CLIMATE RESEARCH
Clim Res

Vol. 57: 95-109, 2013

doi: 10.3354/cr01170 Published August 20

Downscaling transient climate change with a
stochastic weather generator for the
Geer catchment, Belgium

S. Blenkinsop'**, C. Harpham?, A. Burton!, P. Goderniaux® S. Brouyére*,
H. J. Fowler!

!Water Resource Systems Research Laboratory, School of Civil Engineering and Geosciences, Newcastle University,

Cassie Building, Newcastle upon Tyne NE1 7RU, UK
2Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich NR47TJ, UK
3Geology and Applied Geology, University of Mons, 7000 Mons, Belgium
‘Group of Hydrogeology and Environmental Geology — Aquapdle, University of Liége, 4000 Liége, Belgium

ABSTRACT: The coarse resolution of climate models creates the need for future scenarios which
are downscaled to an appropriate spatial scale. Considerable effort has been devoted to the devel-
opment of downscaling methods, but a number of important issues remain to meet users' needs.
These include the assessment of uncertainty for future scenarios, and the production of scenarios
at time scales relevant to stakeholders. This paper describes a methodology which addresses
these issues by producing a multi-model ensemble of transient climate-change scenarios. The
method couples an existing stochastic rainfall model to a new, transient implementation of a
weather generator, using changes projected by an ensemble of regional climate model experi-
ments. The methodology is demonstrated by the generation of transient scenarios of daily rainfall,
temperature and potential evapotranspiration for the Geer catchment in Belgium for the period
2010-2085. The utility of these scenarios is demonstrated by assessing the changes projected by
the simulated time series of several temperature indices. The Geer is projected to experience a
decrease in the occurrence of frost days with a corresponding shortening of the frost season and
lengthening of the growing season. By examining an ensemble of transient scenarios, the range of
uncertainty in these projections is assessed, but, further, it is suggested that additional information
on the projected timing of specified threshold events or system responses may be provided. This
could aid stakeholders in assessing the likely time scales of required interventions and adaptation
responses.
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1. INTRODUCTION

One of the fundamental difficulties with the use of
climate models to assess the impact of climate
change is the mismatch of scales between model out-
put and that required by the climate impacts commu-
nity. Downscaling of output from general circulation
models (GCMs) is a common strategy to bridge this
gap. However, despite the development and applica-
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tion of a wide range of dynamical (i.e. regional cli-
mate models, RCMs; Rummukainen 2010) and statis-
tical approaches (Wilby & Wigley 1997, Fowler et al.
2007, Maraun et al. 2010), several key challenges
remain for the climate change impacts community.
One of these challenges is to better represent future
climate projections and associated uncertainties in a
policy- and decision-making context (Smith & Stern
2011). Uncertainties in climate model projections may
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be addressed through the use of multi-model and per-
turbed physics ensembles (Tebaldi & Knutti 2007,
Collins 2007); however, many projections are in the
form of time-slice experiments, frequently for the end
of the 21st century, which does not correspond with
the planning horizon for many stakeholders. Although
some transient RCM simulations are becoming avail-
able (e.g. Murphy et al. 2009b, Evans 2011), the large
ensembles required to explore modelling uncertainty
are not yet computationally feasible, and time-slice
experiments are still required. Furthermore, RCM
simulations contain biases when compared with cli-
mate observations (e.g. Jacob et al. 2007) and also fre-
quently require additional statistical downscaling for
local-scale climate-change impact assessments.

Downscaling with stochastic weather generators
(WGs) (Wilks & Wilby 1999, Wilks 2012) is an attrac-
tive option, as it is possible to produce long or multi-
ple realisations of synthetic weather series based on
the properties of observed meteorological records.
This provides the opportunity to simulate more real-
istic weather variability and extremes than with cli-
mate models, and to assess the uncertainty inherent
in projections of future change. A framework com-
bining the Neyman-Scott Rectangular Pulses model
(NSRP; Cowpertwait 1991, Burton et al. 2008) for
rainfall and the Climatic Research Unit (CRU) daily
WG (Watts et al. 2004, Kilsby et al. 2007) has been
used to generate local-scale state-of-the-art proba-
bilistic projections of climate for the UK as part of the
UKCPO09 projections (Jones et al. 2009, Murphy et al.
2009b). Its application for the UKCPO09 projections
enables users to generate projections for 30-yr time-
slices representing the 2020s through to the 2080s
(Jones et al. 2009). The application of this framework
has therefore, to date, been limited to the assessment
of climate change impacts for time-slice simulations,
for example, to produce projections of hydrological
flow series and probabilistic estimates of changes in
climate and flow statistics for UK rivers (Fowler et al.
2007, 2008, Manning et al. 2009). In contrast, Podesta
et al. (2009) used a resampling-based WG which can
replicate an observed low-frequency trend or a hypo-
thetical climate trajectory (in this instance over a
25 yr period) to assess the temporal evolution of the
economic sustainability of agricultural systems in the
Argentine Pampas.

The integrated NSRP rainfall model and CRU WG
have, however, been extended in a number of differ-
ent ways. An online tool for the simulation of 5 km grid
cell weather variables for 30 yr time-slices is available
(Jones et al. 2009), but is limited to the UK domain.
Van Vliet et al. (2012) demonstrated a further devel-

opment for a catchment in the Netherlands through
the application of a version of the NSRP model that
simulates spatial rainfall fields. Burton et al. (2010)
also describe a new framework to generate a large
ensemble of time-evolving (transient) daily rainfall
scenarios for the period 1997-2085 for the Brévilles
spring in northern France. This used a version of the
NSRP rainfall model with transient parameterisations
to produce an ensemble of transient rainfall scenarios
based on changes projected by 13 different RCM
experiments. Alternative formulations of the NSRP
model are also now being considered in the context
of non-stationary simulations (Evin & Favre 2013).

Here, the Burton et al. (2010) framework is ex-
tended for the Geer catchment (Belgium) to include
the addition of a new, transient implementation of
the CRU WG to produce continuous, consistent daily
series of precipitation, temperature and potential
evapotranspiration (PET). This study therefore de-
scribes the integration of the transient NSRP with the
CRU WG and its validation, and underpins the as-
sessment of hydrological changes in the Geer de-
scribed by Goderniaux et al. (2011).

2. DATA AND MODELS
2.1. The Geer catchment

The Geer catchment is located in eastern Belgium,
north-west of the city of Liege, in a region charac-
terised by intensive agriculture. It extends over ap-
proximately 480 km?, on the left bank of the Meuse
River (Fig. 1), and is important because the chalk
aquifer is largely exploited for drinking water but
suffers from severe nitrate contamination problems
due to intensive agricultural activities. Belgium has
experienced an increase in mean daily temperatures
over the 20th century (Blenkinsop 2005), and, since
the 1950s, there has been a significant positive trend
in extreme daily temperatures (Van de Vyver 2012).
Coupled with projected changes in precipitation
which suggest a large decrease in summer (Goderni-
aux et al. 2009), the response of the hydrological sys-
tem could have a significant impact on water re-
sources for the local population.

2.2. Observed climatic data
The precipitation record at Waremme (see Fig. 1)

was selected to calibrate the rainfall model, as it
offers the longest continuous series of homogeneous
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data (1960-2004) in the Geer catchment and is also
representative of average rainfall across the area.
However, for subsequent modelling of climate-
change impacts, such as the hydrological behaviour
of the catchment, daily PET data and other variables
are also needed. The CRU WG is able to provide sim-
ulated PET values but requires additional input vari-
ables (see Section 3.1) to do so. Sufficiently long
series of these additional variables are not available
for Waremme and so the nearby Bierset (15 km) was
selected as the most appropriate weather station to
use to provide representative meteorological data. In
particular, this station offers a long, continuous series
of temperature data that is largely contemporaneous
with the Waremme precipitation record. Precipita-
tion at the 2 locations is closely related, demonstrated
by a correlation coefficient of 0.84, with mean precip-
itation at Bierset only slightly higher than that at
Waremme (based on 7 yr of contemporaneous data).
Mean monthly temperatures for the 2 locations are
very similar, with differences not exceeding 0.2°C
(again, based upon 7 yr of contemporaneous obser-
vations). Mean daily temperatures for the 2 locations
are also very highly correlated, demonstrated by a
correlation coefficient of 0.99 (0.96 after removal of
the annual temperature cycle). This suggests that it is
reasonable for the Waremme precipitation to be used
in conjunction with the temperature at Bierset to rep-
resent the climatology of the Geer catchment.
Ideally, data for the period 1961-1990 should be
selected to calibrate the WG to correspond with RCM
control period simulations. However, although the

temperature and precipitation series are continuous
throughout this time, records of some of the variables
required to estimate PET only commence in 1985. The
CRU WG requires observed data with a duration of at
least 20 yr (Watts et al. 2004) for robust calibration;
thus, to ensure this could be achieved for all variables,
the period 1960-2004 was used. However, this means
that the total calibration period does not correspond
with the RCM control period, and, consequently, a
part of the change projected by the RCMs might be
assumed to be present in the observed data set. This is
addressed in Section 3.1, describing the calculation of
change factors (CFs) from the climate model ensemble.

2.3. Regional climate models

RCM output from the European Union's Fifth
Framework Programme (FP5) PRUDENCE project
(Prediction of Regional scenarios and Uncertainties
for Defining European Climate change risks and
Effects; Christensen et al. 2007) was used to derive
projections of regional climate at a resolution of
0.5° x 0.5°. Mean daily temperature and daily total
precipitation were extracted for a 3 x 3 matrix of grid
cells centred on the Geer catchment for the control
(1961-1990) and future (2071-2100) time-slices
under the SRES A2 emissions scenario (Naki¢enovié¢
et al. 2000). Such time-slice experiments are as-
sumed to be representative of a stationary climate
and here were used to derive CFs for a series of cli-
mate statistics, these, in turn, being used to perturb
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Fig. 1. Location of the Geer catchment, Belgium
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Table 1. The 6 regional climate model (RCM) experiments used from the PRUDENCE project. The acronyms adopted by the

AquaTerra project (Gerzabek et al. 2007) are used in this study, the suffixes E and H denoting RCMs driven by the

ECHAM4/0OPYC and HadAM3H/P/HadCM3 general circulation models (GCMs), respectively. DMI: Danish Meteorological

Institute; SMHI: Swedish Meteorological and Hydrological Institute; HC: Met Office Hadley Centre. For further details on
RCM formulations see Jacob et al. (2007)

RCM AquaTerra acronym Institute Driving GCM PRUDENCE acronyms
HIRHAM HIRHAM_H DMI HadAM3H A2 HC1/HS1
HIRHAM HIRHAM_E DMI ECHAM4/0OPYC A2 ecctrl / ecscA2
RCAO RCAO_H SMHI HadAM3H A2 HCCTL / HCA2
RCAO RCAO_E SMHI ECHAM4/0OPYC A2 MPICTL / MPIA2
HadRM3P HAD_H HC HadAM3P A2 adeha / adhfa
Arpege ARPEGE_H Meétéo-France HadCM3 A2 DA9 / DE6

the stochastic rainfall model and CRU WG (see Sec-
tion 3).

Here, we use the climate model ensemble shown in
Table 1. The full range of uncertainty generated by
the choice of GCM boundary conditions is necessar-
ily constrained by the experimental structure pro-
vided by the PRUDENCE project (Déqué et al. 2007).
In this instance further limitations are imposed by the
resources available to apply the downscaled RCM
scenarios to subsequent hydrological modelling. It is
acknowledged that such multi-model ensembles do
not sample structural uncertainties in a systematic
manner, and many models also possess common
components and algorithms (Collins 2007). All RCM-
GCM combinations are thus not explored, and the
ensemble may be considered what Tebaldi & Knutti
(2007) defined as an ‘ensemble of opportunity'.
Nonetheless, this ensemble is the same as that used
by Goderniaux et al. (2009) who employed a quantile
correction approach to downscale stationary time-
slice simulations. The simulations provided in the
present study could, therefore, also be used to pro-
vide an indication of the uncertainty in the modelled
catchment hydrological response to different climate
downscaling methods (for an initial assessment see
Goderniaux 2010).

3. METHODS
3.1. Calculating change factors

The widely used CF approach (Prudhomme et al.
2002, Diaz-Nieto & Wilby 2005) may be used to
downscale projections from the RCM scale to that re-
quired for climate impacts assessments. This method
assumes that climate models more accurately simu-
late relative change than absolute values, and, by ap-
plying the change simulated by climate models to ob-

served data, it removes model bias (relative to some
climatological baseline) from projections. Simple
applications of CFs such as ‘morphing’ (e.g. Belcher
et al. 2005) are frequently used but have the disad-
vantage that future scenarios can only follow patterns
of weather previously seen in the observed record.
Furthermore, a simple perturbation of the mean is un-
able to reflect other changes in the distribution which
are important in the simulation of changes in variabil-
ity and in extremes. Here, the application of CFs to
the second or higher order moments of the weather
statistics, to which the stochastic models are cali-
brated, surmounts these problems. Specifically, the
method used here offers the advantages that weather
sequences not previously observed may be generated
and that weather variables in addition to rainfall
and temperature are generated. This approach has
been used within the UKCP09 probabilistic projec-
tions (Murphy et al. 2009b) and now forms part of a
standard tool in the UK for climate-change impact
assessments (Jones et al. 2009).

Monthly CFs were calculated for a set of 6 rainfall
statistics for each RCM from the control and future
scenario simulations. These were: daily mean, daily
variance, the probability of a dry day (PDD; <1 mm)?,
daily skewness coefficient, daily lag-1 autocorrelation
and variance in monthly (specifically 672 h) accumu-
lation. The calculation of these CFs is described in de-
tail by Burton et al. (2010), as is their use in
perturbing a transient implementation of the single-
site stochastic NSRP rainfall model RainSim (Burton
et al. 2008). Here, further CFs are calculated for mean
temperature and daily temperature variance. These
CFs, of, were calculated to measure the change for

1The importance of clearly specified dry—day thresholds is

discussed by Burton et al. (2008). The threshold used here
was chosen for consistency with typical climate model
analyses (e.g. Haylock et al. 2006) and the EARWIG
methodology (Kilsby et al. 2007)
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each RCM, R, between the control (Con) and future
(Fut) scenario time-slices for each calendar month, i.
For mean temperature, i, we apply an additive CF:

oy = T e (1)
and for daily temperature variance, v, we apply a
multiplicative CF:

R,Fut
R, =Yi 2)

v,1
VIR,Con

A pattern scaling method was then applied to pro-
duce transient CFs for each year from 1975 to 2085;
these years represented the midpoints of the control
and future scenario RCM time-slices, respectively.
The method, described by Burton et al. (2010), uses
scaling factors interpolated from time-slice integrations
of global mean temperatures from GCMs under the
assumption that changes in climatic variables will oc-
cur in proportion to the projected change in global
mean temperature. Mitchell (2003) and Tebaldi et al.
(2004) analysed a range of GCM experiments and
found these assumptions to be generally accurate for
temperature and precipitation change at seasonal and
grid scales. Pattern scaling has been used to produce
climate projections for the UK for multiple time-slices
(Hulme et al. 2002) and has been applied to the PRU-
DENCE ensemble to assess changes in future flows for
the River Thames in the UK (Manning et al. 2009). The
pattern scaling for this study was based on projections
from the GCMs HadCM3 and ECHAM4, which pro-
vide the RCM boundary conditions as described in
Manning et al. (2009) and Burton et al. (2010).

Here, the observed temperature series represent a
period beyond the model control simulations, and so
we assume that they already incorporate a propor-
tion of change projected by the RCMs. To reflect this
difference, the transient CFs were calculated so that
they express change relative to the midpoint of the
period of observations, y, = 1982, referred to as 're-
basing’ by Burton et al. (2010). For u, which has an
additive CF, first the transient scaled temperature
change factor, ¢, is calculated as:

0f . = o SEY 3)

where SFR is the scaling factor between 0 and 1 for
each year y and for each RCM as described by Eq. (4)
in Burton et al. (2010). The scaled values ¢ are then
expressed relative to y, to obtain the final set of tran-
sient change factors y:

W}}fvyvi = (I)E,yyi - ¢§,y<nvi (4)

which may be used to provide transient estimates of
future mean temperature from observations (Obs),

uf, =uf™ +wyg ;. Since v has a multiplicative CF,
the same approach used for mean daily precipitation
by Burton et al. (2010) was followed to produce a set
of transient CFs for temperature variance, llfff,y,,-.

This process produces a series of 8 CFs (6 for pre-
cipitation, 2 for temperature) relative to the period for
which observed data is available for each calendar
month and for each RCM experiment.

Numerical instabilities at the grid scale mean that
projections for individual RCM grid boxes should not
be used without first examining their consistency
with wider regional simulations. Hence, CFs for the 3
x 3 element grid centred on the grid cell for the Geer
were examined and found to be spatially homoge-
neous for each RCM. This indicated that those cal-
culated for the grid cell overlying the Geer were un-
affected by instabilities in the RCM simulations and
were therefore appropriate for use in this study.

3.2. Generating transient climate series

The framework developed here to produce tran-
sient climate-change scenarios for the Geer is based
on a 2-step process. First, to simulate daily rainfall
using the transient NSRP model developed by Burton
et al. (2010), and then to produce consistent simula-
tions of additional weather variables including tem-
perature and PET using the CRU WG.

3.2.1. Daily rainfall

Burton et al. (2008) developed a NSRP model
(RainSim) to simulate rainfall at a single site, al-
though a version capable of simulating spatial rain-
fall fields has subsequently been demonstrated for
simpler, time-slice applications (van Vliet et al. 2012).
The latter could, with further model development, be
incorporated into the transient framework outlined
here. However, given the relatively homogenous cli-
mate across this small catchment and that the focus
of this work is the validation and application of the
transient CRU WG, this approach was not deemed
necessary here. Thus, we apply and extend the
single-site transient framework developed by Burton
et al. (2010), deriving transient daily rainfall series
from the NSRP model which is re-parameterised for
every month of every year, based on the application
of transient CFs to the observed rainfall statistics.
Here, this is used to generate an ensemble of 100
transient stochastic rainfall time series from 2010 to
2085, for each of the 6 RCM experiments.
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3.2.2. Daily temperature —The CRU WG

The CRU WG uses observed relationships between
site meteorological data to estimate parameters which
are used to generate long time series of synthetic daily
weather variables (Kilsby et al. 2007). The fundamen-
tal, primary variable is rainfall, which is produced us-
ing the stochastic NSRP model as described by Burton
et al. (2008). These rainfall data are used to derive sec-
ondary variables (Table 2) using regression relation-
ships, with further variables calculated from these.
The regression equations needed for the CRU WG are
calibrated with observed data for daily temperature
maxima (TX) and minima (TN), precipitation (P),
vapour pressure (VP), wind speed (WS) and sunshine
hours (SS) using the observations described in Section
2.2. A detailed account of the operation of the CRU
WG is provided in Kilsby et al. (2007). Further details
of parameter adjustment for future climate scenarios
and validation of the CRU WG in reproducing RCM-
projected changes are provided by Kilsby et al. (2007)
and Jones et al. (2009, 2011). The observed daily cli-
mate series were used to calibrate the CRU WG,
which was run in 2 modes. Firstly, in a ‘control’ simu-
lation mode the non-transient version of the stochastic
NSRP model (Burton et al. 2008) was used to produce
100 stationary 30 yr simulations of daily rainfall pos-
sessing the same underlying statistics as the observed
data. These simulations were then used to condition
the CRU WG to provide corresponding additional daily
weather variables which were then used to validate
the performance of the models in reproducing the
current characteristic climate for the Geer.

Secondly, after validation of the NSRP model and
CRU WG in control mode (Section 4), the 'scenario’
mode used the transient rainfall simulations to condi-
tion the CRU WG to simulate corresponding addi-
tional daily transient weather variables. This was
achieved by applying the relevant transient CFs for
mean temperature (wff'y'j) and temperature variance
(wﬁy,i) for each year to perturb the corresponding
simulation years of the future climate. This contrasts
with previous applications of the CRU WG, where it
was perturbed using 1 set of monthly CFs for each
RCM (or RCM variant in the case of UKCP09) for the
appropriate time-slice (Jones et al. 2009).

4. MODEL VALIDATION

4.1. Validation of the rainfall simulations

Detailed accounts of fitting and validation of the
rainfall model's single-site and spatial variants have

Table 2. List of meteorological variables generated by the
Climate Research Unit weather generator, CRU WG. Precip-
itation is generated using the Neyman-Scott Rectangular
Pulses model with secondary variables derived directly from
the CRU WG and used in turn to calculate further variables

Variable Abbreviation
Primary

Precipitation (mm) P
Secondary

Mean temperature (°C) T
Daily temperature range (°C) TR
Vapour pressure (hPa) VP
Wind speed (m s7%) WS
Sunshine duration (h) SS
Calculated

Relative humidity (%) RH
Reference PET (mm d') PET

been provided by Burton et al. (2008) and for the
transient NSRP model by Burton et al. (2010)
(Brévilles catchment, France) and Goderniaux (2010)
(Geer catchment). As the focus of this study is the
development of the additional transient weather
variables, only a brief summary of the validation of
the rainfall model for the Geer is provided here.
First, the control mode stationary NSRP model was
fitted to the observed monthly rainfall statistics as in
Burton et al. (2010). Ten 100 yr simulations of this sta-
tionary model were compared with observed rainfall
properties (Fig. 2), indicating a high degree of model
skill. Although deviations are noted for the daily
skewness coefficient and monthly variance, the
range of variation displayed by the 100 yr stochastic
simulations almost always includes the correspon-
ding observed statistic value.The transient NSRP
model (scenario mode) parameterisation was then
obtained using the same weights, parameter bounds
and reduced set of parameters as used for fitting the
stationary model to the observed climate. To validate
the transient parameterisation, a 1000 yr stationary-
climate rainfall time series was generated separately
for each year from 1976 to 2085, each corresponding
to a stationary climate equivalent of the estimated
transient climatic conditions of that year. Mean statis-
tics were then calculated for each 1000 yr time series
and compared with the corresponding ‘target’ statis-
tics (i.e. the observed statistics perturbed by the tran-
sient CFs). Fig. 3 shows that for the RCAO_E RCM
experiment the simulated mean and PDD statistics
closely match the target statistics. Similar perform-
ances were noted for the other statistics and calendar
months confirming the skill of the rainfall model. Fol-
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lowing this validation, 100 equiprobable daily tran-
sient rainfall series were then generated from 2010
to 2085 for each RCM by using the corresponding
transient monthly CFs.

4.2. Validation of the CRU WG: control climate

The CRU WG was validated by first examining its
skill in reproducing daily weather variables and PET
for the control period (Fig. 4) using a set of 100 sta-
tionary 30 yr simulations. This shows that the WG
skilfully reproduces both TN and TX throughout the
year, with the observed average within the 2 stan-
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dard deviation (SD) range of the simulations for most
periods of the year. For sunshine duration (SS) and
vapour pressure (VP), the range of simulated values
captures the observed mean throughout the year,
with particularly close correspondence for the latter.
The annual distribution of wind speed (WS) is also
captured reasonably well, though it is overestimated
for some half-monthly periods, whilst PET is slightly
underestimated during parts of the spring and sum-
mer. Overall, the CRU WG simulations show good
agreement with observed values and reproduce the
annual cycles of all weather variables. Fig. 5 demon-
strates that the CRU WG provides an improved rep-
resentation of the mean daily temperature (T) com-
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Fig. 2. Observed, fitted and simulated precipitation statistics for the Geer basin climate corresponding to the period

1961-1990. Black lines: observed data; black crosses: statistics as fitted by the stationary single-site Neyman-Scott Rect-

angular Pulses model after the calibration process; circles: 10 different stochastic simulations for time intervals of 100 yr under
the same climate conditions as those in the observation period 1961-1990. PDD: probability of a dry day
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pared with the RCM simulations. No single RCM
reproduced the mean temperature well throughout
the year, and the range of the RCM simulations is
particularly large during summer. Relative to the
observed statistics (OBS), the root-mean-squared-
error (RMSE) of the mean of the 100 CRU WG hali-
monthly means is 0.4 compared with 1.0°C for the
RCM ensemble. The CRU WG also better represents
the extremes of the daily mean temperature distribu-
tion as represented by the 90th (Tgy) and 99th (Tgq)
mean daily temperature. Both the CRU WG and the
climate models perform less skilfully in simulating
the extremes of the daily temperature distribution
compared with the mean, as one might anticipate,
but for both Ty and Tgg the CRU WG performs better
than each of the RCM ensemble members, in the
case of the latter with a RMSE of 1.1°C compared
with RCMs in the range of 1.3-3.5°C. Fig. 5 also
confirms that the CRU WG simulates the daily tem-
perature variance better than the RCM ensemble
members and that overall it provides an improved
representation of the climate for the Geer catchment.

4.3. Validation of the CRU WG: model perturbation

The second part of the WG validation procedure
examined the perturbation of mean temperature by

the CRU WG. Using temperature indices in addition
to averages and SDs, Jones et al. (2011) have demon-
strated that the perturbed future simulations from the
CRU WG have the same statistical character as a
future RCM time-slice sequence (from HadRM3),
adequately representing a range of extreme indices.

Here, therefore, we provide a similar validation for
the transient perturbation procedure. First, for se-
lected years, separate 100 x 30 yr simulations of the
CRU WG were performed for each RCM member
using the corresponding CFs. For each future simula-
tion, the change in mean daily temperature from the
control CRU WG simulation was calculated and com-
pared with the corresponding RCM-derived CFs.
Fig. 6 (upper 2 panels) illustrates the skill of the CRU
WG in perturbing the control climatology for the
RCAO_E ensemble member for selected years (2055
and 2085). In each case, the CRU WG simulates the
projected annual variability in the magnitude of tem-
perature change. Throughout most of the year, the
simulated change is within 2 SDs of the RCM pro-
jected change. Next, the mean monthly temperatures
for the transient simulations were compared with the
‘expected’ means (i.e. the simulated control monthly
mean plus the corresponding scaled CFs). Fig. 6 (bot-
tom panel) demonstrates, for the months of January
and July, that the transient perturbation reproduces
the expected means and trajectory of change through-

Feb 3 Aug
e nt AT BA
OUAL o a £ 2 T
e e,
< e
E \
- =
Target statistics s
Q.
Mean simulated statistics ©
:
1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080
1.0,
.,
0.9
0.8]
a
o 07
AR 0.6
0.5

1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080

T T T M T T T T T T T T T T T T T
1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080

Fig. 3. Evolution of ‘target’ and mean simulated statistics (for successive annual simulations of 1000 yr duration) for mean daily
precipitation and probability of a dry day (PDD) for the months of February and August. Results are presented using change
factors derived from the regional climate model (RCM) RCAO_E
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Fig. 4. Validation of the Climate Research Unit weather generator (CRU WG) control simulation (1960-2004) for minimum (TN)

and maximum (TX) temperature, sunshine hours (SS), vapour pressure (VP), wind speed (WS) and potential evapotranspiration

(PET). Circles: observed half-monthly means (OBS); crosses: weather generator-simulated values (CRU WGQG); error bars: the
variability of one-hundred 30 yr-simulated series as defined by +2 standard deviations

out the period. For some years, the difference
between the expected and simulated means exceeds
those observed above for the 100 x 30 yr simulations.
This is probably because the transient simulations
are comprised of a smaller, 100 yr ensemble simula-
tion for individual years, and this could be addressed
by increasing the ensemble size in the final transient
simulations.

5. RESULTS
5.1. Transient changes in temperature indices and PET

To illustrate the application of the transient WG, 5
temperature indices were calculated for the 600 sim-
ulated daily weather series (100 WG simulations for
each of the 6 RCM experiments) and assessed to-
gether with simulations of total monthly PET. These
were selected as simple transient indicators of the
potential impacts of climate change.

The summer days index (SDI; TX >25°C), defined
by Klein Tank & Kénnen (2003) is an indicator of hot
summer days. The frost day index (FD; TN <0°C) is a
widely used measure of air frosts (e.g. Frich et al.
2002), primarily sensitive to change in winter tem-
peratures, whilst frost season length (FSL) indicates
changes in the seasonal distribution of frost days by
measuring the number of days from the first frost
occurrence to the last based on a July to June annual
cycle. The growing season length (GSL) is an impor-
tant measure for agricultural applications and has
been defined as starting on the last day of the first 5 d
spell during which the mean temperature for each
day exceeded 5°C and ending on the last 5 d spell of
the year (Jones & Briffa 1995, Frich et al. 2002). How-
ever, Jones et al. (2002) suggested additional criteria
due to the frequent occurrence of late frosts in areas
like northwestern Europe, and therefore the first
(last) 5 d spell should also occur after (before) the last
(first) frost of the winter season. Finally, the total of
growing degree days (GDD) has been used in a
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Fig. 5. Comparison of CRU WG and RCM ensemble members in simulating daily mean temperature (T), 90th and 99th
percentile daily mean temperature (Tqy and Ty, respectively) and daily variance. Observed statistics (OBS) are shown for
comparison. CRU WG simulations here were undertaken for the period 1961-1990 for direct comparison with the RCM ensemble
control experiments. Error bars: variability of one-hundred 30 yr-simulated series as defined by +2 standard deviations

range of agronomical applications, and is calculated
as the sum of all the mean daily temperatures >5°C
during the growing season defined above.

Each annual index was calculated for each of the 600
transient simulations. Linear regressions were fitted to
each individual simulation, constrained to observed
values centred on the observation period (1982). This
ensured that absolute values of the projected indices
derived from the regression models were evaluated
relative to the observed climatology. The trends were
then ranked to examine the range of projected
changes. The time series associated with the multi-
model ensemble median trend of each index is shown
in Fig. 7 along with the range when 95 % of the simu-
lated trends is included. For SDI, the multi-model en-
semble projected an increasing trend with a median of
around +7 d decade™, though greater increases were
projected, principally by the ECHAM-driven RCMs.
The large uncertainty range in projections for these
models meant that the upper bound of projections was
an increasing trend of +9 d decade™!, and consequently
the increase in SDI projected for the 2080s by the multi-
model median trend could be reached as early as the

2060s. However, the lower bound indicated a trend of
just +4 d decade™?, resulting in the same change as for
the median ensemble member now occurring beyond
2100. Conversely, the transient simulations projected a
decrease in FD, with a median trend of around -4 d
decade™!. Compared with SDI there was a smaller in-
ter-model range in trends (-2.5 to -5 d decade™) due to
the smaller differences in RCM-derived CFs during
winter months. An associated median decrease in FSL
of approximately —6 d decade™ was also projected;
again the change was larger for HIRHAM E and
RCAO_E, primarily due to greater projected warming
in spring and autumn by these RCMs.

All models indicated an extension of the growing
season, with an ensemble median trend of around
+3 d decade™!; however, the ensemble range indi-
cated that the growing season length projected for
the 2080s by the ensemble median trend could occur
by the 2030s but also much later. For all models,
therefore, a longer growing season and increasing
temperature suggested that there would also be
a median projected increase in GDD of around

+130 degree days decade™.
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Finally, changes in monthly PET totals were exam-
ined in the same way as for the temperature indices,
and for brevity are summarised only for January and
July (Fig. 8). Increases in summer PET were greater
than those for winter, corresponding with the greater
projected increase in mean summer temperatures.
However, the ensemble range in projected PET, cou-
pled with those of the temperature indices, indicated
a large potential range in the timing of the hydro-
logical response of the catchment and other potential
impacts due to climate change. This makes any
planning or adaptation responses difficult to assess.
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RCAOL_E. Error bars: variability of one-hundred 30-yr-simu-

lated series as defined by +2 standard deviations. A compar-

ison of the transient simulations for RCAO_E throughout the
whole period is also shown (lower panel)

5.2. Projected timing of climatic response

The ensemble of downscaled transient simulations
offers the means to assess the uncertainty in future
projections on a temporal dimension This is in
contrast with an ensemble of time-slice simulations
which would typically provide projections of change
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Fig. 7. Projected multi-model ensemble-median time series

(stepped line) and fitted trends for each of the 5 temperature

indices (SDI; summer days; FD: frost days; FSL: frost season

length; GSL: growing season length; GDD: growing degree

days). Solid line: median trend; upper (lower) dashed lines:
97.5th (2.5th) percentile
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in a variable for a given time period with associated
uncertainties. Here, a specific impact or threshold
can be prescribed and a projected time scale may be
estimated for it with a measure of uncertainty. For
example, we pose the hypothetical question ‘when
could we expect to see the SDI account for 2 months
of the year?’, estimating the year in which each
ensemble member's linear trend projects a total of
61 summer days. The resulting distribution of esti-
mated years has a mean year of 2037 with an SD of
13.3 yr. The empirical distribution function (Fig. 9)
indicates that such a change is most likely to occur in
the 2020s-2030s, although the distribution has a long
tail to the end of the 21st century. This distribution
reflects the stochastic variability introduced by the
rainfall and WGs which provides an estimate of
the uncertainty associated with natural variability, in
addition to the variability provided by using a climate
model ensemble.

6. DISCUSSION AND CONCLUSIONS

This study describes a new, integrated implemen-
tation of the NSRP rainfall model and CRU WG to
provide downscaled daily weather scenarios of
future transient climate for the Geer catchment in
Belgium. It uses a recently developed transient ver-
sion of the NSRP model (Burton et al. 2010) to gener-
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Fig. 8. Projected multi-model ensemble-median time series
(stepped line) and fitted trends in potential evapotranspira-
tion (PET) for January and July. Solid line: median trend; up-
per (lower) dashed lines: linear trends corresponding to the

97.5th (2.5th) percentile

ate 100 transient simulations of daily rainfall for the
period 2010-2085 for each member of an RCM
ensemble. The simulated rainfall series are then used
to condition the new, transient implementation of the
CRU WG, perturbed by RCM-derived CFs, to simu-
late the additional weather variables.

The WG was demonstrated to successfully repro-
duce the observed annual cycles of minimum, mean
and maximum temperatures, and was shown to offer
an improvement (i.e. correction of biases) in the sim-
ulation of mean daily temperature and extremes de-
rived directly from the RCM ensemble for the Geer.
The transient perturbation of the WG was also suc-
cessful in producing simulations that matched the
RCM-projected trajectory of temperature change.
However, in common with other downscaling meth-
ods and projections, it is unreasonable to assume that
extreme events outside of the range of those previ-
ously observed can be accurately simulated in future
time series.

This methodology provides a downscaled multi-
model ensemble of transient climate scenarios at a
daily resolution whose utility is illustrated through
the analysis of daily temperature indices and simu-
lated PET. An extension of the growing season was
found, although an increase in hot days could mean a
greater likelihood of heat waves and increased eva-
potranspiration. Given the likely decrease in summer
rainfall over this part of Europe indicated by PRU-
DENCE and other ensembles (Christensen & Chris-
tensen 2007, Murphy et al. 2009a) and the projected
regional increase in the frequency of summer
droughts (Blenkinsop & Fowler 2007), increased
stress could be placed upon water resources before
the 2080s.
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Although transient RCM experiments, such as
those provided by the ENSEMBLES project (Hewitt
& Griggs 2004) are now available, these still provide
relatively small initial-condition ensembles. By using
the transient simulations presented here, uncertainty
in the timing of a given magnitude of climate signal
may be explored. Thus, whilst RCM time-slice simu-
lations allow the likely future change to be consid-
ered through questions like 'What will be the likely
increase in temperature by 2085?', these downscaled,
transient simulations provide the additional basis for
the temporal evaluation of critical thresholds, such as
‘By when are we likely to see a 3°C increase in mean
summer temperature?’ More interestingly, the time
scale of required interventions or adaptation re-
sponses may be examined by coupling the climate
projections with impact models, for example, using
hydrological simulations. The method could there-
fore facilitate planning and adaptation to changes in
climatic events on the shorter time scales frequently
required by stakeholders. For example, changes in
the occurrence of a given magnitude of an event—
such as the European heat wave in the summer of
2003, which had a significant effect on agriculture
regionally (the French maize grain crop fell by 30 %
of that in 2002; Easterling et al. 2007) and resulted in
record low levels in several major European rivers
(Beniston & Diaz 2004) —may require adaptation
planning on time scales that end earlier than the end
of the 21st century. A more detailed, policy-relevant
application using the scenarios developed here is
provided by Goderniaux et al. (2011), identifying
when prolonged and severe drought might begin to
affect stream flow rates, groundwater levels and thus
abstraction from the Geer catchment.

The method described here potentially provides
more useful information for the Geer catchment than
that provided by Goderniaux et al. (2009), where the
same RCM ensemble was used with a quantile cor-
rection method, and which was then scaled to pro-
duce stationary climate scenarios for 3 time-slices.
Nonetheless, it is worth noting that by comparing the
hydrological response over common periods for these
2 methods, Goderniaux (2010) indicates that the
downscaling method is a relatively minor contributor
of uncertainty to the projected response of this catch-
ment to climate change relative to the contribution of
climate model selection.

Although it is acknowledged that the RCM ensem-
ble used here represents only a limited sampling of
the total uncertainty space, and thus underestimates
the contribution of all sources of uncertainty, this
downscaling framework could be extended to larger

RCM ensembles to provide a more comprehensive
treatment of scenario uncertainty. Whilst the strength
of this methodology lies in a transient representation
of both natural variability and uncertainty in future
climate projections, the former will be underesti-
mated as the transient scenarios (including those by
RCMs) do not realistically represent low-frequency
variability arising from teleconnections such as the El
Nino Southern Oscillation. Several authors have de-
scribed potential means to improve the representa-
tion of low-frequency variability in stochastic rainfall
models (e.g. Mehrotra & Sharma 2010) and WGs (e.g.
Kim et al. 2012); the implementations of such tech-
niques in transient weather generation require fur-
ther investigation.
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