Self-Shuffling Words

Émilie Charlier

(Joint work with Teturo Kamae, Svetlana Puzynina and Luca Zamboni)

Département de mathématiques, Université de Liège
Challenges in Combinatorics on Words, Toronto, April 2013

A finite word w is obtained as a shuffle of two words x and y if it can be factorized as

$$
w=\prod_{i=1}^{n} a_{i} b_{i}
$$

with

$$
x=\prod_{i=1}^{n} a_{i} \text { and } y=\prod_{i=1}^{n} b_{i}
$$

- Can x be obtained as a shuffle of a word y with itself?

Definition

An infinite word $x \in \mathbb{A}^{\mathbb{N}}$ is self-shuffling if it admits the factorizations:

$$
x=\prod_{i=1}^{+\infty} U_{i} V_{i}=\prod_{i=1}^{+\infty} U_{i}=\prod_{i=1}^{+\infty} V_{i}
$$

for some $U_{i}, V_{i} \in \mathbb{A}^{+}$.

Self-shuffling and periodicity

- Every purely periodic word $x=u^{\omega}$ is self-shuffling:

$$
x=\prod_{i=1}^{+\infty}(u u)=\prod_{i=1}^{+\infty} u
$$

- Every letter of a self-shuffling word must occur an infinite number of times.
- Hence the word 01^{ω} is not self-shuffling.
- The word $0110(0011)^{\omega}$ is self-shuffling but $011(10)^{\omega}$ is not.

Fibonacci word

- The Fibonacci word $F=F_{1} F_{2} F_{3} \cdots$, where $F_{i} \in\{0,1\}$, is self-shuffling:

$$
F=\prod_{i=1}^{+\infty} \sigma\left(F_{i}\right) F_{i}=\prod_{i=1}^{+\infty} \sigma\left(F_{i}\right)=\prod_{i=1}^{+\infty} F_{i}
$$

where $\sigma: 0 \mapsto 01 ; 1 \mapsto 0$.
It suffices to observe that $\sigma^{2}(0)=\sigma(0) 0$ and $\sigma^{2}(1)=\sigma(1) 1$.

$$
F=\underbrace{010}_{\sigma^{2}(0)} \underbrace{01}_{\sigma^{2}(1)} \underbrace{010}_{\sigma^{2}(0)} \underbrace{010}_{\sigma^{2}(0)} \underbrace{01}_{\sigma^{2}(1)} \underbrace{010}_{\sigma^{2}(0)} \underbrace{01}_{\sigma^{2}(1)} \underbrace{010}_{\sigma^{2}(0)} \underbrace{010}_{\sigma^{2}(0)} \cdots
$$

- The morphic image of a self-shuffling word is again self-shuffling:

If

$$
x=\prod_{i=1}^{+\infty} U_{i} V_{i}=\prod_{i=1}^{+\infty} U_{i}=\prod_{i=1}^{+\infty} V_{i}
$$

then

$$
\mu(x)=\prod_{i=1}^{+\infty} \mu\left(U_{i}\right) \mu\left(V_{i}\right)=\prod_{i=1}^{+\infty} \mu\left(U_{i}\right)=\prod_{i=1}^{+\infty} \mu\left(V_{i}\right)
$$

- Can be used as a tool for showing that a word is not the morphic image of another word.

A necessary condition

A finite word is Abelian border-free if no proper suffix is Abelian equivalent to a proper prefix.

- A self-shuffling word must begin in only finitely many Abelian border-free prefixes.

A necessary condition

A finite word is Abelian border-free if no proper suffix is Abelian equivalent to a proper prefix.

- A self-shuffling word must begin in only finitely many Abelian border-free prefixes.

A necessary condition

A finite word is Abelian border-free if no proper suffix is Abelian equivalent to a proper prefix.

- A self-shuffling word must begin in only finitely many Abelian border-free prefixes.

- The word $0 F$ is not self-shuffling:

We know F begins in arbitrarily large palindromes B followed by 1 .

Hence $0 F$ begins in arbitrarily large words of the form $0 B 1$.
Those words $0 B 1$ are all Abelian border-free.

- The paper-folding word is not self-shuffling:

$$
\begin{aligned}
& \text { 0_1_0_1_0_1_0_1_0_1_0_1_0_1_0_1... } \\
& \text { 001_011_001_011_001_011_001_011 . . . } \\
& 0 \underline{0} 1 \underline{0} 011 _0011011 _0 \underline{0} 1 \underline{0} 011 _0011011 \cdots \\
& 0 \underline{0} 1 \underline{0} 011 \underline{0} 0 \underline{0} 11011 _0 \underline{0} 1 \underline{0} 01110 \underline{0} 1 \underline{1} 011 \cdots \\
& 0 \underline{0} 1 \underline{0} 011 \underline{0} 0 \underline{0} 11011 \underline{0} 0 \underline{0} 1 \underline{0} 01110011011 \cdots
\end{aligned}
$$

One can check that all prefixes of length $2^{j}-1$ are Abelian border-free:
$0,001,0010011,001001100011011, \ldots$

Main results - Lyndon words

An infinite word x is Lyndon if $x<_{\operatorname{lex}} T^{n}(x)$ for all $n \geq 1$.

Theorem 1
Let x and y be in the shift orbit closure of an infinite word z, and suppose that x is Lyndon. Then, if w can be obtained as a shuffle of x and y, then $w<_{\text {lex }} y$.

In particular, Lyndon infinite words are never self-shuffling.

Consequences:

- This gives another proof that $0 F$ is not self-shuffling since it is Lyndon.
- It is well known that the first shift

$$
x=110100110010110 \cdots
$$

of the Thue-Morse word is Lyndon, and hence is not self-shuffling. Yet it can be verified that x begins in only a finite number of Abelian border-free words.

Thue-Morse word

Theorem 2
The Thue-Morse word $\mathbf{T}=011010011001 \cdots$ fixed by the morphism $\tau: 0 \mapsto 01 ; 1 \mapsto 10$ is self-shuffling.

$$
\mathbf{T}=01101001100101101001011001101 \cdots
$$

Sturmian words

Here $\rho(x)$ designates the intercept of the Sturmian word x.
Theorem 3
Let S, M and L be Sturmian words of the same slope satisfying
$S \leq_{\text {lex }} M \leq_{\text {lex }} L$. Then M can be obtained as a shuffle of S and L iff the following conditions are verified:

- If $\rho(M)=\rho(S)$ then $\rho(L) \neq 0$
- If $\rho(M)=\rho(L))$ then $\rho(S) \neq 0$.

In particular (taking $S=M=L$), we obtain
Corollary
A Sturmian word $x \in\{0,1\}^{\mathbb{N}}$ is self-shuffling iff x is not of the form $a C$ where $a \in\{0,1\}$ and C is a characteristic Sturmian word.

As an application, we recover the following result:

Theorem (Yasutomi 1999, Berthé-Ei-Ito-Rao 2007)
Let $x \in\{0,1\}^{\mathbb{N}}$ be a characteristic Sturmian word. If y is a pure morphic word in the orbit of x, then $y \in\{x, 0 x, 1 x, 01 x, 10 x\}$.

References

- Dane Henshall, Narad Rampersad and Jeffrey Shallit, Shuffling and unshuffling, BEATCS, 107 (2012), 131-142.
- Émilie Charlier, Teturo Kamae, Svetlana Puzynina and Luca Zamboni, Self-shuffling words, to appear in LNCS (ICALP 2013), preprint on arxiv:1302.3844.
- Romeo Rizzi and Stéphane Vialette, On recognizing words that are squares for the shuffle product, to appear in LNCS (CSR 2013)

