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ABSTRACT 

The gradient method, often used in design against fatigue, is analyzed from the point of view of its 

link with fracture mechanics. By a logical step, a law is deduced for the variation of the endurance 

limit in terms of the relative stress gradient. The proposed expression is found to be in good 

agreement with older ones and may easily be extended to a large class of materials. 

 

 

INTRODUCTION 

There are two fundamentally distinct approaches of fatigue strength analysis. The first one, which 

may be called the traditional approach, is based on the concept of endurance limit and makes use 

of stress concentration factors and fatigue notch factors [2,3,6,7,8,9,14,15,17,19,21]. The second one 

is based on fracture mechanics and crack propagation [5,10,11,18]. Surprisingly, even when both 

points of view are exposed in a same book, a possible link between them is almost never envisaged, 

in such a way that both approaches seem to be completely orthogonal. 

Concerning the traditional methods, it has to be noted that the so-called gradient method tends to 

become a standard in Germany [19,21] and in France [2]. In this method, the local endurance limit is 

implicitly or explicitly supposed to increase with the relative stress gradient. This approach 

constitutes a considerable simplification from older methods using separate scale and notch effects 

which are difficult to evaluate precisely, due to the large amount of experiences which are necessary. 

The crucial point of the gradient method is the adoption of a suitable expression of the local 

endurance limit and the gradient, and it is where authors diverge. In fact, most of proposed 

expressions come from heuristic considerations and some experiments or from statistical data. 

A more sound theoretical background seems to be highly desirable. In this way, if it is postulated 

that the endurance limit depends on the relative stress gradient, a necessary physical condition 

should be the compatibility of the resulting theory with the fracture mechanics whose results are 

now generally admitted. This constitutes a first limiting condition, corresponding to very high 

gradients. At the other side, where the gradient tends to zero, it is well known that a full stress 

concentration factor has to be applied. A very simple interpolation between these two extreme cases 

leads to a variation law of the endurance limit which seems very reasonable and which is moreover 
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in good accordance, in the case of steels, with Petersen's law. Based on two measurable 

characteristics of the considered material, our law opens the way to computations on less known 

materials such as Titanium or other ones. 

1. THEORETICAL BACKGROUND OF THE GRADIENT METHOD 

Fatigue tests show that the endurance limit cannot be considered as a material constant, since it 

depends on a lot of factors, the most significant ones being the size, the shape and the surface finish 

of the part. This last effect, whose role is secondary, will be omitted in what follows. 

1.1 Scale effect 

When testing smooth parts, that is to say without stress concentrations, it is found that the 

endurance limit may vary with the size of the part. This is the case for bending and torsion, where a 

higher endurance limit is obtained when the size of the part is decreased. No such effect is obtained 

in axial loading. The first conclusion of these results is that the true intrinsic characteristic of the 

material is its endurance limit in axial loading. It will be noted ƠDo. 

Turning now to the fact that different limits are obtained in bending, it is clear that the fundamental 

difference between bending and axial loading is the existence of a stress gradient. In fact, high 

stresses only occur in a zone whose depth may be measured by the quantity 

 

or equivalently, by the relative stress gradient 

 

Experimental results may then be explained by admitting that the endurance limit is an increasing 

function of the relative stress gradient, that is, 

 

being an increasing function of the relative stress gradient, verifying the condition 
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in order to obtain the correct value in axial loading. A consequence of this assumption is that for very 

great parts submitted to bending, the endurance limit tends to be equal to the axial loading limit, 

 

1.2 Notch effect 

In the case of notched parts, engineering practice is to compute the maximum stress indirectly 

from some easily computable nominal stress through the so-called stress concentration factor 

Kt, 

 

At a first glance, the endurance relation should be 

 

that is 

 

This however is not true and a lot of experiences showed that the true relation is of the form 

 

with a so-called notch effect factor. Generally noted Kf, this factor also varies in an intricate manner 

with the scale, the shape of the part and the material, a fact which may be symbolically written 

 

This renders design computations highly delicate, since in most cases, sufficiently accurate values 

of Kf are not available. 

However, some tendencies are known, 

a) When increasing the size of the part, all other factors being equal, Kf tends to Kt. 

b) For a given size, it is clear that the stress concentration factor increases with a decrease of 

the notch radius. Now, for great radii, Kf is of the same order as Kt, but for very low radii, Kf may be 

much lower than Kt and in practice, sharp notches lead to a non-zero, although low endurance limit. 

c) Higher strength steels exhibit higher values of Kf. 

If it is noted that at the vicinity of the notch, the relative stress gradient is of the form 
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results (a) and (b) may be explained by extending the arguments concerning the scale effect, that is 

by assuming that 

 

with the value (9) of the gradient. Equivalently, 

 

This is the basis of the gradient method, which is largely used in Germany [19,21] and also 

recommended in France by the CETIM [2]. It remains to determine a suitable function  

and this is the point where different approaches diverge. Our purpose is to show that a rational 

endurance law may be obtained as an interpolation between the two limiting cases χ=0 and χ=∞. 

2. PHYSICAL EXIGENCIES ON THE LAW Σ(χ) 

Assuming that the function is an intrinsic characteristic of the material, it may be theoretically 

determined from model problems. In order to discard any secondary scale effect, axial loading 

problems will be considered. 

First of all, a zero stress gradient is obtained in the case of the axial loading of an unnotched part. 

The result is 

 

from which one may write in the general case 

 

the function eventually depending on the material. 

Let us now consider an elliptic hole of half length a and notch radius r (fig. 1). As is well known from 

elasticity theory, the relative stress gradient is then  

 

Figure 1 : elliptic hole 



Published in : Proceedings of the 2000 ASME Design Engineering Technical Conferences 

September 10-13, 2000, Baltimore, Maryland 

Status : Postprint (Author’s version)  

 

 

 

 

When the notch radius tends to zero, the hole becomes a crack, and the problem may be treated by 

using fracture mechanics [5,10,11,13]. As proved by IRWIN, the stress intensity factor K = K∣ is equal 

to 

 

and, using the value (14) of the relative stress gradient, this reduces to 

 

In the case of a fatigue loading, the stress intensity factors varies from a maximal value Km to a 

minimal value Km, and the classical notations are 

 

Considering an alternate load, R= -1, and (σmax)m=-(σmax)M so that, from (16), 

 

Now, it is well known that crack propagation depends on ΔK and R, following a law of the form 

 

and that there exists a threshold under which no crack propagation occurs. This threshold 

clearly defines the endurance limit so that 

 

This leads to the second exigency on the lax  : it has to verify the relation 
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3. AN ELEMENTARY EXPRESSION OF Σ(χ) 

Expressing  in the form (14) and applying condition (20) leads to the condition 

 

The most elementary function that verifies this condition is 

 

with 

 

The result is thus 

 

This simple law relates the endurance limit to two measurable characteristics of the material, 

namely, its axial loading endurance limit and its crack propagation threshold for R = -1. 

4. PRACTICAL VALUES OF ΔKth AND χ 

Figure 2 : crack propagation threshold [12] 
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In order to perform a concrete discussion of formula (23), actual values of and χ are needed. 

Concerning the crack propagation threshold, results from BARSOM and WOLFE, as referred in [12], 

indicate that for a large number of steels, the following relation may be admitted (see fig. 2). 

 

This leads to 

 

Concerning the relative stress gradient, values are given from long in german litterature. Figure 3 is 

extracted from [19]. It has 

to be noted that it is current practice to replace  by the 

simpler value , leading to a maximum error of 8 % on the square root of the gradient, on the safe 

side. 

Figure 3 : current values of the gradient [19] 
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5. A COMPARISON WITH OTHER PROPOSED FORMULAE 

Analogous formulae to (23) have been previously proposed, but on different theoretical bases. 

a) Siebel's formula, which is widely referred in the german literature [19,21], is equivalent to 

 

that is, the same expression as (23), with 

 

and a value of p* depending on the ultimate stress Rm of the steel. Admitting the approximate 

relation,   

Siebel's formula leads to the results of table 1 

 

Table 1 : Siebel's formula  
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Rm/Mpa 300 400 500 600 700 

A/MPa √mm 31.37 38.61 43.86 48.29 50.81 

Rm/Mpa 800 900 1000 1100  

A/MPa √mm 50.90 49.59 45 38.34  

 

The mean value of A is, following Siebel, equal to 44.09, that is 38 % lower than ours. It has to be 

noted that Siebel also gave values for other materials than steel. 

b) Petersen's formula [19,21] may be written as 

 

with 

 

Assuming  , this leads to 

 

a value which differs from ours by 10 % only. 

c) Heywood [17], who was probably the first to clearly assert the fundamental character of the 

endurance limit in axial loading, which does not depend on the scale, proposed for this type of 

loading the formula 

 

where r is the notch radius. This is equivalent to 

 

From tests on geometrically identical parts made from different steels, he found that endurance 

limits were correctly represented by the straight line 

 

and concluded that 
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where a fixed ratio between σDo and Rm is assumed. This is in perfect accordance with Petersen. Later, 

he modified his formula as 

 

in order to obtain Kf = 1 when Kt = 1. But as he had not made the link between and the relative 

stress gradient, he was not able to take the scale effect in account. 

d) A gradient theory was also proposed by Brand and Sutterlin [2], with the following law 

 

with 

 

and valid, following these authors, for . This formula does not allow a limiting process 

for , that is to say, parts with a zero notch radius are considered to have a vanishing 

endurance limit, a fact that contradicts experience. 

The salient point of the above comparison is the remarkable agreement between Petersen's formula 

and our results, however obtained by a totally different way. Siebel's values of A seem to be too 

conservative. Finally, the Brand- Sutterlin formula is not correct at the limit. 

6. RELATION BETWEEN THE CRACK PROPAGATION THRESHOLD AND 

THE ENDURANCE LIMITS IN BENDING AND AXIAL LOADING 

From formula (23), the conventional endurance limit for bending , which is obtained with smooth 

parts of 10 mm diameter, has to be 

 

So, if and are known, it is possible to deduce the value of the crack propagation threshold by 

 

and, from (22), 
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It is interesting to compute these values from the numerous Smith diagrams contained in the 

german litterature [19]. The results are given in table 2. As can be seen, cemented steels and 

spheroidal graphite cast irons lead to the highest values. Concerning carbon steels and classical 

allied steels, the mean of the obtained values is 

 

in good accordance with Barsom-Rolfe's value (6.045  ). 

 

Table 2 : ΔKth for steels and cast irons 

Type Name σDo 

MPa 

σ*D 

MPa 

A 

MPa√mm 
ΔKth MPa√mm 

ΔKth 

MPa√m 

Carbon St37 175 200 55,90 151,3 4,785 

steels St42 190 220 67,08 181,5 5,740 

 St50 230 260 67,08 181,5 5,740 

 St60 270 300 67,08 181,5 5,740 

 St70 300 340 89,44 242 7,653 

Cemented Ckl5 270 300 67,08 181,5 5,740 

steels 15Cr3 320 350 67,08 181,5 5,740 

 16MnCr5 400 450 111,8 302,5 9,566 

 15CrNi6 500 550 111,8 302,5 9,566 

 20MnCr5 540 600 134,2 363 11,48 

 18CrNi8 580 650 156,5 423,5 13,39 

Allied Ck22 250 280 67,08 181,5 5,740 

steels Ck45 340 370 67,08 181,5 5,740 

 40Mn4 400 440 89,44 242 7,653 

 41Cr4 450 480 67,08 181,5 5,740 

 50CrMo4 500 540 89,44 242 7,653 

 30CrNiMo8 570 600 67,08 181,5 5,740 

Spheroidal GGG38 110 150 89,44 242 7,653 

Graphite GGG42 130 180 111,8 302,5 9,566 

cast GGG50 150 210 134,2 363 11,48 

irons GGG60 180 250 156,5 423,5 13,39 

 GGG70 210 300 201,2 544,5 17,22 
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7. THE CASE OF SHARP NOTCHES 

Being compatible with fracture mechanics, the proposed law renders possible a treatment of sharp 

notches, inasmuch an analytical expression of the stress concentration factor is known. As an 

example, let us consider a stepped shaft submitted to bending (fig. 4). From Peterson's curves [15] 

established between the limits D/R = 3.3 and D/R = 100, the following analytical expression may be 

adjusted, 

 

with B depending on the ration D1∕D. The relative stress gradient is given by 

 

Figure 4 : stepped shaft 

 

So, for a radius R tending to zero, all other dimensions being unchanged, 

 

From this result, 
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a) The right member depends on the material through the constant A, which is related to

. Since this last quantity seems not to depend on the steel, the following conclusion is reached : with 

a sharp notch, a stronger steel is not better. 

b) Sharp notches also lead to a very strong scale effect, namely of the form . 

8. CONCLUSIONS 

It appears that a design against fatigue by the gradient method is perfectly compatible with the 

results of fracture mechanics, if a suitable variation law of the endurance limit with the gradient is 

adopted. The proposed approach leads to a simple formula depending on two material parameters, 

its endurance limit in axial loading and its crack propagation threshold. From available data, this 

threshold seems to be very constant from one steel to another, a fact which is confirmed by classical 

data on endurance limits in bending and axial loading. A remarkable fact is the good agreement 

between the proposed formula and Petersen's one. 

An essential feature of the proposed approach is that it can be easily extended to a wide class of 

metals without necessitating too large an experimentation, since only two material constants are 

necessary. 
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