρ(x) =
xT1H

T
1 H1x1 for all x ∈ C where the pair(H1, F1) is

observable (in the classical linear sense),
5) The jumps of the hybrid system satisfy an average dwell-

time constraint1 with average dwell-time parameters
(δ,N) where δ > 0 and N ≥ 1. In particular, by
augmenting system (1) with the automaton

τ ∈ [0, N ] τ̇ ∈ [0, δ]
τ ∈ [1, N ] τ+ = τ − 1 ,

(11)

in other words, considering the system

(τ, x) ∈ [0, N ]× C

{
τ̇ ∈ [0, δ]
ẋ ∈ F (x)

(τ, x) ∈ [1, N ]×D

{
τ+ = τ − 1
x+ ∈ G(x),

(12)

a hybrid arcx is a solution of (1) if and only if it is
the “x”-component of a solution to (12) initialized with
τ(0, 0) = N [2, Proposition 1.1]. �

In the spirit of [16], we state our main result.
Theorem 2: Under Assumption 1, the conditions of Theo-

rem 1 hold and thus the setA is locally exponentially stable for
the system (1). If item 4 of Assumption 1 holds withµ = ∞
then the conditions of Theorem 1 hold withµ = ∞ and thus
the setA is globally exponentially stable.

We emphasize that the usual basic conditions on the data of
a hybrid system to guarantee well-posedness, the invariance
principle, converse Lyapunov theorems, etc., are not needed
for the conclusion of Theorem 2.

B. Illustrative examples

First we provide an example to emphasize that, without
imposing some extra condition, the conclusion of Theorem
2 does not hold if the observability condition on(H1, F1) in
the fourth item of Assumption 1 is relaxed to detectability.

Example 3: Consider the hybrid system whereC = R ×
[0, 1], D = R× {1},

f(x) =

[
−x1
1

]
, g(x) =

[
exp(1)x1

0

]
,

1 A precise definition of the average dwell-time constraint with parameters
(δ, N) is given in [2, Proposition 1.1]. Intuitively, the timerτ in (11), which
evolves in [0, N ] and decreases by1 at each jump, forbids more thanN
simultaneous jumps and restricts the number of jumps in eachbounded
ordinary time interval.

and A = {0} × R so that the first three conditions of
Assumption 1 hold. The last condition of Assumption 1 holds
with N = 1 andδ = 1. Indeed, we can setτ(0, 0) = 1, then
pick τ̇ = 0 until x2(t, 0) = 1 and then we can synchronize
τ with x2 thereafter. ConsiderV : R

2 → R≥0 defined as
V (x) = exp(2x2)x

2
1 for each x ∈ R

2. We get that (3)
holds with α = 1 and α = exp(2). Also, V (g(x)) =
exp(2)x21 = exp(2x2)x

2
1 = V (x) for all (x1, x2) ∈ R × {1}

and 〈∇V (x), f(x)〉 = −2x21 exp(2x2) + 2 exp(2x2)x
2
1 = 0

for all (x1, x2) ∈ R × [0, 1]. Thus forH1 = 0, which gives
that (H1, F1) is detectable sinceF1 = −1 is Hurwitz, we get
that the fourth condition of Assumption 1 would hold if the
word “observable” were replaced by “detectable”. Conversely,
it is clear that the setA is not exponentially stable since each
solution satisfiest− j ≤ 1 for all (t, j) ∈ domx and

|x(t, j)|A = |x1(t, j)| = exp(−t+ j)|x1(0, 0)|
≥ exp(−1)|x1(0, 0)|
= exp(−1)|x(0, 0)|A .

This example demonstrates that Theorem 2 does not hold with
“detectable” in place of “observable” in the fourth item of
Assumption 1. The basic obstruction is that detectability in the
linear sense, through the identically zero output, for the flow
dynamics does not imply detectability, through the identically
zero output, for the hybrid dynamics. Figure 1 illustrates the
nonconverging behavior ofx1. y
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Figure 1. A simulation for Example 3 from the pointx0 = [ 1 0 ]T .

Next, we give an example, inspired by the results in [7],
[8], [6], where the result of Theorem 2 is used to draw the
global exponential stability conclusion.

Example 4: Consider the system with state
ξ = (ζp, ζv, zp, zv, q, τ)

T ∈ R
6, where

C̃ = R≥0 × R× R≥0 × R× {−1, 1} × [0, N ]

D̃1 = {0} × R≤0 × R≥0 × R× {−1, 1} × [1, N ]

D̃2 = R≥0 × R× {0} × R≤0 × {−1, 1} × [1, N ]

D̃ = D̃1 ∪ D̃2

F̃ (ξ)=




ζv
−ζp−k(ζv−qzv)

zv
−zp
0

[0,δ]


 G̃1(ξ)=




−ζp
−ζv
zp
zv
−q
τ−1


 G̃2(ξ)=




ζp
ζv
−zp
−zv
−q
τ−1




and

G̃(ξ) =





G̃1(ξ) x ∈ D̃1\D̃2

G̃2(ξ) x ∈ D̃2\D̃1

G̃1(ξ) ∪ G̃2(ξ) x ∈ D̃1 ∪ D̃2 .

We letk > 0. The system can be viewed as a tracking system
for mechanical variables that experience impacts. The(zp, zv)
subsystem generates an oscillatory reference trajectoryzp that
has a sign change in velocity whenzp = 0 and zv ≤ 0 (see
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Figure 2. A simulation of the system in Example 4 from the initial condition
ζ0 = [ 4 1 ]T , z0 = [ 1 1 ]T , q0 = 1, andτ0 = 50, for k = 4, N = 100,
andδ = 2.

the thin solid red curve in the upper plot of Figure 2). The
(ζp, ζv) dynamics, which also experience a sign change in
velocity whenζp = 0 and ζv ≤ 0, are acted on during flows
through a control action that introduces the term−k(ζv−qzp),
which aims to makeζp trackzp (see the bold solid black curve
in the upper plot of Figure 2). The relevant error is captured
in the variables defined asxp := ζp − qzp, xv := ζv − qzv,
x1 := (xp, xv)

T . The bold dashed blue curve in the upper plot
of Figure 2 clarifies graphically whyζp is compared toqzp
rather than tozp directly. We note that since the flow set and
jump set yield the constraintsζp ≥ 0 andzp ≥ 0, the condition
xp = 0 necessarily impliesζp = zp, regardless of the value
of q ∈ {−1, 1}. Thus, convergence ofxp to zero corresponds
to convergence ofζp to zp. We re-write the flow and jump
dynamics in the coordinatesx := (xp, xv, zp, zv, q, τ) to get
a system with data(C,F,D,G) and, in these coordinates,
establish global exponential stability of the closed setA :=
{0} × R

4 using Theorem 2.
With the definitionsF1 :=

[
0 1
−1 −k

]
, H1 := [ 0

√
2k ] we

have thatFT1 + F1 = −HT
1 H1, (H1, F1) is observable, and

ẋ1 = F1x1. Note also that for jumps that correspond to
ξ ∈ D̃1, we have thatx+1 = −x1 while for jumps that
correspond toξ ∈ D̃2, we have thatx+1 = x1. We define
V (x) := xT1 x1 for all x ∈ R

6 so that|x|2A ≤ V (x) ≤ |x|2A
for all x ∈ R

6. Implicitly, we are using the Euclidean norm as
the underlying norm in the definition of the distance. We also
have that〈∇V (x), f〉 = xT1 (F

T
1 +F1)x1 = −xT1H

T
1 H1x1 for

all x ∈ C andf ∈ F (x), andV (g) = |±x1|
2 = |x1|

2 = V (x)
for all x ∈ D and g ∈ G(x). Since all of the conditions of
Assumption 1 are satisfied, withµ = ∞, the setA is globally
exponentially stable according to Theorem 2. Figure 2 showsa
typical response of the tracking system where the exponential
convergence ofV can be appreciated.

There are initial conditions from which complete solutions
do not exist. For example, ifτ(0, 0) ∈ [0, 1) and the rest
of the state is initialized at a point inC ∩ D where it is not
possible to flow, then the ensuing maximal solutions are trivial,
that is, they have the time domain equal to the single point
(0, 0). Pickingδ > 0 andN ≥ 1 sufficiently large, initializing
τ nearN , and picking initial values for(zp, zv) with norm
bounded away from zero typically is sufficient to guarantee
that maximal solutions are complete. Because of the average
dwell-time mechanism, if the time domain is unbounded then
it is unbounded in the “ordinary” time direction. y

C. Proof of main result

We start with a technical lemma that is closely related to the
well-known “Squashing” lemma from linear systems theory

[20], but is expressed in terms of a Lyapunov inequality. The
proof of this lemma draws inspiration from the proof of [4,
Proposition 2.1].

Lemma 1: Let the pair (H,F ), with F ∈ R
n×n, be ob-

servable. Then there exist positive scalars k ≥ 1, ν ≥ 1 and
a matrix-valued function P : [1,∞) → R

n×n, such that, for
all h ∈ [1,∞), P (h) is symmetric and

FTP (h) + P (h)F ≤ −hP (h) + khνHTH
I ≤ P (h) ≤ khνI .

(13)

Proof: Consider the case whereH ∈ R
1×n and (H,F )

is in observer canonical form, that is,

H =




1
...
0




T

, F = F̄ (c) :=




−c1 1 0 . . . 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
...

... . . .
. . . 1

−cn 0 . . . . . . 0




(14)

for somec =
[
c1 . . . cn

]T
∈ R

n. Let β ∈ R
n be such

that F̄ (β) is Hurwitz with all eigenvalues having real part less
than−1, and consider

K(h) :=
[
c1−hβ1 c2−h

2β2 . . . cn−h
nβn

]T
. (15)

DefineT (h) := diag(hn−1, hn−2, . . . , 1) and note that

hF̄ (β) = T (h)[F +K(h)H ]T (h)−1. (16)

Pick P̂ = P̂T ≥ I such that

(F̄ (β) + I)T P̂ + P̂ (F̄ (β) + I) ≤ 0, (17)

and takeP (h) := T (h)P̂ T (h) so that I ≤ P (h) ≤
λmax(P̂ )h

2(n−1), whereλmax(P̂ ) is clearly independent of
h. Thus, using first (16) and then (17), we get

[F +K(h)H ]TP (h) + P (h)[F +K(h)H ] =

= hT (h)
(
F̄ (β)T P̂+P̂ F̄ (β)

)
T (h) ≤ −2hP (h).

(18)

Using (15) and the fact thath ≥ 1, we have
HTK(h)TK(h)H ≤ pnh

2nHTH for some pn > 0 that
depends onc, β, andn but is independent ofh. Then from
(18) and using in the second inequality belowATB+BTA ≤
hBTB+ 1

hA
TA, with A = P (h)1/2K(h)H , B = −P (h)1/2,

andh > 0, we get

FTP (h) + P (h)F ≤
≤ −2hP (h)−HTK(h)TP (h)− P (h)K(h)H
≤ −2hP (h) + hP (h) + 1

h [K(h)H ]TP (h)[K(h)H ]

≤ −hP (h) + λmax(P̂ )
h2(n−1)

h HTK(h)TK(h)H

≤ −hP (h) + λmax(P̂ )
h2(n−1)

h pnh
2nHTH

= −hP (h) + λmax(P̂ )pnh
4n−3HTH .

This calculation establishes the result withν = 4n− 3 when
H ∈ R

1×n and (H,F ) is in observer canonical form. For
general(H,F ) with H ∈ R

1×n, the result of the lemma is
obtained by invoking a coordinate transformationT such that
the pair(Ĥ, F̂ ) := (HT−1, TFT−1) is in observer canonical
form and then applying the argument above to(Ĥ, F̂ ). For
general (H,F ) with H ∈ R

m×n, we invoke Heymann’s
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lemma, as done in [4], to reduce the problem to one with
H ∈ R

1×n and then apply the calculations just described for
this case. In particular, Heymann’s lemma [13] states that for
any v ∈ R

m such thatvTH 6= 0, there existsK◦ such that
the pair(vTH,F +K◦H) is observable.

We are now ready to prove Theorem 2. Throughout this
proof we use the overloaded notation|x|2P := xTPx whenP
is a symmetric positive semi-definite matrix.

Proof: (of Theorem 2) We first note that, according to
the last item of Assumption 1, it is sufficient to establish
exponential stability of the setAξ := [0, N ] × A for system
(12). We useξ := (τ, x) for the full state of (12).

According to Assumption 1, we let the functionV satisfy
(3) as well as (6) and (7) withp = 2 andρ(x) = xT1H

T
1 H1x1.

Using Lemma 1, defineU(x) := |x1|
2
P (h). From (13), (3), and

the fact thatA = {0}×R
n2 so that|x|A = |x1|, we have that

for eachx ∈ (C ∪D ∪G(D)) ∩ (A+ µB◦),

1

α
V (x) ≤ U(x) ≤

khν

α
V (x) . (19)

Pick h large enough so that1 > γ := exp
(
− h

2δ

)
khν αα and

defineϕ(τ) := 1
khν exp

(
h(τ−N)

2δ

)
, so that ∂ϕ∂τ = h

2δϕ(τ),

and Y (ξ) = Y (τ, x) := V (x) + ϕ(τ)U(x). We establish
the conditions (3)-(5) for the functionY , that is, replacing
V by Y , A by Aξ andx by ξ throughout (3)-(5). Condition
(3) follows from (19) and the fact thatϕ is continuous and
bounded away from zero on[0, N ], which is where the variable
τ is constrained to evolve for the hybrid system (12).

For (4), considering (6), (13), (19), for allξ ∈ [0, N ]× C
andf ∈ [0, δ]× F (x), we get

〈∇Y (τ, x), f〉 ≤ ∂ϕ
∂τ δ |x1|

2
P (h) − |x1|

2
H1

TH1

+ϕ(τ)
(
−h |x1|

2
P (h) + khν |x1|

2
H1

TH1

)

= − |x1|
2
H1

TH1
− h

2ϕ(τ) |x1|
2
P (h)

+ khνϕ(τ) |x1|
2
H1

TH1

≤ −
[
1− exp

(
h(τ−N)

2δ

)]
|x1|

2
H1

TH1

− h
2ϕ(τ) |x1|

2
P (h)

≤ −h
2ϕ(τ) |x1|

2
P (h)

≤ −h
4

(
1
khν exp

(
−hN

2δ

)
+ ϕ(τ)

)
U(x)

≤ −h
4

(
1
khν exp

(
−hN

2δ

)
1
αV (x)+ϕ(τ)U(x)

)

≤ −h
4 min

{
1, 1

khν exp
(
−hN

2δ

)
1
α

}
Y (τ, x).

For (5), using (7), forτ ∈ [1, N ], x ∈ D, g ∈ G(x), we get

Y (τ − 1, g) = V (g) + ϕ(τ − 1)U(g)

≤ V (g) + ϕ(τ − 1)kh
ν

α V (g)

≤ V (x) + ϕ(τ − 1)kh
ν

α V (x)

≤ V (x) + ϕ(τ − 1)kh
να
α U(x)

= V (x) + γϕ(τ)U(x)
= Y (τ, x) + (γ − 1)ϕ(τ)U(x)
≤ Y (τ, x) + (γ − 1)c1
≤ Y (τ, x) + (γ − 1)c2

where

c1 := 1
2

(
ϕ(τ)U(x) + 1

khν exp
(
−hN

2δ

) V (x)
α

)

c2 := 1
2 min

{
1, 1

khν exp
(
−hN

2δ

)
1
α

}
Y (τ, x) .

Sinceγ < 1, there existsλ > 0 satisfying (4)-(5).

VI. CONCLUSION

In this note, Lyapunov-based sufficient conditions for ex-
ponential stability in hybrid systems are developed. The main
contribution is the construction of a strict Lyapunov function
that establishes exponential stability from a non-strict Lya-
punov function when certain observability conditions apply.
Our motivation is to provide a tool that can be used to establish
global exponential tracking in a class of mechanical systems
with impacts, as developed in [7], [8], [6].
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