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ABSTRACT

The objective of the present paper is to addresgiimtification of a real-life strongly nonlinespace
structure, the EADS-Astrium SmallSat spacecraftthi® end, a new nonlinear subspace identification
method formulated in the frequency domain is expthi referred to as the FNSI method. The
frequency response functions of the underlyingdingpacecraft and the amplitudes of the nonlinear
internal forces are estimated based on a periasidam data set corrupted by noise. This application
is challenging for several reasons, including highdal density, highly non-proportional damping and
the non-smooth nature of the nonlinearities.

Keywords: Nonlinear system identification, subspaethod, frequency domain, space structure.

1. INTRODUCTION

The identification of linear and time-invariant s3ms is a discipline that has evolved considerably
during the last forty years. The techniques avélaioday, e.g. [1] and [2], are really quite
sophisticated and advanced. In particular, subsplgmithms are powerful identification methods
that are naturally applicable to multi-input, mudtitput systems. They are routinely used for
experimental and operational modal analysis [3}, dlso for advanced signal processing such as
damage detection and structural health monitodig [

However, because engineering structures are knowe prone to nonlinearity, there is a crucial need
for extending linear subspace methods to a praaticalinear analogue. In this context, the first
contribution is due to Lacy and Bernstein [5], wiherived a time-domain algorithm applicable to
mechanical systems, later improved by Marchesaild Garibaldi [6]. More recently, a dual approach
has been developed in the frequency domain, reféor@s the frequency-domain nonlinear subspace
identification (FNSI) method [7], whose main adwge is the possibility to discriminate frequency
samples according to information content and sigmaloise ratio, thereby increasing the accuracy
and reducing the computational burden.

The objective of the present paper is to addressidikntification of a real-life nonlinear space
structure, the SmallSat spacecraft developed by &ABtrium, using the FNSI method. The
frequency response functions of the underlyingdingpacecraft and the amplitudes of the nonlinear
internal forces will be estimated by this approbelsed on a periodic-random data set corrupted by
noise. The SmallSat spacecraft comprises a stronghlinear component consisting of eight
mechanical stops limiting the motion of an inettiheel mounted on an elastomeric interface. This
application is challenging for several reasonsluisiag high modal density, highly non-proportional
damping and the non-smooth nature of the nonlitieariThe estimation of the clearances beyond
which the mechanical stops are reached will alstbbed to be a distinct challenge, tackled through
the use of a goodness-of-fit indicator capablestécking modelling errors.
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2. SUBSPACE IDENTIFICATION OF NONLINEAR MECHANICAL SYS TEMS IN
THE FREQUENCY DOMAIN

2.1. State-space model and problem statement

As described in the review paper [8], the iderdifion of nonlinear mechanical systems can be sgen a
a three-step problem encapsulating nonlinearitedietn, characterisation and parameter estimation.
Following the detection step whose goal is obvialgracterisation is concerned with nonlinearity

localisation and model selection. The model paramsetire then estimated through least-squares
fitting, or nonlinear optimisation. The aim of tR&SI method is to address this latter step anaso t

estimate nonlinear stiffness and damping coeffisi@agether with the frequency response function

(FRF) matrix of the underlying linear system.

The vibrations of nonlinear systems are governethéyime-continuous model

Mg +Cq(t) + Kq() + f(q(),q(t) = p(®) (1)

whereM, C, K € R™" are the linear mass, damping and stiffness matriespectivelyy(t) and

p(t) € R" are the generalised displacement and force vectsgectivelyf(t) € R" is the nonlinear
restoring force vector, and is the number of degrees of freedom (DOFs) ofstinecture obtained
after spatial discretisation. The amplitude, dittlocation and frequency content of the exatati
p(t) determine in which regime the structure behavesinAreference [9], the joint effect of tke
lumped nonlinearities in the system is modelled@si summation of the form

Fa®.40) =) wb9,a0.4(0). @

Each term contains an unknown nonlinear coeffigigrand the corresponding functional fogp(t),
which is assumed to be known. Nonlinearity locaisais specified using a vector of Boolean values,
bj € R". In the technical literature about subspace methdust-order state-space models are
preferred to the second-order description of theadyics in Equation (1), because of the intrinsic
capability of a state-space model to encompassi-implit, multi-output systems. Considering that
displacements are measured and defining the statere = (¢7 ¢7)T € R", the equations of motion
are recast into

{a’c(t) = Ac x(t) + B g(t) + B, p(t) 3)
q(t) = C.x(t) + D p(t)

where subscript stands forcontinuous-timgA, € R™™, BM € R™S, B, € R™", C, € R™™" and

D. € R™" are the state, nonlinear coefficient, input, ottpmd direct feed-through matrices,
respectivelyg(t) € R® gathers the basis functiogsg(t), andn = 2 r. State-space and physical-space
matrices correspond through the relations

4 orxr JTxT Bnl Orxl Or><1 Or><1 )
€< (—M—l K —-M? c) c - (—MIM_l by —u,M ‘b, .. —uM1b,
rXTr
B, = ( OM—l) Cc=(mr om™r) D, =0 (4)

where0 andl are zero and identity matrices, respectively.

Given measurements pi(t) andq(t), the FNSI method first delivers an appropriate eladdern
and the five system matricels, B, B., C. andD,. The estimation of the nonlinear coefficiepts
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and of the FRF matrix is subsequently achievedgusite conversion scheme from state space to
physical space outlined in Section 2.5.

2.2. Equivalent linear identification through feedback

The FNSI method relies on the feedback interprtatif the dynamics governed by Equation (1)
proposed in [9]. It consists in moving the nonlinéaces to the right-hand side of this equatiod an
viewing them as external forces applied to the dgihg linear structure. Thus, the internal forces
that are nonlinear functions of the outputs actaa$eedback to the linear open-loop system.
Considering Equations (3), this interpretation $acibwn into the concatenation @ft) andp(t) into
a singleextended inputectore(t) € RS*":
(0= A x(0) + BE ea(®).40.p(0) )
q(t) = Ccx(t) + D¢ e(t)

where B¢ = (B™ B,) € R™6*) and D¢ = (07*° D,) € R™6*), The feedback formulation is
particularly appealing because the inverse probierbe solved is now equivalent to the widely-
studied linear state-space identification problétowever, the presence of nonlinearities in input-
output (I-O) data requires the interpretation agd af the FNSI algorithm to be tailored, as disedss
throughout this paper.

As extensively substantiated by Pintelon and Schweskin [10], tackling system identification
problems in the frequency domain is an attractive 2ersatile alternative. For improved numerical
conditioning [11], a discrete-time translation ajuations (5) is first considered, before applyihg t
discrete Fourier transform (DFT). Provided that tihee signalv(t) is periodic and observed over an
integer number of periods in steady-state condstidge DFTV (k) is given by

V(k) = \/LM z’t"’:‘olv(t)e—jzmt/m (6)

where M is the number of recorded time samplesthe frequency line angl the imaginary unit.
Equations (5) eventually write

{zk X(k) = Ay X(k) + BE E(k) -
Q(k) = Cq4 X(k) + Dg E(k)

where subscript! stands fordiscrete-time z,, = e/ 27 *t/M s the Z-transform variable, ant(k),
E(k) andQ (k) the DFTs ofx(t), e(t) andq(t), respectively.

One also points out that, in practice, only a leditset of DOFs im(t) andg(t) are excited and
observed, respectively. The identification probléntherefore preferably stated in terms of the
measuredapplied forcesu(t) € R™<" and displacementg(t) € R". Accordingly, the extended
input vector ise(t) € R7=5*™_ Equations (7) become

{zk X(k) = Ay X(k) + BE E(k) -
Y(k) = C4 X(k) + DE E(k)

whereY (k) is the DFT ofy(t) and where the matricek;, B, C; andDj are now a projection of the
original matrices onto the observed and contrdb€xs. The subscript will be skipped afterwards,
because no ambiguity is possible.
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2.3. Output-state-input matrix equation formulation

Subspace identification methods are built uponréfiermulation of the state-space relations (8) in a
matrix form. For this purpose, the measured outafuency spectra matrix is defined as

Y (1) Y(2) .. Y(N)
Y, = Z Y(l) Z2 Y(Z) ZN Y(N) € RUXN 9)
Z7ly(1) Z7tY() .. zZEtY(V)

wherei is an user-defined index ardd the number of non-necessarily equidistant frequdimes
exploited in the identification. Defining = diag(z, z, ... zy) € RV*N Y, is recast into

Y, =T vT¢ vT¢? .. yTg-Hr, (10)
The extended input frequency spectra matrix islaigiformed as

E; = (ET ET¢ ET¢% .. ET(i—l)T € ROIXN. (11)
Introducing the extended observability matrix

I, =T (CAT (€CAHT .. (CATHTHT g RIxn (12)

and the lower-block triangular Toeplitz matfx

D¢ 0 0 . 0
C B® De 0 . 0 o
H =| cAB® C B¢ De .. 0 |eRixai (13)
CAiizBe CAi;3B€ CA";‘*Be 56

recursive substitution of Equations (8) resultthie output-state-input matrix equation

whereX € R™V is the state spectrum and where the indexexplicitely written to signal the number
of block rows of a matrix.

Remark that and N must be chosen to encompass sufficient valualitenvation to identify the
system. The choice @f is briefly discussed in Section 4 where the poalyitto focus on frequency
regions of interest will prove to be a major adeaet of the FNSI method. A physics-based or
information-based decision aboitis more delicate. Basically, the larggrthe more accurate the
identification sincei conveys how system dynamics is included in thea daatrices. However,
redundant information can affect the conditionirfgtttose matrices, hence imposing boundg.to
There also exists an obvious trade-off betweernvéhees ofi andN and the time needed to inverse
the model.

2.4. Estimation of the system matrices

The FNSI-based computation of the system matrie@sthree-step procedure starting from Equation
(14). First, an estimate of the extended obseritgbihatrix I'; is computed. To this end, the term
depending on the input and the nonlinearities indEgn (14), namely; E;, is eliminated using a
geometrical projection. Specifically, an orthogopabdjection onto the orthogonal complementEpf
cancels the extended input term.
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Matrix I; can then be obtained through a truncated singallare decomposition of the result of the
projection. The truncation limits the singular \@lapectrum to genuine elements, thus removing
spurious values and, in turn, reducing the inflgeatnoise and rounding errors on the identifigatio
In addition, the number of retained singular valyietds the system order. From the knowledge of

I[; andn, the second step consists in computing the matdcandC by means of the shift property
I A =T, , wherel; andl; are the matriX; without the last and firdtrows, respectively. State matrix
A is consequently found as the least-squares solutfcthe over-determined system of equations
A =T; 1T, , wheret is the pseudo-inverse, while output matfiss extracted fronf; as its first block

row. The final step is the estimation of the tweteyn matricesB® and D€. A robust resolution
scheme that exploits the formulation of a set iédir equations iB¢ andD®, explicitly solved in a
least-squares sense, is proposed in referencédivthe sake of conciseness, it is not detailediher

2.5. Conversion from state space to physical space

Once the state-space modg) B¢, C, D¢) is identified, the final step is the estimationtieé nonlinear
coefficientsu; and of the FRF matrix of the underlying linearteysH (w)

H(w) = (—w?M + joC + K)™1. (15)

To achieve this transformation back to physicalcep@ne notes that, in the frequency domain, the
substitution of Equation (2) into Equation (1) give

H (@) Q@) + Y 1y by 6(w) = P(w) (16)
j=1

where Q(w), Gj(w) andP(w) are the continuous-time Fourier transformsg@f), g;(t) andp(t),
respectively. The concatenation @f(w) andP(w) then introduces the extended input speEif@)
SO as to obtain the linear frequency-domain retatigp

Q) =H(@) [I™' —p by .. —psbs]E(w)=H(w)E () 17)

where the matrixH®(w) extends the concept of FRF to nonlinear mechansyatems, and
encompasses both the underlying linear FRF maimx the nonlinear coefficients. Moreover, in
reference [6], the authors proved that éixéended FRInatrix Hé (w) is an invariant system property
and that it can be retrieved, similarly to linehedry, from the combination of the continuous-time
state-space matrices

He(w) =C, (j ™" — A.)"* B¢ + D¢. (18)

As a result, the nonlinear coefficients identifikdm H¢(w) using Equations (17) and (18) are
spectral quantities,e. they are complex-valued and frequency-dependentlidble identification
scheme together with an appropriate selection efrtbnlinear functional forms should make the
imaginary parts much smaller than the correspondiad parts. The frequency dependence of the
coefficients should also remain small. These irtthoa will serve as quality criteria in Section 4.

2.6. ldentification error criterion

Because system identification is encapsulated timomore general framework of model validation,

which ensures that a model is adequate for ithd#d use, quantifying the goodness of fit between
the experimental data and the system matrigée8®, C and D¢ generated from these data is

fundamental. In this section, a robust error doteutilising the four system matrices is defined.
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Considering again the output-state-input Equati@d) (and pre-multiplying by the orthogonal
complement ofj, one obtains

" (Y; — H;E}) =0. (19)

This expression can be used to quantify how goed#timated state-space matrices gatheréf fi

the I-O dataX; andE;). Specifically, the proposed indicator is the @tan of the largest principal
angle between the subspaces spanned by the rolifs arid the columns df; — H; E;, termedd in

the paper, from its ideal value of 90 degrees. W@vm in Section 4, this error criterion will prove
particularly useful for estimating the clearancegdmnd which the mechanical stops of the SmallSat
spacecraft are reached. This adds some charatterisapabilities to the FNSI method.

3. THE SMALLSAT SPACECRAFT STRUCTURE

The SmallSat structure was conceived by EADS-Astras a low-cost platform for small satellites in
low earth orbits. It is a monocoque tube structuhéch is 1.2m long and 1m large. It incorporates
eight flat faces for equipment mounting purposeesating an octagon shape, as shown in Figure 1.
The octagon is manufactured using carbon fibrefogird plastic by means of a filament winding
process. The structure thickness i with an additional 0.28nmthick skin of Kevlar applied to
both the inside and outside surfaces to providéeption against debris. The interface between the
spacecraft and launch vehicle is achieved throogh &luminium brackets located around cut-outs at
the base of the structure. The total mass incluttiegnterface brackets is aroundi@g

el SASSA
\ S"‘.-‘ I8 devices
4

S 3
I Main structure”

Figure 1: SmallSat spacecraft with the WEMS module and thardy telescope connected to the main stru
via the SASSA devices.

The spacecraft structure supports a dummy telesmmpposed of two stages of base-plates and struts
supporting various concentrated masses; its maasoind 140kg. The dummy telescope plate is
connected to the SmallSat top floor via three stattdnuators, termed SASSAs (Shock Attenuation
System for Spacecraft and Adaptor), the behaviduvtach is considered as linear in the present
study. The top floor is an h2sandwich aluminium panel, with ZBmcore andlL mmskins. Besides,

as depicted in Figure 2 (a), a support bracket ecisnto one of the eight walls the so-called Wheel
Elastomer Mounting System (WEMS) device which sded with an &g dummy inertia wheel. The
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purpose of this device is to isolate the spacearadtthe payload from disturbances coming from the
inertia wheel through the presence of a soft etast@ interface between its mobile pare. the
inertia wheel and a supporting metallic cross, imdixed part,i.e. the bracket and by extension the
spacecraft. Moreover, mechanical stops limit thialeand lateral motions of the WEMS mobile part
during launch, which gives rise to strongly nondinelynamical phenomena. Figure 2 (b) presents a
simplified though relevant modelling of the WEMSvibe where the inertia wheel is seen as a point
mass. The four nonlinear connections (NCs) betweenVEMS mobile and fixed parts are labelled
NC 1 — 4. Each NC possesses a trilinear sprin@penakial direction (elastomer in traction plus two
stops), a bilinear spring in the radial directiefaétomer in shear plus one stop) and a lineangimi

the third direction (elastomer in shear). In Fig@réb), linear and nonlinear springs are denoted by
squares and circles, respectively.

Mechanical sto
Inertia whee
\ ©
= | =
MW —O
Elastomer Bracket NC 2
plot
z Metallic : z
I cross I Y
X (a) X (b)

Figure 2: WEMS device. (a) Detailed description of the WEBSnponents; (b) simplified modelling of the
WEMS mobile part considering the inertia wheel g®t mass. The linear and nonlinear connecti@tader
the WEMS mobile and fixed parts are signalled tglosquares and circles, respectively.

A finite element model of the SmallSat was devetbped is used in the present work to conduct
numerical experiments. It comprises about 65,000®@nd the comparison with experimental data
revealed its good predictive capabilities. The nhabmsists of shell elements (main structure, top-
floor panels and WEMS) and point masses (inertieeWhand telescope) and meets boundary
conditions by means of four clamped nodes. Strattdamping is considered via the proportional
damping assumption and lumped dashpots are utitsadodel dissipation in the elastomer plots,
hence resulting in a highly non-proportional damgpimatrix. Finally, nonlinearity is introduced withi
the WEMS module by means of eight piecewise-lirsgaings whose parameters are given in Table 1
through adimensional values for confidentialityseas.

Clearance Linear slope Nonlinear slope
Axial Z 1 7.58 100
Lateral X and Y 2 1.97 39.7

Table 1: Adimensional parameters of the WEMS stiffness esrv

Numerical simulations were carried out using a m&@r Newmark integration scheme, considering a
sampling frequency of 2,508z. A periodic noise forcing with root-mean-squarB#AS) value of 200

N was applied to the inertia wheel in the symmetrie- X direction. It consisted of a single band-
limited (5 — 50H2) normally-distributed random signal (30,000 sareple seconds) repeated 8 times.
This excitation caused the strong and comparaltieasion of all WEMS nonlinearities, as confirmed
in Table 2 where the number of clearance exceedaimc¢he eight nonlinear springs is reported.
Filtered white noise in 0 — 108z was finally added to the synthetic time seriegdoreate the
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mechanical and electrical disturbances observedtypical measurement setup. The noise level was

selected as 0.% of the RMS response amplitude at the bracket tip.

NC 1 NC 2 NC 3 NC 4
X 14,803 13,600 - -
Y - - 13,453 13,001
Z 31,661 25,854 28,043 21,218

Table 2: Number of clearance exceedances. No entry mearabdence of mechanical stop.

4. SMALLSAT IDENTIFICATION BASED ON NOISY DATA

The first step in formulating a nonlinear subspauelel is the selection of an adequate order. This
step is crucial since too low orders involve unmedalynamics whereas too large orders increase the
noise sensitivity of the model. In linear subspapelications, the decision is most frequently based
upon the analysis of a stabilisation diagram [3}. #ppealing asset of the FNSI method is thatlit sti
supports the use of this decision-making tool ia pinesence of nonlinearity in 1-O data, because it
succeeds in decoupling linear parameters from neati distortions. Figure 3 depicts the stabilisatio
of the linear natural frequencies, damping ratiod @omplex modes shapes for model orders up to 60
and indicates that the order 10 is appropriateeNloat stabilisation is verified between successive
orders,e.g.n andn + 2, taking as reference the linear properties caledlat orden. This explains
why the order 10 in Figure 3 is seemingly unstabdithough the opposite results from an inspection
at order 12.

Besides the model order, the adequate selectitimediinctional formgy;(t) also heavily determines
the quality of the identified model. In the casetloé WEMS device, the use of piecewise-linear
functions is obvious but the selection of the aisded clearances remains a challenging task. The
error criterion introduced in Section 2.6 can helpke a decision by selecting the model parameters
which give the angl@ closest to 90 degrees. In practice, we seek tmgmim of the normalised
indicator1 — 2 = 8 /m which varies between 0 and 1. Figure 4 presergsitidicator in logarithmic
scaling for different axial and lateral clearanckkss found to retrieve the exact values as arclea
minimum is observed for (1,2). Note that, rathemnthvisually inspecting the error criterion, the
estimation of the clearances could also be achierggty optimisation routines, but the presence of
local minima in the objective function would requi gradient-free scheneg.a genetic or simplex-
based algorithm.

The frequency variation of the eight identified hioear coefficients is presented in Figure 5,
considering the 5 — 48z band since the modes governing the system respoadecated around 10
and 30Hz The corresponding numerical values are liste@iable 3. The real parts of the lateral and
axial coefficients remain bounded within 10 and 2®intervals around their exact values,
respectively, and the imaginary parts are genenmatye than two orders of magnitude smaller.
Despite the high dimensionality of the identificatiproblem (1 input, 18 outputs, 8 nonlinearities,
180,000 time samples and 75 block rows), the ineeref the model was obtained in 105 seconds
thanks to restriction of the frequency samplesh® input band, hence encompassing only 3,240
frequency lines.

The relative errors on the estimated natural fragigs and damping ratios of the underlying linear
spacecraft are given in Table 4, together with riimdal assurance criterion (MAC) between the
identified and exact complex mode shapes. Therlipegperties of the structure are almost perfectly
recovered from strongly nonlinear measurements. tAlse results demonstrate the excellent
identification capabilities of the FNSI method. $hs also confirmed in Figure 6 where FNSI

accurately reconstructs the linear driving-pointFFRhile the H1 estimate is found to suffer from

important nonlinear distortions.
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Nonlinear coefficient Averaged value Errés)( Ratio real/imag. (log)
NC1-X 39.77 0.18 3.17
NC2-X 39.70 0.00 2.81
NC3-Y 39.80 0.27 3.93
NC4-Y 39.93 0.59 3.08
NC1-Z 100.65 0.65 2.63
NC2-Z 100.17 0.17 2.24
NC3-Z 99.99 -0.01 2.33
NC4-Z 100.17 0.17 3.25

Table 3: Estimated nonlinear stiffness coefficients avedageer 5 — 4MHz (real parts), relative errors and ratios
(in logarithmic scale) between real and imaginastp

Mode fr(elgﬁggf:l;/r?ilz) Error ©%) Idr.a?i?)n(%ng Error 0) Complex MAC
1 10.69 0.20 5.33 -0.16 1.00
2 11.03 0.21 5.59 0.13 1.00
3 28.23 -0.12 9.51 -2.86 1.00
4 28.41 0.02 10.41 -1.92 0.96
5 30.12 0.04 6.98 -0.78 1.00

Table 4: Identified natural frequencies and damping ragiod relative errors with the exact underlying linea
properties; MAC values between identified and exachplex mode shapes.

5. CONCLUSIONS

This paper aimed at identifying the SmallSat spafeca strongly nonlinear space structure
developed by EADS-Astrium, from noisy syntheticaddfor this purpose, a nonlinear generalisation
of subspace methods formulated in the frequencyaifunreferred to as the FNSI method, was
exploited. The amplitudes of the nonlinear interfioates and the underlying linear parameters of the
structure were shown to be accurately and rapidlymated by this approach. The problem of
selecting the model which best fits input-outpuiadaas also tackled through the use of a modelling
error criterion. This study is arguably one of finst successful identifications of such a compleal-

life nonlinear structure in the technical literatur

However, additional investigations are needed tthér assess the capabilities of the FNSI method. |

particular, the variability of the identificatiorver repeated experiments due to the random nafure o
the excitation and the noise should be carefulplymed. A particular attention should also be dedot
to the asymptotic behaviour of the proposed sulesplgorithm for an increasing number of measured
samples and block rows. Finally, the use of staditilbn diagrams in nonlinear system identification,
initiated in the present paper, should also beiestlith more detail.
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lateral and axial coefficients are displayed withthand 2®%-error bounds, respectively.
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Figure 6: Reconstruction of the underlying linear driv-point FRF from nonlinear data a
comparison witithe exact FRF and the H1 linear estimate
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