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ABSTRACT 

The objective of the present paper is to address the identification of a real-life strongly nonlinear space 
structure, the EADS-Astrium SmallSat spacecraft. To this end, a new nonlinear subspace identification 
method formulated in the frequency domain is exploited, referred to as the FNSI method. The 
frequency response functions of the underlying linear spacecraft and the amplitudes of the nonlinear 
internal forces are estimated based on a periodic-random data set corrupted by noise. This application 
is challenging for several reasons, including high modal density, highly non-proportional damping and 
the non-smooth nature of the nonlinearities. 
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1. INTRODUCTION 

The identification of linear and time-invariant systems is a discipline that has evolved considerably 
during the last forty years. The techniques available today, e.g. [1] and [2], are really quite 
sophisticated and advanced. In particular, subspace algorithms are powerful identification methods 
that are naturally applicable to multi-input, multi-output systems. They are routinely used for 
experimental and operational modal analysis [3], but also for advanced signal processing such as 
damage detection and structural health monitoring [4].  
 
However, because engineering structures are known to be prone to nonlinearity, there is a crucial need 
for extending linear subspace methods to a practical nonlinear analogue. In this context, the first 
contribution is due to Lacy and Bernstein [5], who derived a time-domain algorithm applicable to 
mechanical systems, later improved by Marchesiello and Garibaldi [6]. More recently, a dual approach 
has been developed in the frequency domain, referred to as the frequency-domain nonlinear subspace 
identification (FNSI) method [7], whose main advantage is the possibility to discriminate frequency 
samples according to information content and signal-to-noise ratio, thereby increasing the accuracy 
and reducing the computational burden. 
 
The objective of the present paper is to address the identification of a real-life nonlinear space 
structure, the SmallSat spacecraft developed by EADS-Astrium, using the FNSI method. The 
frequency response functions of the underlying linear spacecraft and the amplitudes of the nonlinear 
internal forces will be estimated by this approach based on a periodic-random data set corrupted by 
noise. The SmallSat spacecraft comprises a strongly nonlinear component consisting of eight 
mechanical stops limiting the motion of an inertia wheel mounted on an elastomeric interface. This 
application is challenging for several reasons, including high modal density, highly non-proportional 
damping and the non-smooth nature of the nonlinearities. The estimation of the clearances beyond 
which the mechanical stops are reached will also be found to be a distinct challenge, tackled through 
the use of a goodness-of-fit indicator capable of detecting modelling errors. 
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2. SUBSPACE IDENTIFICATION OF NONLINEAR MECHANICAL SYS TEMS IN 
THE FREQUENCY DOMAIN 

2.1. State-space model and problem statement 

As described in the review paper [8], the identification of nonlinear mechanical systems can be seen as 
a three-step problem encapsulating nonlinearity detection, characterisation and parameter estimation. 
Following the detection step whose goal is obvious, characterisation is concerned with nonlinearity 
localisation and model selection. The model parameters are then estimated through least-squares 
fitting, or nonlinear optimisation. The aim of the FNSI method is to address this latter step and so to 
estimate nonlinear stiffness and damping coefficients together with the frequency response function 
(FRF) matrix of the underlying linear system. 

The vibrations of nonlinear systems are governed by the time-continuous model 

�	�� ��� + 	�
 ��� + 	�	���� + 	������, �
 ���� = ���� (1) 

where �, 	, � ∈ ℝ�×� are the linear mass, damping and stiffness matrices, respectively; ���� and ���� ∈ ℝ� are the generalised displacement and force vectors, respectively; ���� ∈ ℝ� is the nonlinear 
restoring force vector, and � is the number of degrees of freedom (DOFs) of the structure obtained 
after spatial discretisation. The amplitude, direction, location and frequency content of the excitation ���� determine in which regime the structure behaves. As in reference [9], the joint effect of the � 
lumped nonlinearities in the system is modelled using a summation of the form 

������, �
 ���� = � ��	��	�������, �
 �����
��� . (2) 

Each term contains an unknown nonlinear coefficient �� and the corresponding functional form �����, 
which is assumed to be known. Nonlinearity localisation is specified using a vector of Boolean values, �� ∈ ℝ�. In the technical literature about subspace methods, first-order state-space models are 
preferred to the second-order description of the dynamics in Equation (1), because of the intrinsic 
capability of a state-space model to encompass multi-input, multi-output systems. Considering that 
displacements are measured and defining the state vector ! = ��"	�
 "�" ∈ ℝ#, the equations of motion 
are recast into 

$!
 ��� = %& 	!��� + '&#( 	���� + '& 	�������� = 	 	& 	!��� + )&	���� * (3) 

where subscript + stands for continuous-time; %& ∈ ℝ#×#, '&#( ∈ ℝ#×�, '& ∈ ℝ#×�, 	& ∈ ℝ�×# and )& ∈ ℝ�×� are the state, nonlinear coefficient, input, output and direct feed-through matrices, 
respectively; ���� ∈ ℝ� gathers the basis functions �����, and , = 2	�. State-space and physical-space 
matrices correspond through the relations 

%& = . 0�×� 0�×�−�2�	� −�2�		3										'&#( = 4 0�×� 0�×�−���2�	�� −�5�2�	�5					… 0�×�… −���2�	��7 

 	'& = . 0�×�−�2�3											& = �0�×� 0�×��										)& = 0�×� (4) 

where 0 and 0 are zero and identity matrices, respectively.  

Given measurements of ���� and ����, the FNSI method first delivers an appropriate model order , 
and the five system matrices %&, '&#(, '&, 	& and )&. The estimation of the nonlinear coefficients �� 
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and of the FRF matrix is subsequently achieved using the conversion scheme from state space to 
physical space outlined in Section 2.5. 

 

2.2. Equivalent linear identification through feedback 

The FNSI method relies on the feedback interpretation of the dynamics governed by Equation (1) 
proposed in [9]. It consists in moving the nonlinear forces to the right-hand side of this equation and 
viewing them as external forces applied to the underlying linear structure. Thus, the internal forces 
that are nonlinear functions of the outputs act as a feedback to the linear open-loop system. 
Considering Equations (3), this interpretation boils down into the concatenation of ���� and ���� into 
a single extended input vector 8��� ∈ ℝ�9�: 

$!
 ��� = %& 	!��� + '&: 	8�����, �
 ���, ��������� = 	 	& 	!��� + )&:	8��� * (5) 

where  '&: = �'&#( 	'&� ∈ ℝ#×��9�� and )&: = �0�×�	)&� ∈ ℝ�×��9��. The feedback formulation is 
particularly appealing because the inverse problem to be solved is now equivalent to the widely-
studied linear state-space identification problem. However, the presence of nonlinearities in input-
output (I-O) data requires the interpretation and use of the FNSI algorithm to be tailored, as discussed 
throughout this paper. 

As extensively substantiated by Pintelon and Schoukens in [10], tackling system identification 
problems in the frequency domain is an attractive and versatile alternative. For improved numerical 
conditioning [11], a discrete-time translation of Equations (5) is first considered, before applying the 
discrete Fourier transform (DFT). Provided that the time signal ;��� is periodic and observed over an 
integer number of periods in steady-state conditions, its DFT <�=� is given by 

<�=� = �√? @ ;���82�	5	A	B	C/??2�C�E  (6) 

where � is the number of recorded time samples, = the frequency line and F the imaginary unit. 
Equations (5) eventually write  

$GB 	H�=� = %I 	H�=� + 'I: 	J�=�K�=� = 	 	I 	H�=� + )I:	J�=� * (7) 

where subscript L stands for discrete-time; GB = 8�	5	A	B	C/? is the Z-transform variable, and H�=�, J�=� and K�=� the DFTs of !���, 8��� and ����, respectively. 

One also points out that, in practice, only a limited set of DOFs in ���� and ���� are excited and 
observed, respectively. The identification problem is therefore preferably stated in terms of the 
measured applied forces M��� ∈ ℝNO� and displacements P��� ∈ ℝ(O�. Accordingly, the extended 
input vector is 8��� ∈ ℝQ��9N. Equations (7) become 

$GB 	H�=� = %I 	H�=� + 'I: 	J�=�R�=� = 	 	I	H�=� + )I:	J�=� * (8) 

where R�=� is the DFT of P��� and where the matrices %I, 'I:, 	I and )I: are now a projection of the 
original matrices onto the observed and controlled DOFs. The subscript L will be skipped afterwards, 
because no ambiguity is possible. 

 



Session #, J.P. Noël, G. Kerschen 

 

4 

2.3. Output-state-input matrix equation formulation 

Subspace identification methods are built upon the reformulation of the state-space relations (8) in a 
matrix form. For this purpose, the measured output frequency spectra matrix is defined as  

RS = T R�1� R�2� … R�V�G�	R�1� G5	R�2� … GW 	R�V�∶ ∶ ∶ ∶G�S2�R�1� G5S2�R�2� … GWS2�R�V�Y ∈ ℝ(S×W (9) 

where Z is an user-defined index and V the number of non-necessarily equidistant frequency lines 
exploited in the identification. Defining [ = LZ\��G�	G5 …	GW� ∈ ℝW×W, RS is recast into 

 RS = �R"			R"[			R"[5 		…			R"[S2��". (10) 

The extended input frequency spectra matrix is similarly formed as  

JS = �J"			J"[			J"[5 		…			J"[S2��" ∈ ℝQS×W. (11) 

Introducing the extended observability matrix 

ΓS = �	"			�		%�"			�		%5�" 		…			�		%S2��"�" ∈ ℝ(S×# (12) 

and the lower-block triangular Toeplitz matrix Ŝ 

Ŝ =
_̀
a ): 0 0 … 0		': ): 0 … 0		%	': 		': ): … 0∶ ∶ ∶ ∶ ∶		%S25	': 		%S2b	': 		%S2c	': … ):de

f ∈ ℝ(S×QS, (13) 

recursive substitution of Equations (8) results in the output-state-input matrix equation 

RS = ΓS 	H +	 Ŝ	JS (14) 

where H ∈ ℝ#×W is the state spectrum and where the index Z is explicitely written to signal the number 
of block rows of a matrix. 

Remark that Z and V must be chosen to encompass sufficient valuable information to identify the 
system. The choice of V is briefly discussed in Section 4 where the possibility to focus on frequency 
regions of interest will prove to be a major advantage of the FNSI method. A physics-based or 
information-based decision about Z is more delicate. Basically, the larger Z, the more accurate the 
identification since Z conveys how system dynamics is included in the data matrices. However, 
redundant information can affect the conditioning of those matrices, hence imposing bounds to Z. 
There also exists an obvious trade-off between the values of Z and V and the time needed to inverse 
the model.  

 

2.4. Estimation of the system matrices 

The FNSI-based computation of the system matrices is a three-step procedure starting from Equation 
(14). First, an estimate of the extended observability matrix ΓS is computed. To this end, the term 
depending on the input and the nonlinearities in Equation (14), namely ̂S	JS, is eliminated using a 
geometrical projection. Specifically, an orthogonal projection onto the orthogonal complement of JS 
cancels the extended input term. 
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Matrix ΓS can then be obtained through a truncated singular value decomposition of the result of the 
projection. The truncation limits the singular value spectrum to genuine elements, thus removing 
spurious values and, in turn, reducing the influence of noise and rounding errors on the identification. 
In addition, the number of retained singular values yields the system order ,. From the knowledge of ΓS and ,, the second step consists in computing the matrices % and 	 by means of the shift property ΓS 	% = ΓS , where ΓS and ΓS are the matrix ΓS without the last and first g rows, respectively. State matrix % is consequently found as the least-squares solution of the over-determined system of equations % = ΓS 	h	ΓS , where † is the pseudo-inverse, while output matrix 	 is extracted from Γj as its first block 

row. The final step is the estimation of the two system matrices ': and ):. A robust resolution 
scheme that exploits the formulation of a set of linear equations in ': and ):, explicitly solved in a 
least-squares sense, is proposed in reference [7]. For the sake of conciseness, it is not detailed herein. 

 

2.5. Conversion from state space to physical space 

Once the state-space model �%, ': , 	, ):� is identified, the final step is the estimation of the nonlinear 
coefficients �� and of the FRF matrix of the underlying linear system ̂ �k� 

^�k� = �−k5� + Fk	 + ��2�. (15) 

To achieve this transformation back to physical space, one notes that, in the frequency domain, the 
substitution of Equation (2) into Equation (1) gives 

^2��k�	K�k� + � �� 	��	l��k��
��� = m�k� (16) 

where K�k�, l��k� and m�k� are the continuous-time Fourier transforms of ����, ����� and ����, 
respectively. The concatenation of l��k� and m�k� then introduces the extended input spectra J�k� 
so as to obtain the linear frequency-domain relationship  

K�k� = ^�k�	n	0�×� 				 − ��	�� 				…				− ��	��	o	J�k� = ^:�k�	J�k� (17) 

where the matrix ̂ :�k� extends the concept of FRF to nonlinear mechanical systems, and 
encompasses both the underlying linear FRF matrix and the nonlinear coefficients. Moreover, in 
reference [6], the authors proved that the extended FRF matrix ̂ :�k� is an invariant system property 
and that it can be retrieved, similarly to linear theory, from the combination of the continuous-time 
state-space matrices 

^:�k� = 	& 	�F	k	0#×# − %&�2�	'&: + )&:. (18) 

As a result, the nonlinear coefficients identified from ^:�k� using Equations (17) and (18) are 
spectral quantities, i.e. they are complex-valued and frequency-dependent. A reliable identification 
scheme together with an appropriate selection of the nonlinear functional forms should make the 
imaginary parts much smaller than the corresponding real parts. The frequency dependence of the 
coefficients should also remain small. These indications will serve as quality criteria in Section 4. 

 

2.6. Identification error criterion 

Because system identification is encapsulated into the more general framework of model validation, 
which ensures that a model is adequate for its intended use, quantifying the goodness of fit between 
the experimental data and the system matrices %, ':, 	 and ): generated from these data is 
fundamental. In this section, a robust error criterion utilising the four system matrices is defined. 
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Considering again the output-state-input Equation (14) and pre-multiplying by the orthogonal 
complement of Γj, one obtains 

Γjp	�RS −	 Ŝ	JS� = 0. (19) 

This expression can be used to quantify how good the estimated state-space matrices gathered in Ŝ fit 
the I-O data (RS and JS). Specifically, the proposed indicator is the deviation of the largest principal 
angle between the subspaces spanned by the rows of Γjp and the columns of RS −	 Ŝ	JS, termed q in 
the paper, from its ideal value of 90 degrees. As shown in Section 4, this error criterion will prove 
particularly useful for estimating the clearances beyond which the mechanical stops of the SmallSat 
spacecraft are reached. This adds some characterisation capabilities to the FNSI method. 

3. THE SMALLSAT SPACECRAFT STRUCTURE 

The SmallSat structure was conceived by EADS-Astrium as a low-cost platform for small satellites in 
low earth orbits. It is a monocoque tube structure which is 1.2 m long and 1 m large. It incorporates 
eight flat faces for equipment mounting purposes, creating an octagon shape, as shown in Figure 1. 
The octagon is manufactured using carbon fibre reinforced plastic by means of a filament winding 
process. The structure thickness is 4 mm with an additional 0.25 mm thick skin of Kevlar applied to 
both the inside and outside surfaces to provide protection against debris. The interface between the 
spacecraft and launch vehicle is achieved through four aluminium brackets located around cut-outs at 
the base of the structure. The total mass including the interface brackets is around 64 kg. 

 

 

The spacecraft structure supports a dummy telescope composed of two stages of base-plates and struts 
supporting various concentrated masses; its mass is around 140 kg. The dummy telescope plate is 
connected to the SmallSat top floor via three shock attenuators, termed SASSAs (Shock Attenuation 
System for Spacecraft and Adaptor), the behaviour of which is considered as linear in the present 
study. The top floor is an 1 m² sandwich aluminium panel, with 25 mm core and 1 mm skins. Besides, 
as depicted in Figure 2 (a), a support bracket connects to one of the eight walls the so-called Wheel 
Elastomer Mounting System (WEMS) device which is loaded with an 8 kg dummy inertia wheel. The 

Figure 1: SmallSat spacecraft with the WEMS module and the dummy telescope connected to the main structure 
via the SASSA devices. 

Main structure 

WEMS 
module 

Dummy 
telescope 

SASSA 
devices 
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purpose of this device is to isolate the spacecraft and the payload from disturbances coming from the 
inertia wheel through the presence of a soft elastomeric interface between its mobile part, i.e. the 
inertia wheel and a supporting metallic cross, and its fixed part, i.e. the bracket and by extension the 
spacecraft. Moreover, mechanical stops limit the axial and lateral motions of the WEMS mobile part 
during launch, which gives rise to strongly nonlinear dynamical phenomena. Figure 2 (b) presents a 
simplified though relevant modelling of the WEMS device where the inertia wheel is seen as a point 
mass. The four nonlinear connections (NCs) between the WEMS mobile and fixed parts are labelled 
NC 1 – 4. Each NC possesses a trilinear spring in the axial direction (elastomer in traction plus two 
stops), a bilinear spring in the radial direction (elastomer in shear plus one stop) and a linear spring in 
the third direction (elastomer in shear). In Figure 2 (b), linear and nonlinear springs are denoted by 
squares and circles, respectively. 

 

A finite element model of the SmallSat was developed and is used in the present work to conduct 
numerical experiments. It comprises about 65,000 DOFs and the comparison with experimental data 
revealed its good predictive capabilities. The model consists of shell elements (main structure, top-
floor panels and WEMS) and point masses (inertia wheel and telescope) and meets boundary 
conditions by means of four clamped nodes. Structural damping is considered via the proportional 
damping assumption and lumped dashpots are utilised to model dissipation in the elastomer plots, 
hence resulting in a highly non-proportional damping matrix. Finally, nonlinearity is introduced within 
the WEMS module by means of eight piecewise-linear springs whose parameters are given in Table 1 
through adimensional values for confidentiality reasons.  

 Clearance Linear slope Nonlinear slope 

Axial Z 1 7.58 100 

Lateral X and Y 2 1.97 39.7 

Table 1: Adimensional parameters of the WEMS stiffness curves. 

Numerical simulations were carried out using a nonlinear Newmark integration scheme, considering a 
sampling frequency of 2,500 Hz. A periodic noise forcing with root-mean-squared (RMS) value of 200 
N was applied to the inertia wheel in the symmetric X – Y direction. It consisted of a single band-
limited (5 – 50 Hz) normally-distributed random signal (30,000 samples, 12 seconds) repeated 8 times. 
This excitation caused the strong and comparable activation of all WEMS nonlinearities, as confirmed 
in Table 2 where the number of clearance exceedances in the eight nonlinear springs is reported. 
Filtered white noise in 0 – 100 Hz was finally added to the synthetic time series to recreate the 

Bracket 

Inertia wheel 

Mechanical stop 

Metallic 
cross 

Elastomer 
plot 

Z 

X 

Inertia 
wheel 

X 

Z 
Y 

NC 4 

NC 1 

NC 3 

NC 2 

(a) (b) 

Figure 2: WEMS device. (a) Detailed description of the WEMS components; (b) simplified modelling of the 
WEMS mobile part considering the inertia wheel as a point mass. The linear and nonlinear connections between 

the WEMS mobile and fixed parts are signalled through squares and circles, respectively. 
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mechanical and electrical disturbances observed in a typical measurement setup. The noise level was 
selected as 0.5 % of the RMS response amplitude at the bracket tip. 

 NC 1 NC 2 NC 3 NC 4 

X 14,803 13,600 – – 

Y – – 13,453 13,001 

Z 31,661 25,854 28,043 21,218 

Table 2: Number of clearance exceedances. No entry means the absence of mechanical stop. 

4. SMALLSAT IDENTIFICATION BASED ON NOISY DATA 

The first step in formulating a nonlinear subspace model is the selection of an adequate order. This 
step is crucial since too low orders involve unmodeled dynamics whereas too large orders increase the 
noise sensitivity of the model. In linear subspace applications, the decision is most frequently based 
upon the analysis of a stabilisation diagram [3]. An appealing asset of the FNSI method is that it still 
supports the use of this decision-making tool in the presence of nonlinearity in I-O data, because it 
succeeds in decoupling linear parameters from nonlinear distortions. Figure 3 depicts the stabilisation 
of the linear natural frequencies, damping ratios and complex modes shapes for model orders up to 60 
and indicates that the order 10 is appropriate. Note that stabilisation is verified between successive 
orders, e.g. , and , + 2, taking as reference the linear properties calculated at order ,. This explains 
why the order 10 in Figure 3 is seemingly unstabilised though the opposite results from an inspection 
at order 12. 
 
Besides the model order, the adequate selection of the functional forms ����� also heavily determines 
the quality of the identified model. In the case of the WEMS device, the use of piecewise-linear 
functions is obvious but the selection of the associated clearances remains a challenging task. The 
error criterion introduced in Section 2.6 can help make a decision by selecting the model parameters 
which give the angle q closest to 90 degrees. In practice, we seek the minimum of the normalised 
indicator 1 − 2 ∗ q/s which varies between 0 and 1. Figure 4 presents this indicator in logarithmic 
scaling for different axial and lateral clearances. It is found to retrieve the exact values as a clear 
minimum is observed for (1,2). Note that, rather than visually inspecting the error criterion, the 
estimation of the clearances could also be achieved using optimisation routines, but the presence of 
local minima in the objective function would require a gradient-free scheme, e.g. a genetic or simplex-
based algorithm. 
 
The frequency variation of the eight identified nonlinear coefficients is presented in Figure 5, 
considering the 5 – 40 Hz band since the modes governing the system response are located around 10 
and 30 Hz. The corresponding numerical values are listed in Table 3. The real parts of the lateral and 
axial coefficients remain bounded within 10 and 20 %-intervals around their exact values, 
respectively, and the imaginary parts are generally more than two orders of magnitude smaller. 
Despite the high dimensionality of the identification problem (1 input, 18 outputs, 8 nonlinearities, 
180,000 time samples and 75 block rows), the inversion of the model was obtained in 105 seconds 
thanks to restriction of the frequency samples to the input band, hence encompassing only 3,240 
frequency lines. 
 
The relative errors on the estimated natural frequencies and damping ratios of the underlying linear 
spacecraft are given in Table 4, together with the modal assurance criterion (MAC) between the 
identified and exact complex mode shapes. The linear properties of the structure  are almost perfectly 
recovered from strongly nonlinear measurements. All these results demonstrate the excellent 
identification capabilities of the FNSI method. This is also confirmed in Figure 6 where FNSI 
accurately reconstructs the linear driving-point FRF while the H1 estimate is found to suffer from 
important nonlinear distortions.  
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Nonlinear coefficient Averaged value Error (%) Ratio real/imag. (log) 

NC 1 – X  39.77 0.18 3.17 

NC 2 – X  39.70 0.00 2.81 

NC 3 – Y  39.80 0.27 3.93 

NC 4 – Y  39.93 0.59 3.08 

NC 1 – Z  100.65 0.65 2.63 

NC 2 – Z  100.17 0.17 2.24 

NC 3 – Z  99.99 -0.01 2.33 

NC 4 – Z  100.17 0.17 3.25 

Table 3: Estimated nonlinear stiffness coefficients averaged over 5 – 40 Hz (real parts), relative errors and ratios 
(in logarithmic scale) between real and imaginary parts. 

 

Mode 
Id. natural 

frequency (Hz) 
Error (%) 

Id. damping 
ratio (%) 

Error (%) Complex MAC 

1 10.69 0.20 5.33 -0.16 1.00 

2 11.03 0.21 5.59 0.13 1.00 

3 28.23 -0.12 9.51 -2.86 1.00 

4 28.41 0.02 10.41 -1.92 0.96 

5 30.12 0.04 6.98 -0.78 1.00 

Table 4: Identified natural frequencies and damping ratios and relative errors with the exact underlying linear 
properties; MAC values between identified and exact complex mode shapes. 

5. CONCLUSIONS 

This paper aimed at identifying the SmallSat spacecraft, a strongly nonlinear space structure 
developed by EADS-Astrium, from noisy synthetic data. For this purpose, a nonlinear generalisation 
of subspace methods formulated in the frequency domain, referred to as the FNSI method, was 
exploited. The amplitudes of the nonlinear internal forces and the underlying linear parameters of the 
structure were shown to be accurately and rapidly estimated by this approach. The problem of 
selecting the model which best fits input-output data was also tackled through the use of a modelling 
error criterion. This study is arguably one of the first successful identifications of such a complex real-
life nonlinear structure in the technical literature. 

However, additional investigations are needed to further assess the capabilities of the FNSI method. In 
particular, the variability of the identification over repeated experiments due to the random nature of  
the excitation and the noise should be carefully analysed. A particular attention should also be devoted 
to the asymptotic behaviour of the proposed subspace algorithm for an increasing number of measured 
samples and block rows. Finally, the use of stabilisation diagrams in nonlinear system identification, 
initiated in the present paper, should also be studied in more detail. 
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Figure 3: Stabilisation diagram. Red cross: new pole; black cross: stabilisation in natural frequency; square: extra stabilisation in 
damping ratio; circle: extra stabilisation in complex mode shape; triangle: full stabilisation. Stabilisation thresholds in n

frequency, damping ratio and complex 

Figure 4: Estimation of the axial and 

gram. Red cross: new pole; black cross: stabilisation in natural frequency; square: extra stabilisation in 
damping ratio; circle: extra stabilisation in complex mode shape; triangle: full stabilisation. Stabilisation thresholds in n

g ratio and complex modal assurance criterion (MAC) value are 0.5 %, 2 

of the axial and lateral clearances using a contour plot of the normalised error criterion in 
logarithmic scaling. 

gram. Red cross: new pole; black cross: stabilisation in natural frequency; square: extra stabilisation in 
damping ratio; circle: extra stabilisation in complex mode shape; triangle: full stabilisation. Stabilisation thresholds in natural 

, 2 % and 0.98, respectively. 

a contour plot of the normalised error criterion in 
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NC 1 – X NC 2 – X 

NC 3 – Y NC 4 – Y 

NC 1 – Z NC 2 – Z 

NC 3 – Z NC 4 – Z 

Figure 5: FNSI estimation of the eight nonlinear stiffness coefficients. The real parts of the 
lateral and axial coefficients are displayed within 10 and 20 %-error bounds, respectively.  
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