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Abstract— The correspondence problem is one of main
topics in stereo vision that, despites being studied for many
years, is still in progress.

In this paper, we present a new method that computes
the disparity map. Our method is local (i.e. only infor-
mation gathered in the close neighborhood is used) and is
based on image statistics. More specifically it combines mul-
tiple adaptive windows and local statistical measures in or-
der to optimize the quality of the computation of disparity
maps. As the size of windows is critical for local methods,
we propose an algorithm that modifies the size of windows
surrounding the pixel of interest to capture enough informa-
tion in regions with low texture energy. This process is based
on statistical measures (mean and horizontal/vertical aver-
age deviation) taken in the windows of the original stereo
images.

In the last section we show that our method performs very
well compared to other existing local methods.

I. I NTRODUCTION

Stereo matching algorithms have been developed for
many stereoscopic applications such as 3D vision, telecon-
ferencing, and reconstruction. One of the major problem
in stereo matching is the correspondence problem. The ob-
jective is to determine a couple of pixels(pL, pR) (where
L and R refer to the left and right images respectively)
which are the projections of a pointP in the real world.

Theoretically this is a 2D problem, but it can be reduced
to a 1D problem by rectification. The rectification algo-
rithm (see [4], [7] for rectification algorithms) applies a
transformation matrix to the two images in order for them
to be parallel to each other and at the same focal distance.
Therefore, after rectification,pL lies on the same line as
pR, but the distance between these pixels, calleddisparity,
still has to be computed for all pixels. In the following we
assume that all images have been rectified.

Methods computing the disparity maps have been cate-
gorized as either global or local. Moreover, some methods
detect and use features, others do not depend on the image
content. It is known that global methods based on features
offer excellent performances. However they are computa-
tionally expensive and do not meet real-time requirements.
For this purpose many alternatives have been proposed to

lower the complexity at the price of performance degrada-
tion. For example some techniques only compute sparse
disparity maps.

The method we propose estimates the complete dispar-
ity map. Since the problem is not left-to-right or right-to-
left symmetric we have chosen the left image as a refer-
ence, and we are looking for the corresponding pixels in
the right image. In addition our method is local and does
not rely on features. The key idea is to evaluate the correla-
tion between small windows surrounding a pixel of interest
to enhance the quality of the disparity estimate.

The major challenges for our method, also met with
other similar techniques, is to find the appropriate posi-
tions, sizes and shapes of the windows to have the most
discriminant one. Many algorithms have been imple-
mented during the last decade. In [8] KANADE and OKU-
TOMI proposed an algorithm that uses a single window
with an adaptive size. A different scheme using two or
more windows with fixed sizes was developed in [2], [5].
For each of them, the window with the smallest assignment
cost is selected. Recently, these two principles (adaptive
size and multiple windows) were mixed in [3]. CHAN et
al. have described an algorithm where nine windows are
used. From these nine windows only the one with the low-
est cost is selected and its size is reduced adaptively. Al-
though offering good performances, this algorithm seems
not to be very effective in flat regions like textureless areas.

Our scheme is somehow similar; it uses four windows
surrounding the pixel of interest and, based on the evalu-
ation of relevant statistical characteristics in the reference
image, determines the best window.

This paper is organized as follows. In Section II we
provide a description of our scheme. Section III details
which statistics are chosen. In Sections IV and V we dis-
cuss the processes of the disparity determination and the
aggregation. Section VI evaluates the performances, and
Section VII concludes the paper.

II. M ETHOD OVERVIEW

For all local methods, the most sensitive problems are
to find the good window, and appropriate measures. Our
method uses four rectangular windows surrounding the
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Fig. 1. Four windows used in our algorithm. The black rectan-
gle represents the pixel of interest.

pixel of interest, as displayed in Figure 1, whose sizes are
independently adapted.

Once the basic window shapes have been chosen, there
still remain several steps described hereafter:
1. Determination of the window sizes in the reference im-
age,
2. Decision on a cost function for each window,
3. Computation of a disparity map by costs comparison,
and
4. Aggregation.

III. D ETERMINATION OF THE WINDOW SIZE

The discussion on the best window size is a difficult one.
Windows with a fixed size are unable to handle borders
(i.e. a local discontinuity) when the size is chosen to be
large. Windows with a small size have the drawback of
leading to poor performances for untextured areas.

Technically, in the first case the window covers regions
with different disparities, and the resulting assignment cost
is inappropriate. The use of multiple windows could po-
tentially solve this problem as different windows will be
able to cope with local inhomogeneities. For that reason,
we use four windows.

In the second case (small sized windows), the cost cal-
culated on the window could be the same for multiple lo-
cations in the second image because the level of intensity
variations from one window to another is low. Only larger
windows will capture enough pixel variations to be able to
provide a satisfactory disparity estimate. On the one hand
a window must be small enough to avoid any effects of
projective distortion (as explained in [8]). But on the other
hand larger sizes increase the computation times.

To determine the window size, we use two criteria :
• The value of the horizontal and vertial variances, and
• The value of the correlation cost.
The first criterion is developed in III-A, and the second one
in III-B.

A. Statistical measures

We use rectangular windows with horizontal and verti-
cal axes as most of the energy contained in an image is

concentrated along these axes. We compute an estimate
of the horizontal and vertical average deviations for each
window. As pixel values are realizations of random vari-
ables or processes, depending on the assumptions made,
we have no access to the real values, and one has to satisfy
himself with an estimated value. The measures taken are
the estimates of the mean, and the horizontal and average
deviations defined as follows:
1. Horizontal average deviation:

ÊH =
1

WHWV

WH/2∑

m=−WH/2

WV /2∑

n=−WV /2

‖ IL(i + m, j + n) − µ̂j+n ‖

2. Vertical average deviation:

ÊV =
1

WH WV

WH/2∑

m=−WH/2

WV /2∑

n=−WV /2

‖ IL(i + m, j + n) − µ̂i+m ‖

where
• symbol∧ denotes an estimate,
• WH and WV represent the horizontal and vertical di-
mensions of the window,
• IL and IR designate the intensity pixel in the left and
right images,
• i andj are the column and line coordinates of the center
pixel of the window, and
• µ̂j+n = 1

WH

∑WH/2

m=−WH/2
IL(i + m, j + n) and

µ̂i+m = 1

WV

∑WV /2

n=−WV /2
IL(i + m, j + n) are the means

computed on a horizontal and vertical line respectively.
When the horizontal average deviation̂EH is small, the
window covers a region with low horizontal variation.
Note that to raise the signal to noise ratio (in untextured
area) during the correlation cost computation process, we
have to increase the horizontal and/or the vertical window
size.

B. Correlation cost

Next, to find the best window size and to compute the
disparity associated to each window, we have to choose a
cost function. After many experiments, we decided to use
an extension of the SSD (Sum-Squared Difference) appro-
priate for adaptive windows, defined as follows :

C (IL, IR, WH , WV , d) =
1

(WH WV )2

WH

2∑

m=−

WH

2

WV

2∑

n=−

WV

2

[IL(i + m, j + n) − IR(i + m − d, j + n)]2
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where we assume that the image intensities of the projec-
tion pL andpR of a real pointP are the same, and whered

denotes the disparity.
This cost function has two properties :

• When the window covers a low-textured region, the nu-
merator is low, and the cost gives the priority to large win-
dows,
• But, when the window covers regions of various dispar-
ities, the numerator is high, and the cost gives the priority
to smaller window.

C. Window size determination

The sizes of each window are determined as follows :
the growing process lasts until̂EH > T

WHWV
. The same

principle yields forÊV . But we immediately stop the
growing process if the cost computed for the new window
size is higher than the one computed for the previous win-
dow size. The last case occurs when the window covers
region of various disparities.

IV. COMPUTATION OF THE DISPARITY MAPS

To determine the disparity of the pixel of interest, we
take the disparity associated to the window with the small-
est costC.

V. AGGREGATION

The disparity map contains some gaps. As in [10], we
use a median filter with a5 × 5 rectangular window. This
introduces a kind of inter-lines consistency in the process.

VI. EXPERIMENTS

To evaluate our method, we have used a benchmarking
tool found on the Middlebury Stereo Vision web page [1].
This site provides left, right, and groundtruth images of
scenes containing untextured areas (see [10] for more in-
formation).

As suggested on this site, we have tested our algorithm
on four images (tsukuba, sawtooth, venus, andmap) with
constant parameter settings across all four images. These
parameter values are:
1. T = 1440.
2. WH andWV are initialized at5. These values are cho-
sen to guarantee that the statistical parameters are com-
puted on a population which is large enough to obtain sig-
nificant statistics.
3. horizontal and vertical sizes are upper bounded to30
pixels.
Figure 2 shows the results obtained ontsukuba and Figure
3 those obtained withsawtooth.

As can be seen, the algorithm performs well in untex-
tured regions. On the other hand there are some errors in

(c) disparity map (a) error image

(b) right image(a) left image

Fig. 2. Results obtained ontsukuba: (a) left original image,
(b) right image, (c) disparity map obtained after aggregation,
and (d) error image. Pixels drawn in black in the error image
indicate that the difference between the real disparity (found in
[1]) and the disparity computed is larger than1.

(c) disparity map (a) error image

(b) right image(a) left image

Fig. 3. Results obtained onsawtooth: (a) left original image,
(b) right image, (c) disparity map obtained after aggregation,
and (d) error image. Pixels drawn in black in the error image
indicate that the difference between the real disparity (found in
[1]) and the disparity computed is larger than1.

regions containing two untextured regions separated hori-
zontally. In this particular case, the adaptive process stops
although it should continue when two regions have an
equal disparity. A simple solution to this problem consists
in imposing the ordering constraint.

We have also compared our algorithm to other existing
methods. In the table available on the web site, our method
comes at the16th place out of35 algorithms (these results
were obtained on the 7th of January 2005). But we must
mention that many algorithms in this list use global meth-
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Tsukuba

Algorithme all untex. disc.

[13] 1.51 1 0.65 1 7.22 1

YOUR METHOD 3.15 3 2.81 3 8.93 2

[12] 2.35 2 1.65 2 12.17 3

[11] 3.36 4 3.54 4 12.91 5

[6] 4.25 7 4.47 8 15.05 7

[14] 3.49 5 3.65 5 14.77 6

[10][1b] 6.49 9 11.62 9 12.29 4

[9] 3.95 6 4.08 7 15.49 8

[10][1c] 5.23 8 3.80 6 24.66 9

Sawtooth

Algorithme all untex. disc.

[13] 1.15 1 0.29 3 5.47 2

YOUR METHOD 1.25 2 0.07 1 5.40 1

[12] 1.28 3 0.23 2 7.09 3

[11] 1.61 6 0.45 5 7.87 4

[6] 1.32 4 0.35 4 9.21 5

[14] 2.03 7 2.29 9 13.41 8

[10][1b] 1.45 5 0.72 6 9.29 6

[9] 2.45 9 0.90 8 10.58 7

[10][1c] 2.21 8 0.72 7 13.97 9

Fig. 4. Comparative tables of local method algorithms. The
comparison is shown for two images: Tsukuba and Sawtooth.
For each image, the first column corresponds to all the pixels,
the second to the untextured areas, and the third to borders.The
numerical results represent the percentage of “bad” pixels, i.e.
pixels whose absolute disparity error is larger than 1.

ods and not local methods. To have a fair comparison, we
have considered only local methods. After this restriction
to local methods, the comparison is given in Figure 4.

The comparison is shown for two images: Tsukuba and
Sawtooth. For each image, the first column corresponds
to all the pixels, the second to the untextured areas, and
the third to borders. The numerical results represent the
percentage of “bad” pixels, i.e. pixels whose absolute dis-
parity error is larger than 1. From these tables it can be
seen that our algorithm reaches the second place, but it
improves on the best method for pixels near depth discon-
tinuities.

VII. C ONCLUSIONS

We have presented a new area-based method which uses
four windows. Their sizes are determined by an adaptive
process parametrized by several local statistics taken on
the reference image. After having detailed our method, we
have used a benchmarking tool that shows that it performs

very well compared to other local methods.
For future work, we may impose the ordering constraint

to further improve the quality of computed disparity maps.
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