Group B streptococci, a European perspective with results of the DEVANI project

Pierrette Melin

Medical microbiology, CHU-ULg, National Reference Centre for GBS
Group B streptococci (GBS)
The global picture of neonatal disease

- **Worldwide mortality 0-4 years old** (WHO, Cause of death 2008)
 - 8.3 millions
 - 30-40% within first week of life
- **Neonatal bacterial sepsis**
 - +/- 1 million annually
 - GBS is the leading cause

- **Maternal immunization**
 - Cornerstone of prevention
 - Neonatal tetanos and influenza
 - Potential to protect young infants
Group B streptococci (GBS)
The global picture of neonatal disease

- In industrialized countries, since 1970’s
 - Leading cause of pneumonia, sepsis, meningitis
 - 0.5 to 4 /1000 live births
 - EOD, mortality 5-10%
 - LOD, mortality 3-5%
 - Meningitis
 - 50% permanent sequelae
 - From mild learning or motor disabilities to global cognitive impairment
 - Maternal colonization: 15-40%

- In resource-limited countries
 - Many common characteristics with industrialized countries

Global public health major concern!
Group B streptococci (GBS)
The global picture of neonatal disease

CDC, USA, MMWR, Vol 59 (RR-10) Nov.2010
Endorsed by ACOG, AAP, ACNM, AAFP and ASM

CSS, Belgium July 2003 (Revision ongoing)
Group B streptococci (GBS)
The global picture of neonatal disease

- Prevention through IAP
 - In industrialized countries
 - Substantial declines of EOD
 - Remaining burden
 - No effect on LOD
 - Several concerns
 - In resource limited countries
 - Not an option
 - Intrapartum vaginal and newborn chlorhexidine washes proven ineffective

Incidence of GBS EOD and LOD, 1990 to 2008, ABC surveillance areas, USA
European strategies for prevention of GBS EOD

- Prevention through IAP
 - Screening-based strategy
 - Spain, 1998, revised 2003
 - France, 2001
 - Belgium, 2003, revision ongoing 2011
 - Germany, 1996, revised 2008
 - Switzerland, 2007
 - Risk-based strategy
 - UK, the Netherlands
- No guidelines
 - Bulgaria, ...
GBS neonatal disease

- Mainly CPS type III followed by Ia, V, Ib, II
- Substantial perinatal morbidity and mortality
 - Especially in the first 48 hrs of life
- Concern about IAP
- Higher levels of maternal specific CPS Ab // reduction of risk of neonatal disease

GBS Vaccines

- Uniquely suited for maternal immunization
- To prevent GBS disease in young infants
Since the 1980’s:
GBS Vaccines, Challenges

Capsular polysaccharide (CPS) vaccines

- 10 serotypes Ia, Ib – IX
 - Variability of CPS distribution
 - Type of infections: EOD, LOD, in adults
 - Geographically and along time

- Conjugated vaccines

- Multivalent vaccines Ia, Ib, II, III, V

- Clinical studies (Phase I and II)
 - Immunogenicity; Safety; Efficacy (scheduled / ongoing)
 - Ia, Ib, III conjugated to CRM197 (Novartis) clinical trials in Belgium

Well tolerated and immunogenic
Functional Abs (opsonization, phagocytosis, killing, protecting)
Since the 1980’s: GBS Vaccines, Challenges

GBS Protein-based vaccines

- **Antigen = common surface protein**
 - Cross protection against different CPS
 - Better immunogenicity
 - Humoral response T-cell dependant → Long lasting immunity

- **Among several candidates**
 - +/- ubiquitous among all GBS
 - BPS (Group B protective surface protein), C5a peptidase
 - **Sip** (Surface immunogenic protein)
 Brodeur B et al, Infect Imm 2000
 - **Pili proteins** *(PI-1, PI-2a, PI-2b)*
 Maione D et al, Science 2006
GBS Protein-based Vaccines

Reverse vaccinology approach
Knowledge of complete GBS genome

- Comparaison of genomes from 8 different GBS serotypes

 - 312 surface proteins were cloned
 - 4 Provide a high protective humoral response in mouse
 - Sip
 - Three other proteins = « pilus like structures »

D.Maione et al, Science 2006
GBS « pilus like structure »

- Highly immunogenic proteins
- Elicit protective and functional antibodies
- Virulence factor
 - Adhesion
 - Transcytose through cells
Vaccine Against Neonatal Infections

Design of a vaccine to immunize neonates against GBS infections through a durable maternal immune response
PROJECT (01.2008 - 06.2011)

- Development of a vaccine against pili proteins & major CPS serotypes
- Development of a mouse model of GBS meningitis
- European epidemiology
 - Genito-rectal colonizing strains
 - Invasive neonatal strains and diseases
- Identification of protective levels of specific antibodies

Consortium of 8 European countries
Material and methods (Targets)

- **200 GBS neonatal diseases (EOD & LOD)**
 - Strain isolated from blood, CSF or another normal sterile site and perinatal mother’s serum
 - 25 per country

- **400 GBS negative mothers of healthy babies**
 - Serum
 - 50 per country

- **800 GBS positive mothers of healthy babies**
 - Strain and perinatal mother’s serum
 - 100 per country

For each patient included in the study (2009-2010)

Case Report Form (eplatform web.database)

Signed consent form
Epidemiology

Material and methods

- **Determination of capsular type**
 - Serotyping by latex microagglutination (SSI, Dk)
 - Set up of an international EQA (Afshar et al, JCM 2011)

- **Assessment of presence of pili genes**
 - PCR PI-1, PI-2a and PI-2b (Baldassari L et al, submitted)

- **MLST** (Jones N. et al., JCM 2003)

- **FACS analysis**
 - *Pili expression*

- **GBS serology**
 - *Abs Ia, Ib, III and V*
 - *Abs PI-1, PI-2a and PI-2b*
Descriptive and statistical analysis

- Description and comparison of populations
 - Demographic - anamnestic – clinical – biological data – CPS - Pili - MLST
 - Europe and countries
 - Pregnant women of healthy babies vs mothers of EOD/LOD
 - Neonatal cases: EOD and LOD

- CPS – Pili – MLST relations

- Serological relations
 - Protective thresholds
159 GBS neonatal infections
EOD / LOD = 1.12

1525 healthy infant’s mothers
1122 GBS Pos
7 controls / NI case

pm-isp-24.11.2011
PROVISIONAL ANALYSIS
“Pregnant women”

<table>
<thead>
<tr>
<th></th>
<th>Healthy babies’mothers (1525: 1122 pos)</th>
<th>GBS EOD’s mothers (78)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBS prenatal screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%, Number (Pos)</td>
<td>89.5%, 1365 (954)</td>
<td>47.4% (48.6%)</td>
<td></td>
</tr>
<tr>
<td>Vagino-rectal swab</td>
<td>80%</td>
<td>33.3%</td>
<td></td>
</tr>
<tr>
<td>IAP if GBS pos</td>
<td>60%</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>GBS intrapartum screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% (Pos)</td>
<td>16.7% (58%)</td>
<td>16.5% (92.3%)</td>
<td></td>
</tr>
<tr>
<td>Maternal age at delivery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (years)</td>
<td>30.8 (15-48)</td>
<td>35.9 (26-40)</td>
<td></td>
</tr>
<tr>
<td>Notified Risk Factor for neonatal GBS EOD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM > 18h</td>
<td>5%</td>
<td>17.9 %</td>
<td><0.001</td>
</tr>
<tr>
<td>T° >= 38°C</td>
<td>1%</td>
<td>11.5%</td>
<td><0.001</td>
</tr>
<tr>
<td>GBS bacteriuria</td>
<td>3.9%</td>
<td>11.4%</td>
<td>0.02</td>
</tr>
<tr>
<td>Previous GBS sibling</td>
<td>0.3%</td>
<td>1.3%</td>
<td></td>
</tr>
<tr>
<td>No RF</td>
<td>88.7%</td>
<td>51.3%</td>
<td><0.001</td>
</tr>
</tbody>
</table>
“Pregnant women”
Type of delivery

<table>
<thead>
<tr>
<th></th>
<th>Healthy babies’mothers</th>
<th>GBS EOD’s mothers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal</td>
<td>51.9%</td>
<td>68.1%</td>
</tr>
<tr>
<td>Planned C-section</td>
<td>12.9%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Non-elective C-section</td>
<td>11.0%</td>
<td>27.8% (P<0.01)</td>
</tr>
<tr>
<td>Unknown</td>
<td>24.3%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>
Mothers of newborns with GBS disease

<table>
<thead>
<tr>
<th></th>
<th>GBS EOD’s mothers (78)</th>
<th>GBS LOD’s mothers (72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBS prenatal screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% (Pos)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vagino-rectal swab</td>
<td>47.4% (48.6%)</td>
<td>61.1% (45.5%)</td>
</tr>
<tr>
<td>IAP if GBS pos</td>
<td>33.3%</td>
<td>56.8%</td>
</tr>
<tr>
<td></td>
<td>27%</td>
<td>26%</td>
</tr>
<tr>
<td>GBS intrapartum screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% (Pos)</td>
<td>16.5% (92.3%)</td>
<td>14.1% (60%)</td>
</tr>
<tr>
<td>Maternal age at delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (years)</td>
<td>35.9 (26-40)</td>
<td>31.2 (20-44)</td>
</tr>
<tr>
<td>Notified Risk Factor for neonatal GBS EOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM > 18h</td>
<td>17.9%</td>
<td>8.6%</td>
</tr>
<tr>
<td>T° >= 38°C</td>
<td>11.5%</td>
<td>1.4%</td>
</tr>
<tr>
<td>GBS bacteriuria</td>
<td>11.4%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Previous GBS sibling</td>
<td>1.3%</td>
<td>0%</td>
</tr>
<tr>
<td>No RF</td>
<td>51.3%</td>
<td>52.1%</td>
</tr>
</tbody>
</table>
Neonatal Invasive GBS Diseases

<table>
<thead>
<tr>
<th></th>
<th>GBS EOD (5.1% death)</th>
<th>GBS LOD (1.5% death)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (%)</td>
<td>78 (52)</td>
<td>72 (48)</td>
<td></td>
</tr>
<tr>
<td>Age at onset</td>
<td>< 1 day (88%)</td>
<td>38 d (6-109)</td>
<td></td>
</tr>
<tr>
<td>Birth weight</td>
<td>2.9 kg (1-4.9!)</td>
<td>2.7 kg (0.7-4.1)</td>
<td></td>
</tr>
<tr>
<td>Gestational age < 37 weeks</td>
<td>37.7 wks (26-42)</td>
<td>36.2 wks (24-43)</td>
<td>0.05</td>
</tr>
<tr>
<td>Sex M/F</td>
<td>1.16</td>
<td>0.89</td>
<td>0.42</td>
</tr>
<tr>
<td>Predominant manifestation at onset</td>
<td>isory漱</td>
<td>Respiratory distress (38% of cases)</td>
<td>Fever (63% of cases)</td>
</tr>
<tr>
<td>Type of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bacteremia without focus</td>
<td>26.8%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>- Sepsis/Shock</td>
<td>70.7%</td>
<td>75.3%</td>
<td></td>
</tr>
<tr>
<td>- Meningitis</td>
<td>8.5%</td>
<td>30.1%</td>
<td><0.001</td>
</tr>
<tr>
<td>- Pneumonia</td>
<td>13.4%</td>
<td>2.7%</td>
<td>0.017</td>
</tr>
<tr>
<td>- Others</td>
<td>2.4%</td>
<td>9.6%</td>
<td></td>
</tr>
<tr>
<td>- Birth in Twins</td>
<td>5.1%</td>
<td>15.7%</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Distribution of CPS serotypes among GBS from neonatal infections and among healthy babies’ mothers
Distribution of Pili genes among GBS from neonatal infections and among healthy babies’ mothers

NI: 100% with pili gene(s), most common pattern is PI-1+b2
PW: 0.6% without pili genes, most common is PI-1+2a
Relation pili / CPS among GBS from PW

Association between certain serotypes and pili gene pattern
Relation pili / CPS among GBS from newborns

![Graph showing the relation between pili and CPS among GBS from newborns.](image-url)
MLST – Clonal analysis of GBS
646 GBS from PW and 121 from NI

In PW: 66 Sequence types (ST) for 9 clonal complexes (CC)
Five CC include 92% of isolates tested

In NI: 6 CC; the most frequent is CC17, the hypervirulent clone
DEVANI Project
Preliminary conclusions

- Set up of a mouse meningitis model
- In European countries
 - Difference of prevention strategies
 - Difference of resource for routine diagnostic of severe neonatal infection
- In Belgium, difficult to include cases even if they occurred
- Standardization of typing methods
- Among neonatal infections:
 - Higher prevalence of GBS CPS III, pili pattern PI-1+2b and CC17
- Assessment of presence of pili genes
 - 100% in NI et 99% in PW
- MLST et CPS more heterogenous among GBS from PW
- No significant difference in CC distribution /country
- Serological analysis ongoing
Consortium and Team

CHU Liege, National Reference Centre for GBS, Belgium
 P. Melin
 G. Rodriguez Cuns
 M. Chantrenne

Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London
 A. Efstratiou
 B. Afshar

Istituto Superiore di Sanità, Rome, Italy
 G. Orefici
 L. Baldassarri
 R. Creti

Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
 R. Berner
 M. Hufnagel
 M. Kunze

Servicio Andaluz de Salud, Hospital Universitario Virgen de las Nieves, Granada, Spain
 M. De La Rosa Fraile
 J. Rodriguez-Granger

National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
 A. Detcheva

Aarhus Universitet, Aarhus, Denmark
 M. Kilian
 U. Skov Sorrensen
 K. Poulsen

National Institute of Public Health, Prague, Czech Republic
 P. Krizova
 J. Kosakova
 M. Musilek

Novartis Vaccines & Diagnostics, Siena, Italy
 J. Telford
 D. Maione