Microbiological diagnosis of infectious keratitis

Pierrette Melin
Microbiology, University of Liege
Medical Microbiology, University Hospital of Liege
- **Infectious keratitis**
 - Inflammation of underlying corneal stroma caused by replicating organisms
 - Bacteria
 - Viruses
 - Fungi
 - Protozoa
 - Acute presentation – significant pain and distress
 - Rapid initiation of aggressive treatment needed
 - To halt disease process
 - To limit extent of corneal scarring and loss of vision

Sight-threatening condition
Infectious keratitis
Primary pathogens

- **Corneal trauma/ulcer**
 - *P.aeruginosa*
 - *S.aureus*
 - *S.pneumoniae*
 - Viridans group streptococci
 - *Moraxella spp*
 - AFB-rapid growers (*M.ch*)
 - *Nocardia spp*
 - Herpes simplex & Varicella zoster viruses

- **Contact lens associated**
 - Gram negative bacilli including *P.aeruginosa, Serratia spp*
 - *Bacillus spp.*
 - *Acanthamoeba spp*
Microbiological diagnosis

Improve strategies to detect aetiologicaal agents of infectious keratitis

Keys of success:
The best laboratory is not enough !!
Essential close collaboration with micro lab
Pathway to microbiological diagnosis

Urgent Alarming notification

Garbage IN = Garbage OUT
Microbiological diagnosis

- **Cultures**
 - **Bacteria** (aerobic, anaerobic & mycobacteria), fungi
 - (Viruses)
- **Direct microscopy**
 - Gram, Giemsa,
 - Immunofluorescence
- **Molecular Biology**
 - Various PCR methods and targets

Minute or scant amount of specimens
Limited viability
Pathway to microbiological diagnosis of ocular infections

Important for the physician to inoculate culture media at bed- or chair-side
Material

- **Instructions (+ training !)**
- **Fresh media**
 - *Schedule to replace expiring media*
 - Blood agar, chocolate agar
 - Thio Broth or TSB
 - Media for anaerobic, fungal and mycobacterial cultures
- **Slides**
- **Specimen collection & Transport devices**
- **Topical anesthetic**
 - (proparacaine hydrochloride 0.5%)
SPECIMEN COLLECTION, TRANSPORT, AND HANDLING
Specimen collection

1. Instillation of 1 or 2 drops of proparacaine HCL
 Some topical anesthetics and topical dyes: inhibitory to a variety of microorganisms

2. Specimens from the conjonctiva
 - From both eyes
 - Comparison of microbiological growth from unaffected eye with affected eye
 - Lower tarsal conjonctiva
 - Gentle scraping with a Kimura spatula
 - Or Dacron/Flocked swabs moistened with Thio or TSB
 - Not cotton or calcium alginate swabs
 - To avoid touching eyelid or eyelid margin
3. Corneal scrapings

- From the advancing edge of ulcer
 - By scraping multiple areas of ulceration and suppuration
 - With a Kimura spatula (short firm strokes in one direction)
 - To avoid touching eyelashes
 - 3 to 5 scrapings per cornea
Specimen processing

- **Identification of plates**
- **Inoculation** of each set of scrapings onto appropriate media
 - By successive « C » imprints
 - (Or Zig-zag with swab)
- **Preparation of smears**
 - By applying scrapings in a gentle circular motion over clean identified glass slides
 - Immersion for 5’-10’ in methanol (fixing)
 - Gram, Giemsa, Calcofluor, immunofluorescence, …
Specimen handling and transport

To identify and transfer to the microbiology lab without any delay! (<30’ – 2h)

- Inoculated identified plates
- Collection device with transport media
 - if specimens not inoculated at bedside
- Specific transport media for PCR tests
- Slides for smear staining
- For research of *Acanthamoeba spp.*
 - Call the lab
Interpretation

- **Smears**
 - **Gram, Giemsa**
 - Presence of PMN \rightarrow bacterial infection?
 - Presence of mononuclear cells \rightarrow viral infection
 - Bacteria
 - **Calcofluor white**
 - Fungi; *Acanthamoeba*
 - **Immunofluorescence**
 - Viruses
Interpretation of cultures

- Identification / antimicrobial susceptibility testing of significant organisms

- False positive cultures
 - Contamination of specimen with skin microbiota

- False negative: 35-60%
 - Scanty sample material
 - Delay in performing investigations
 - Prior use of antimicrobial agents or of certain corneal stains (e.g., Rose bengal, ...)
 - Lack of viability in vitro
 → improved by PCR methods (under development)
Acanthamoeba sp

Calcofluor white

Culture track left behind by amebae
Take home messages
Summary

- Various infectious agents
 - Variety of methods
- Minute amount of specimen
 - To target (priority) analysis to perform
- Essential close collaboration with microbiologists
- Crucial quality of pre-analytic issues
 - Short time from collection to inoculation
 - Direct inoculation by ophthalmologist