

ON THE MODELLING OF ADHESIVE CONTACT AND STICTION FAILURE IN MICRO-SWITCHES

Ling Wu, Ludovic Noels, <u>Jean-Claude Golinval</u> University of Liege, Belgium

Department of Aerospace and Mechanical Engineering Chemin des Chevreuils, 1 Bât. B 52 B-4000 Liège (Belgium)

E-mail: JC.Golinval@ulg.ac.be

- 1. Introduction
- 2. Micro-scale model
- 3. Multi-scale model
- 4. Elasto-plastic adhesive contact
- 5. Conclusions

Stiction failure in MEMS (major issue for micro-switches)

Stiction failure in a MEMS sensor (Jeremy A.Walraven Sandia National Laboratories. Albuquerque, NM USA)

Reason

Relatively high surface area: volume ratio (1,000:1 to 10,000:1 m⁻¹)

Adhesive forces

Electrostatic force, Van der Waals force, Capillary force,

. . .

The risk of in-use stiction increases when plasticity is involved during contact.

Multi-scale approach

At the micro-scale

Single asperity subject to adhesive-micro contact forces

Contact model between rough surfaces

→ prediction of the adhesive force

Integration with FEM

At the macro-scale

- 1. Introduction
- 2. Micro-scale model
 - Single asperity adhesive-elastic contact
 - Statistical model for rough surface
- 3. Multi-scale Model
- 4. Elasto-plastic adhesive contact
- 5. Conclusions

Micro-scale model

Single asperity adhesive-elastic contact (Hertz) theories

Johnson, Kendall, and Roberts (JKR)

- The surface forces are short ranged and act only inside the contact area

Derjaguin, Muller and Toporov (DMT)

 Accounts for the long-ranged adhesive forces acting outside the contact area

Well suited for harder, less compliant materials with low surface energy and small asperity tip radius

Maugis model

- for all elastic materials
- provides transition solutions for intermediate cases between the JKR and DMT regimes
- is based on a Dugdale assumption for interaction potential
 - Constant traction σ_0 within a critical value of separation z_0
 - Zero traction for gap larger than z₀

Work of adhesion: $\varpi = \sigma_0 \cdot z_0$

The Maugis transition parameter λ is defined in terms of the surface properties:

$$\Rightarrow \qquad \varpi \uparrow, R \uparrow, K \downarrow \Rightarrow \stackrel{}{\lambda} \uparrow \qquad \text{DMT model (short-ranged)}$$

Maugis transition solution

Calculation of the load in terms of the deflection for different values of the transition parameter λ

Maugis transition solution

Calculation of the load in terms of the deflection for different values of the transition parameter λ

Maugis transition solution

Calculation of the load in terms of the deflection for different values of the transition parameter λ

Statistical model for rough surfaces

• The rough surface is described by a collection of spherical asperities with constant tip radius.

The heights h have a statistical distribution:

$$\varphi(h) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-h^2}{2\sigma^2}\right)$$

- Rough surfaces interaction
 - Reduced number of interacting asperities

- The distance between the surfaces is defined in terms of distance d

Micro-scale model

The micro adhesive contact forces between rough surfaces may be computed

by integration of the Maugis solution using

$$\varphi(h) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-h^2}{2\sigma^2}\right)$$

Dimensionless
$$F_{nT}$$
 contact force $N\pi\omega R$

Responsible for stiction

- 1. Introduction
- 2. Micro-scale model
- 3. Multi-scale Model
 - Design example: cantilever beam (FEM)
 - Polysilicon to polysilicon interaction
 - Validation with experiments
- 4. Elasto-plastic adhesive contact
- 5. Conclusions

Multi-scale model

Design example: cantilever beam entering into contact with the substrate

- Finite element model
 - Timoshenko beams
- Use of adhesive contact law at interface
 - Polysilicon-Polysilicon interactions
 - Surfaces properties from
 - AFM
 - Surface energy measured

In vacuum	$\varpi = 2.54 \text{ J/m}^2$
In air	$\varpi = 0.167 \text{ J/m}^2$

- Contact remains elastic
- Validation vs literature experiments*

^{*} W. M. van Spengen,, R. Puers and I. De Wolf, "On the physics of stiction and its impact on the reliability of microstructures," *J. Adhesion Sci. Technol.*, vol. 17, no. 4, pp. 563–582, 2003 (Analytical)

^{*} M.P. de Boer, "Capillary adhesion between elastically hard rough surfaces," Experim. Mech., vol. 47, pp. 171–183, 2007 (Experiment)

Multi-scale model

Design example: cantilever beam

Initial gap $g = 2.0 \mu m$

The design limitations avoiding in-use stiction are calculated in terms of the beam's geometrical properties (thickness and length) for $\varpi = 2.54 \text{ J/m}^2$

- 1. Introduction
- 2. Micro-scale model
- 3. Multi-scale Model
- 4. Elasto-plastic adhesive contact
 - Plastic deformation of a loaded single asperity
 - Adhesive unloading of a single deformed asperity
 - Adhesive unloading of rough surfaces
 - Lifetime of MEMS
- 5. Conclusions

- Extension of the multiscale model → plastic deformations of asperities
- In case of repeated contacts (cycling loading)

The height distribution and the tip radii *R* of asperities change until accomodation is reached

Stiction may appear after a few cycles

→ Elasto-plastic adhesive contact model is required!

Basic idea

- Adhesive contact model of the elastic-plastically deformed asperity
 - The elasto-plastic deformation resulting from the contact of a single loaded sphere is first solved without considering adhesive effect.
 - 2. The Maugis' adhesive contact theory is performed on the equivalent elastic deformed asperity.
- Asperity-based rough surface model based on the statistical distribution of asperities.

Adhesive loading/unloading of a single asperity

Material: Ru

R	E	ν	S_Y	z_0	ϖ
4 nm	410 GPa	0.3	3.42 GPa	0.169 nm	1 J/m^2

Model vs FE*

^{* 28}Y. Du, L. Chen, N. McGruer, G. Adams, and I. Etsion, Finite element model of loading and unloading of an asperity contact with adhesion and plasticity," Journal of Colloid and Interface Science 312, 522 - 528 (August 2007)

Adhesive contact forces during unloading

For different Ru surface samples

Sample	Α	В	C
R_q (nm)	2.03	3.99	7.81

Effect of impact energy at pull-in on plastic deformations

Lifetime of MEMS

- Ru sample

Sample	Rq (nm)	$E_{ m I}$ (J/m ²)
С	7.81	0.5

- The adhesion between the contact surfaces has a large influence on the design of micro-switches and needs to be considered carefully.
- The adhesive work and the surface roughness are the main factors to take into account.
- The analytical adhesive contact results can be combined with FEM to predict the stiction of more complicated structures.
- Effect of plasticity can be accounted for.
- The other kinds of adhesive forces, such as capillary force,
 electrostatic force from dielectric charging, are not considered.

3-Scale Stochastic Modeling for MEMS

- 3-scale modeling
 - MEMS
 - Separation of length scale violated
 - Uncertainties should be considered

- Application to robust design (Stiction risk, Q-factor range)
- 3SMVIB MNT.ERA-NET project
 - Open-Engineering, V2i, ULg (Belgium)
 - Polit. Warszawska (Poland)
 - IMT, Univ. Cluj-Napoca (Romania)

Thank you for your attention.