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Summary

Owing to the fact that a correct evaluation of form errors is particularly difficult by the classical
ways, it seems more efficient to develop numerical algorithms from 3D measures. Several
methods are described, including direct and iterative ones. A new method is proposed, which is
based on Lp-norms and a specialized algorithm. It proved to be the most effective and robust one
in every studied application. Another problem which is seldom studied, concerns the sensibility
of form errors to measure errors. A theory is presented which leads to a very simple result.

Résumé

Partant de la considération du fait qu'il est très malaisé de déterminer les erreurs de forme par les
procédures métrologiques classiques, on s'attache à décrire diverses méthodes de calcul de ces
erreurs à partir de mesures tridimensionnelles. Diverses méthodes sont proposées, dont des
méthodes directes et des méthodes itératives. On présente en particulier une méthode nouvelle,
fondée sur les normes d'ordre p, qui, dans toutes les applications étudiées, s'est révélée très rapide
et très stable. On aborde ensuite le problème rarement étudié de la sensibilité des erreurs de
forme aux imprécisions de mesure, pour lequel un résultat particulièrement simple est obtenu.
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1. Introduction

La détermination des défauts de forme revêt une très grande importance dans le domaine
industriel, car elle conditionne dans bien des cas la fonctionnalité des assemblages ou des
mécanismes. Malheureusement, la mesure directe des défauts de forme est très difficile, voire
impossible.

Que l'on songe par exemple aux mesures de planéité. Classiquement, l'opérateur dégauchit la
pièce, de manière à la rendre à peu près parallèle au marbre qui lui sert de référence. Ensuite, il
mesure en fait le parallélisme de la surface ainsi dégauchie par rapport au marbre. Un autre
opérateur aurait dégauchi la pièce autrement, et aurait donc obtenu une autre erreur de planéité.

En circularité, à partir d'une mesure des rayons pour divers azimuts, il faut trouver deux cercles
concentriques qui encadrent au mieux le profil obtenu, ce qui est tout aussi délicat. Plus délicate
encore est la recherche de l'erreur de cylindricité pour laquelle il faut encore trouver la bonne
orientation de l'axe. Des recherches effectuées en Allemagne de l'Est ont mené à la norme TGL
39097 qui ne donne que des procédures simplifiées ne conduisant pas toutes au même résultat
[1].

Les méthodes directes de mesure ne permettent pas de déterminer un défaut de forme de manière
objective ce qui ouvre la porte à toute espèce de contestation entre fournisseur et acheteur. Il
semble donc indispensable de traiter le problème par voie numérique, ce qui permet de
s'affranchir de tout dégauchissage.

La méthode consiste alors à enregistrer les mesures en coordonnées puis à calculer l'erreur de
forme au moyen d'algorithmes adaptés. Ceux-ci doivent être capables de déterminer la vraie
valeur de l’erreur de forme, c'est-à-dire la valeur minimum de l'encadrement des points de
mesure. On satisfait alors à l'exigence d'objectivité, en ce sens que pour des points de mesure
donnés, la solution est univoquement déterminée, au moins en ce qui concerne la valeur du
défaut.

Le présent papier se propose de passer en revue quelques méthodes de calcul de la valeur du
défaut et présente un algorithme nouveau fondé sur les normes . Il aborde en outre la questionp
de la sensibilité des erreurs de forme aux incertitudes des données mesurées. Sur ce point, un
résultat très simple est obtenu.

2. Formalisation du problème des tolérances de forme

2.1. Fonction d’encadrement

Dans un souci de synthèse et de généralité, nous croyons utile de formaliser les problèmes de
tolérances de forme. Les mesures tridimensionnelles fournissent un ensemble compact  fini deK
points de mesure. Les tolérances de forme s'expriment toujours par un encadrement : deux droites
extrêmes dans le cas de la rectitude, deux plans extrêmes dans le cas de la planéité, deux cercles
concentriques extrêmes en circularité et deux cylindres coaxiaux en cylindricité.
Mathématiquement, on peut parler d'une fonction d’encadrement continue  dépendant desf (x , )
coordonnées  et d'un jeu de paramètres . Sa valeur  est appelée hauteur dux f (xi , ) ' fi ( )
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Figure 1 : Fonction d’encadrement et valeur
d’encadrement en rectitude
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Figure 2 : Choix des angles  et n

f (x , y , z , , n ) ' x @ n (2)

f (x , y , a , b ) ' (x & a )2
% (y & b )2 (3)

point .xi

En rectitude, la fonction d’encadrement vaut

où . La hauteur du point  se mesure perpendiculairement à la droite den ' (cos n , sin n ) i
normale  passant par l'origine des axes (figure 1).n

En planéité, en supposant la surface mesurée approximativement horizontale, la fonction
d'encadrement vaut

où . Les angles  sont choisis de manière à placer len ' (cos , sin cos n , sin sin n ) ( , n )
pôle sur l'axe des  afin d'éviter d'éventuels problèmes numériques. La hauteur du point  sex i
mesure perpendiculairement au plan de normale  passant par l'origine des axes (figure 2).n

En circularité, soient  et  les coordonnées d'un centre. La fonction d'encadrement vauta b

et la hauteur du point  est la distance de ce point au centre (figure 3).i



inf f(x,y,a,b)

sup f(x,y,a,b)

enc ( ,a,b)

(a,b)

Figure 3 : Fonction d’encadrement et valeur d’encadrement
en circularité

n ' (cos , sin cos n , sin sin n ) (4)

e1 ' (sin , &cos cos n , &cos sin n )
e2 ' (0 , sin n , &cos n )

(5)

f (x , y , z , , n , a , b ) ' (xp & a )2
% (yp & b )2 (6)

enc (K , ) ' sup
x � K

f (x , ) & inf
x � K

f (x , ) (7)

Pour la cylindricité, on se ramène au cas de la circularité en commençant par définir un axe de
direction

puis en projetant les points mesurés  sur les deux axes perpendiculaires(x , y , z )

La fonction d'encadrement vaut alors

où  sont les coordonnées d'un centre et  les coordonnées du point projeté dans le(a , b ) (xp , yp )

plan . La hauteur du point  mesure la distance de ce point à l'axe .(e1 , e2 ) i n

2.2. Valeur d'encadrement et défaut du compact K

Nous appelons valeur d’encadrement du compact , pour une valeur des paramètres , leK
nombre

En planéité, par exemple, elle mesure le parallélisme de la surface mesurée par rapport à un plan
perpendiculaire à la normale . Cela étant, le défaut du compact  est donné par la plus petiten K
valeur d'encadrement, lorsque l'on varie les paramètres  :



def (K ) ' inf enc (K , ) (8)

e (x , , ) ' f (x , ) & (9)

emax (K , , ) ' sup
x � K

*e (x , , )* (10)

enc (K , ) ' 2 inf emax (K , , ) (11)

'
1

2
( sup

x � K
f (x , ) % inf

x � K
f (x , ) ) (12)

Nous ne nous étendons pas ici sur la démonstration du fait que cette borne inférieure est atteinte,
c'est-à-dire qu'il s'agit d'un minimum réalisé. Disons simplement que cette propriété se démontre
à partir des propriétés des ensembles compacts. 

2.3. Unicité

Une autre question, un peu plus embarrassante, concerne l'unicité du minimum : ne peut-il exister
plusieurs jeux de paramètres conduisant au même minimum du défaut? On peut montrer qu'en
circularité, la solution est unique. En rectitude et en planéité, par contre, cette unicité n'est pas
assurée, et il est assez aisé de trouver des exemples de non-unicité (figure 4). Mais chacun de
ceux-ci suppose certaines symétries rarement rencontrées en pratique, si bien que ce problème,
sérieux en théorie, ne semble pas avoir de réelles incidences. L'analyse approfondie du cas de la
cylindricité n'a jamais été faite à notre connaissance, mais nous sommes enclins à penser que là
non plus, l'unicité n'est pas garantie.

2.4. Formulation en termes d'écarts

Le problème de la recherche des défauts admet une seconde formulation équivalente.
Introduisons un paramètre supplémentaire  et définissons l'écart par

Appelons encore écart maximum sur  la grandeurK

Il est assez facile de montrer la relation

le minimum étant atteint pour 

Cette propriété permet de donner une nouvelle définition du défaut :



def (K ) ' 2 inf
,

emax (K , , ) (13)

f (x , ) ' (14)

x cosn % y sinn ' c (15)

x cos % y sin cosn % z sin sinn ' d (16)

(x & a )2
% (y & b )2

' (17)

(xp & a )2
% (yp & b )2

' (18)

def ' 2 sup
x � K

*e (x , 2 , 2 )* (19)

Sous cette forme, la recherche du défaut apparaît comme la recherche de la surface d'équation

dont l'écart maximum à un point de mesure est minimal. C'est un problème de meilleure
approximation uniforme, s'apparentant à l'approximation des fonctions au sens de Chébyschev
[2,3,4,5].

Ainsi, pour la rectitude, la surface de meilleure approximation est une droite d'équation

En planéité, elle correspond au plan d'équation

En circularité, c'est un cercle de rayon  et d'équation

et en cylindricité, un cylindre d'axe  , de rayon  et d'équationn

3. Calcul approché des défauts à partir des moindres carrés

L’approximation uniforme étant difficile à traiter, nombreux sont ceux qui se contentent de
l'approximation qui consiste à minimiser la racine carrée de la somme des écarts

où , ce qui permet de déterminer une valeur  du jeu de paramètres, àei ' e (xi , , ) ( 2 , 2 )

partir de laquelle on peut obtenir une approximation du défaut, à savoir



def ' 2 sup
x � K

*e (x , 2 , 2 )* (20)
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Figure 5 : Encadrement en fonction de l’orientation n en
rectitude

Cette valeur est évidemment approchée par excès car elle ne correspond pas au minimum défini
en (13). L'expérience montre que cette méthode peut mener à des excès non négligeables et
surtout, que les paramètres  peuvent être grandement en erreur. Ce fait est d'ailleurs confirmé2

par la littérature [4,5]. De plus, sur un grand nombre de pièces réelles aux formes complexes, les
moindres carrés tendent à orienter la surface de référence en fonction des zones contenant le plus
de points de mesure. La méthode des moindres carrés n’est donc pas satisfaisante.

4. Méthodes directes de calcul des défauts de forme

Nous appelons méthodes directes des méthodes permettant de calculer le valeur optimum du
défaut en un nombre fini d'opérations. Elles sont fondées sur une analyse géométrique de
l'encadrement ou sur une paraphrase des raisonnements de la théorie classique des
approximations à la Chébyschev. 

4.1. Méthode directe d'évaluation de la rectitude

La rectitude d’un profil  étant définie à partir de son encadrement par deux droites, il estK
évident que celles-ci encadrent également l’enveloppe convexe de . La première étape consisteK
donc à construire celle-ci par la méthode dite de l'éventail. Il est assez facile de montrer que tout
encadrement subsistant lors d’une perturbation de la direction des droites est non optimal. Par
conséquent, l'encadrement optimal est nécessairement tel qu'une des deux droites contienne un
côté de l'enveloppe convexe. Il suffit alors de calculer les valeurs d'encadrement s'appuyant sur
les côtés de l'enveloppe convexe puis d'en déterminer la plus petite valeur. Celle-ci est égale au
défaut.

Cet algorithme a le mérite d'être simple à programmer. En outre, il permet d'exhiber des cas de
non-unicité de l'encadrement optimal qui sont généralement dûs à des symétries rarement



ei ' d (Pi , C ) & ' (&1)
� i *ei* (21)

rencontrées en pratique. La figure 4 montre un profil composé de 6 points de mesure pour lequel
il existe deux orientations de l'encadrement donnant le défaut minimum. L'orientation obtenue
par les moindres carrés est la droite oblique notée MC. La figure 5 montre l'évolution de
l'encadrement du profil en fonction de l'orientation  de la droite.n

Cependant, la non-unicité de l'encadrement optimal pose des problèmes de nature philosophique
si le profil en question doit servir de référence pour une mesure de parallélisme.

4.2. Méthode directe d'évaluation de la planéité

Les mêmes raisonnements peuvent être transposés au cas de la planéité. Il faut ici construire
l'enveloppe convexe de l'ensemble des points de la surface mesurée. Cette construction est
beaucoup plus ardue que celle de l'enveloppe convexe d'un profil. En particulier, les points étant
en pratique peu distants d'un vrai plan, il faut veiller au bon conditionnement du calcul, ce qui
en augmente considérablement le coût. La méthode utilisée, généralisant dans l'espace celle de
l'éventail, oscille en complexité entre  et , où  est le nombre de points de mesure.O (n 2 ) O (n 3 ) n
Ici, l'encadrement est constitué soit d'un plan contenant une facette de l'enveloppe convexe et du
plan parallèle passant par un sommet, soit de deux plans parallèles appuyés sur deux arêtes
gauches de l'enveloppe. L'exploration des couples d'arêtes gauches est en principe d'une
complexité , ce qui est prohibitif, mais il est possible d'éliminer a priori toute une sérieO (n 4 )
de couples sans intérêt. Cet algorithme, conceptuellement simple, est cependant assez délicat à
programmer mais il donne des résultats fiables.

On peut également trouver des cas théoriques de non-unicité de l'encadrement optimal mais ce
problème ne se rencontre quasiment jamais sur des cas réels.

4.3. Méthode directe de calcul de la circularité

En paraphrasant les raisonnements classiques en matière d'approximation de Chébyschev [2,3],
on peut obtenir les résultats suivants :

a. L'encadrement optimal est unique;

b. Il existe au moins quatre points extrémaux, tels que si on les ordonne en azimut, le premier
soit sur le grand cercle, le second sur le petit, le troisième sur le grand, et le quatrième sur
le petit: ceci constitue une caractérisation du meilleur encadrement;

c. Si l’on trouve un cercle de centre  et de rayon  tel qu’il existe quatre pointsC ' (a, b )
d’azimuts croissants , ,  et  vérifiantP1 P2 P3 P4

avec , c'est-à-dire situés alternativement à l'extérieur et à l'intérieur du cercle' 0 ou 1
considéré, alors le défaut de circularité vérifie



def $ 2 inf
4

i � 1
*ei* (22)

2 (x3 & x1 ) c % 2 (y3 & y1 ) d ' x 2
3 % y 2

3 & x 2
1 & y 2

1

2 (x4 & x2 ) c % 2 (y4 & y2 ) d ' x 2
4 % y 2

4 & x 2
2 & y 2

2

(23)

(P1 , P2 , P3 , P4 ) ' **P1 & C** & **P2 & C** (24)

def ' inf
P1 ,P2 , P3 , P4 ordonnés

(P1 ,P2 , P3 , P4 )
(25)

emax ( 0% , 0% ) $ emax ( 0 , 0 ) % ** **2
%

2 (26)

Cette dernière propriété peut être mise à profit pour calculer le défaut de circularité : prenons
quatre points de mesure arbitraires ordonnées en , soit . On cherche le point Pi (xi , yi ) (c , d )

qui soit à la fois à égale distance de  et  et à égale distance de  et , ce qui mène auP1 P3 P2 P4

système linéaire

Ce point définit automatiquement le centre  d'un cercle pour lequel les conditions (20) sontC
vérifiées. En notant

on a donc, par les propriétés b et c ci-dessus

ce qui fournit une méthode directe de calcul du défaut. Malheureusement, elle est de complexité O (n 4 )
et s'avère prohibitive en temps de calcul pour un nombre de points de mesure supérieur à 100.

4.4. Cylindricité

Il n'existe pas, à notre connaissance, de méthode directe pour le défaut de cylindricité.

5. Méthode du simplexe de Nelder et Mead

Il semble plus élémentaire de chercher à minimiser directement l'écart maximal par une
procédure numérique. Malheureusement, cette fonction est peu régulière. Le minimum est en
forme d'entonnoir, c'est-à-dire que si  est le point minimal, on a( 0 , 0 )
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b

Figure 6 : Encadrement en fonction des coordonnées
du centre en circularité

**e**p ' (j
i
*ei*

p )
1

p (27)

emax # **e**p # emax n
1

p (28)

et en outre, on trouve de nombreuses vallées où le
gradient n'est pas uniquement défini (figure 6). Il
en résulte que les méthodes classiques, gradient ou
Newton-Raphson ne s'appliquent pas. Il faut donc
utiliser une méthode qui ne fait intervenir que les
valeurs de la fonction elle-même. Ballu et al [5] et
Pauly [7] ont proposé d'utiliser la méthode du
simplexe de Nelder et Mead [6]. Une
expérimentation approfondie nous a montré que
cette méthode conduit à de bons résultats pourvu
que le simplexe de départ soit bien choisi. Dans le
cas contraire, la méthode converge vers une
solution qui n'est pas nécessairement le véritable
optimum, sans qu'il soit possible de se prononcer à ce sujet. Or, le bon choix des conditions
initiales est parfois loin d'être évident. Ce résultat décevant ôte à nos yeux une bonne part de
l'intérêt de la méthode du simplexe.

6. Méthode d'approximation en norme p

6.1. Principe

La recherche du défaut consiste à minimiser l'écart maximal. Malheureusement, c'est une
fonction peu régulière, et sa minimisation est ardue. On est donc tenté de remplacer l'écart
maximal par une fonction approchée plus régulière. La méthode des moindres carrés peut être
interprétée comme relevant de cette logique: on remplace  par . Le problème est iciemax **e**2

que la fonction de remplacement est très différente de la fonction à minimiser. On peut dès lors
songer à utiliser les normes  définies parp

qui ont la propriété fondamentale

où  est le nombre de points de mesure. Il en résulte que pour  tendant vers l'infini, la norme n p p
des écarts tend uniformément vers l'écart maximal sur tout compact de l'ensemble des
paramètres. On peut en outre montrer que pour  tendant vers l'infini,p

- le minimum de la norme  tend vers le minimum de l'écart maximum, c'est-à-dire lep
demi-défaut;

- la valeur des paramètres  au minimum de la norme  tend vers la valeur qui minimise( , ) p



gp ' n
1

p
& 1 (29)

p $
ln (n )

ln(1 % gp )
ï 1

�

p

ln (n ) (30)

p $ 105 ln (103 ) ' 6,908 .105 (31)

l'écart maximal.

L'idée d'exploiter cette propriété avait déjà été émise par Goch [4], mais il se limitait à des
valeurs de  de l'ordre de 50, vraisemblablement pour des raisons de stabilité numérique. Or, ilp
faut monter à des valeurs bien plus grandes pour approcher précisément l'écart maximal. 

6.2. Mise en oeuvre

L'erreur liée au remplacement de l'écart maximal par la norme  de l'écart est, en valeur relative,p
de l'ordre de

ce qui signifie que pour obtenir une précision , il faut que  vérifiegp p

Il n'est pas rare d'avoir 1000 points de mesure. Dans ce cas, pour une précision de , il faut10
� 5

que  vérifiep

Il s'agit donc de puissances très élevées. Le calcul de telles puissances conduit naturellement à
de délicats problèmes de dépassement de capacité (overflow) que l'on ne peut éviter que par des
artifices de mise à échelle dont la description détaillée sort du cadre du présent article, mais qui
sont indispensables au calcul effectif. A l'heure actuelle, nous travaillons couramment avec des
puissances allant de  à .106 109

6.3. Algorithme de minimisation

L'idée de départ consistait à minimiser directement la norme  avec  suffisamment grand, parp p
une méthode de Newton-Raphson. Malheureusement, plus  est grand, moins la norme  estp p
régulière et plus le processif itératif est long et hasardeux. 

En fait, il faut, pour  donné, partir d'une solution initiale d'autant meilleure que  est élevé.p p
Pour y arriver, on peut imaginer de procéder comme suit: on se donne une suite croissante

 et on minimise successivement la norme  en prenant pour point de départp1 ' 2 < p2 < p3 ... pi

le point optimal pour la norme . L'expérience montre que l'on peut abréger fortement cettepi � 1

procédure comme suit :



**e**p $ **e**q (32)

enc ( ) ' sup
i

fi ( ) & inf
i

fi ( ) (33)

a On recherche d’abord le minimum pour  (moindres carrés);p ' 2

b On fait croître  en progression géométrique de raison . Pour chaque valeur de , on sep 2 p
limite à une seule itération de Newton-Raphson, pour autant que l'on ne constate pas d'amorce
de divergence.

c On contrôle la convergence en se fondant sur l'inégalité de Jensen [8] exprimant que pour le
même jeu d'écarts, si ,p < q

D'une itération à l'autre, si le processus se passe bien, les normes  doivent donc diminuer,p
d'une part parce que  augmente, d'autre part parce que la solution est censée s'améliorer. Onp
conserve donc à chaque instant la plus petite norme obtenue à titre de référence. Si à un
moment donné, la nouvelle norme lui est supérieure, on bloque  jusqu'à ce que la normep
obtenue soit redevenue plus petite que la référence.

Cet algorithme a été testé sur un grand nombre de problèmes et comparé à toutes les autres
méthodes décrites ci-dessus. Il s'est avéré le plus rapide (de l'ordre de 40 itérations pour )p ' 106

et le plus fiable.

7. Influence des erreurs de mesure sur la valeur du défaut

7.1. Position du problème

Au-delà du calcul des erreurs de forme, il est nécessaire de s'enquérir de leur sensibilité aux
erreurs de mesure. Partant toujours de l'idée de mesures tridimensionnelles, nous admettrons que
les coordonnées  mesurées en chaque point sont entachées d'imprécisions(xi , yi , zi )

. La question qui se pose est de déterminer une borne supérieure, aussi réaliste que( xi , yi , zi )

possible, de l'influence de ces imprécisions sur la valeur de l'erreur de forme.

7.2. Les hauteurs et leur imprécision

Pour aborder ce problème, le plus simple est de partir des hauteurs  des points mesurés. Ilfi ( )

est clair que la valeur d'encadrement de l'ensemble  des points de mesure s'écrit alorsK

Rappelons que le défaut de forme est la valeur minimale de cette fonction par rapport à . Une
perturbation des coordonnées conduit aux nouvelles hauteurs



f
�

i ( ) ' f (xi% xi , yi% yi , zi% zi , ) (34)

fi ( ) ' f
�

i ( ) & fi ( ) (35)

* fi ( )* # g (36)

sup( f
�

1 , f
�

2 ) ' sup( f1% f1 , f2% f2 ) # sup( f1%g , f2%g ) # sup( f1 , f (37)

sup( f1 , f2 ) # sup( f
�

1 , f
�

2 ) % g (38)

*sup( f
�

1 , f
�

2 ) & sup( f1 , f2 )* # g (39)

*inf ( f
�

1 , f
�

2 ) & inf ( f1 , f2 )* # g (40)

sup( f1 , ... , fn ) ' sup(sup( f1 , ... , fn � 1 ) , fn ) (41)

et nous admettrons que la différence 

vérifie une inégalité du type

uniformément par rapport à . Nous nous réservons de vérifier cette relation pour les 4 erreurs
de forme au § 7.6.

7.3. Majoration de l'imprécision sur les enveloppes supérieures et
inférieures

Supposons un instant qu’il n’y ait que deux points. On a 

En permutant les rôles des  et des , on trouve de même fi f
�

i

si bien que

Un raisonnement analogue montre que

Dans le cas où il y a  points, le même résultat subsiste par récurrence,n

et de même pour les enveloppes inférieures. On a donc
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7.4. Majoration de l'imprécision de la valeur d'encadrement

La valeur d'encadrement perturbée est donnée par

On en déduit directement

La valeur d'encadrement pour un  donné ne peut donc être perturbée que de  au plus.2g

7.5. Majoration de l'imprécision sur le défaut

En appelant  le jeu de paramètres,  le défaut est donné parµ

Sa valeur perturbée est

Or, nous savons que pour tout ,

Le dernier membre étant indépendant de , on a encore
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* def
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& def * # 2g (51)

fi (n ) ' xi cosn % yi sinn (52)

fi (n ) ' xi cosn % yi sinn (53)

* fi (n ) * # x 2
i % y 2

i ' g (54)

fi ( , n ) ' xi cos % yi sin cosn % zi sin sinn (55)

A l'inverse, 

et, par le même raisonnement, on obtient finalement

c'est-à-dire

C'est le résultat fondamental : La perturbation du défaut de forme n'excède pas le double de la
perturbation des hauteurs.

7.6. Application aux erreurs de forme

Voyons à présent ce que signifie ce résultat pour les quatres erreurs de forme étudiées. En
rectitude, les hauteurs valent

On a donc visiblement

et il résulte de l'inégalité du produit scalaire que

En planéité, les hauteurs sont données par

et



fi ( , n ) ' xi cos % yi sin cosn % zi sin sinn (56)

* fi ( , n ) * # x 2
i % y 2

i % z 2
i ' g (57)

fi (a , b ) ' (xi & a )2
% (yi & b )2 (58)

fi (a , b ) '
xi & a

fi (a, b )
xi %

yi & b

fi (a, b )
yi (59)

* fi (a , b ) * # x 2
i % y 2

i ' g (60)

* fi (a , b , , n ) * # x 2
i % y 2

i % z 2
i ' g (61)

A nouveau, l'inégalité du produit scalaire permet d'affirmer que

En circularité, les hauteurs sont les rayons

Cette expression n'est pas linéaire des coordonnées. La partie principale de la variation des
hauteurs est donnée par

et on a encore 

Pour la cylindricité, nous ne détaillerons pas les calculs qui sont un peu longs. Le résultat est
encore qu'au premier ordre,

Dans les quatre cas considérés, l'incertitude sur le défaut n'excède pas le double de l'incertitude
sur les mesures, mesurée par le rayon de la boule d'incertitude. Cette conclusion est stricte en
rectitude et en planéité. Elle est vraie au premier ordre en circularité et en cylindricité.

7.7. Incertitude sur la valeur des paramètres .

Cette question est un peu plus délicate, et nous nous contenterons ici de citer les résultats. Soient 0

l'ensemble des paramètres donnant le défaut non perturbé et  les paramètres du défaut perturbé.
�

0

Pour autant que les perturbations de coordonnées soient faibles, la perturbation des paramètres
vérifie la relation 
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C
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Rectitude Planéité Circularité Cylindricité

MC ò ò ò ò

EC ò ò

4P ò

SI ò ò ò ò

NP ò ò ò ò

Tableau I : Programmes développés pour les 4 erreurs de forme (MC=moindres carrés, EC=enveloppe convexe, 4P=méthode des 4 points, SI=simplexe,
NP=normes d'ordre p

où  est la plus petite valeur du gradient au point de minimum. Ce résultat est cependant assezC
difficile à exploiter, dans la mesure où le gradient minimal est très délicat à calculer (il s'agit en
général du pseudo-gradient d'une vallée).

8. Applications

8.1. Présentation

Nous disposons de mesures effectuées sur 3 pièces mécaniques :

• un barreau cylindrique,
• un bras de suspension,
• un support de paliers d'arbre à cames.

Ces différentes mesures fournissent des données qui permettent de tester les différents
algorithmes (moindres carrés, simplex et normes ) pour les quatres types d'erreurs de forme :p
rectitude, planéité, circularité et cylindricité.

Les algorithmes ont été implantés dans des programmes écrits en Fortran 77. Ces programmes
tournent aussi bien sur PC que sur station de travail. Pour les cas les plus complexes, le temps
de calcul n'excède jamais une vingtaine de secondes sur un PC 486 33 MHz et la seconde sur une
station HP PA8000.

Les méthodes directes ont également été programmées car elles fournissent, sauf pour la
cylindricité, la valeur minimum de l'erreur de forme, ce qui permet de vérifier la justesse des
valeurs obtenues par les autres algorithmes. Le tableau I donne la liste des programmes
développés pour les 4 types d'erreurs de forme.

Tous ces programmes ont été testés non seulement avec des mesures réelles mais également sur
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Figure 7 : Rectitude calculée par MC, EC, SI et NP
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Figure 8 : Rectitudes calculées sur les 72 génératrices
d'un barreau 

un grand nombre de mesures générées aléatoirement ou encore sur des formes analytiques
(conoïde, ellipse, ...).

8.2. Barreau cylindrique

Il s'agit d'un barreau cylindrique tourné en montage mixte. Chacune des 7 pièces a été palpée sur
22 cercles à des coordonnées z différentes, chaque cercle étant palpé sur 72 points.

Avec ces mesures, on peut calculer :

• les rectitudes des génératrices,
• les circularités des cercles,
• la cylindricité du barreau.

8.2.1. Rectitude

Les deux droites en traits fins représentent l'encadrement du profil obtenu par la méthode des
moindres carrés, celles en traits épais celui obtenu par les autres méthodes. Le profil mesuré est
représenté par des cercles reliés par des traits interrompus (figure 7).

En moyenne, le défaut de rectitude calculé par les moindres carrés est de 10 à 15 % supérieur à
la vraie valeur. Sur certains cas, la différence atteint plus de 20 % par rapport au résultat obtenu
avec les autres méthodes (figure 8).

8.2.2. Circularité

En circularité, l'encadrement optimum (cercles en traits épais) des points de mesures s'appuie sur
deux points intérieurs et deux points extérieurs alternés (figure 9).

Ici aussi la méthode des moindres carrés obtient des valeurs nettement en excès. La figure 10
montre la différence entre les circularités calculées par la méthode des moindres carrés et celles
obtenues par les autres méthodes pour les 22 cercles palpés d'un barreau.
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Figure 9 : Circularité calculée par MC, EC, SI et NP

OZ

Différence relative

MC
NP

Figure 10 : Evolution des circularités d'un barreau
calculées par MC et NP et différences relatives

Pièce n° MC NP SI Dif. MC/NP

1 54,5 µm 51,1 µm 54,5 µm 6,6 %

2 51 µm 49,1 µm 49,3 µm 3,8 %

3 49,3 µm 47 µm 47,5 µm 5 %

4 48,3 µm 44,8 µm 47 µm 7,9 %

5 37,4 µm 36,3 µm 42,3 µm 3,1 %

6 35,8 µm 34,6 µm 40,1 µm 3,4 %

7 61,4 µm 58,2 µm 66,7 µm 5,4 %

Tableau II : Cylindricités des 7 barreaux

8.2.3. Cylindricité

Les erreurs de cylindricité calculées par les différentes méthodes sont indiqués au tableau II. La
méthode du simplex n'atteint jamais la valeur obtenue par la méthode des normes p.

Comme il n'existe pas de méthode directe pour la cylindricité, on ne peut donc pas être certain
que la valeur obtenue par la méthode des normes p soit la valeur optimale. Cependant, par
analogie avec les solutions trouvées pour les trois autres défauts, on peut dire que l’encadrement
calculé est optimal si les deux cylindres co-axiaux s'appuient sur au moins 6 points de mesure.
En effet, on peut remarquer que le nombre de points de contacts entre l’encadrement et les points
de mesure est égal au nombre de variables du problème plus un (tableau III). Dans le cas de la
cylindricité, le nombre de variable étant de 5, le nombre de points de contacts doit au moins être
égal à 6, ce qui est le cas pour tous les exemples étudiés.



Variables Nbe de points de contact à l'optimum

Rectitude 2 3 (un côté et un point de l'EC)

Planéité 3 4 (une face et un point ou 2 arêtes gauches de
l'EC)

Circularité 3 4 (4 points alternés sur les cercles intérieur et
extérieur)

Cylindricité 5 6

Tableau III : Relations entre le nombre de variables (en termes d'écarts) et le nombre de points de contacts en rectitude, planéité, circularité et
cylindricité

Figure 11 : Points de mesure du bras de suspension

MC EC-SI-NP Dif. MC/NP

Planéité A 33,8 µm 32,7 µm 3,5 %

Planéité B 38,1 µm 32,8 µm 16,3 %

Parallèlisme A//B 117,6 µm 134,5 µm 14,4 %

Parallèlisme B//A 131,7 µm 132,9 µm 1 %

Tableau IV : Planéités et parallèlismes des plans A et B

8.3. Bras de suspension

Le bras de suspension comporte deux plans fraisés A et B dont on a mesuré les coordonnées
d'une série de points (figure 11). Les tolérances de la pièce sont la planéité de chacun des deux
plans. Le tableau IV donne les valeurs des planéités calculées par les différentes méthodes.



Figure 12 : Points de mesure du support de paliers d'arbre-à-cames

Pièce n° MC EC-SI-NP Dif. MC/NP

1 192 µm 178,4 µm 7,6 %

2 441,5 µm 422,9 µm 4,4 %

3 346,8 µm 312,6 µm 10,9 %

4 331,9 µm 319,7 µm 3,8 %

2 371,4 µm 359,7 µm 3,3 %

Tableau V : Planéités des 5 supports de paliers

8.4. Support de paliers d'arbre-à-cames

La face supérieure de la pièce (figure 12) est fraisée pour 5 conditions de coupe différentes. Les
résultats obtenus dans chacun des cas par les différentes méthode sont donnés au tableau V.



9. Conclusion

L'évaluation des erreurs de formes ne peut être menée que par voie numérique. Ainsi, à partir de
mesures tridimensionnelles, les algorithmes de calcul doivent être capables d'atteindre la valeur
minimale du défaut de forme afin de respecter le sens de la norme.

Parmi les algorithmes développés, la méthode des moindres carrés ne satisfait pas ce critère car
elle ne fournit qu'une valeur approchée par excès.

Les méthodes directes sont intéressantes car elle permettent d'atteindre la valeur minimale à coup
sûr en un nombre fini d'opérations. Cependant, pour la circularité, le temps d'obtention du
minimum deviens prohibitif si le nombre de points de mesure est élevé ce qui rend la méthode
moins intéressante. De plus, il n'existe pas de méthode directe permettant de calculer l'erreur de
cylindricité.

La méthode de minimisation du simplexe s'est avérée peu stable, surtout pour la cylindricité. La
raison de cette instabilité réside dans le choix très délicat du point initial (simplexe de départ),
ce qui la rend peu attrayante en pratique.

Enfin, pour tous les tests de mise au point et toutes les applications décrites dans cet article, la
méthode d'approximation en normes p a fourni la bonne valeur du défaut (comparée au résultat
des méthodes directes). Elle semble donc être la plus adéquate de toutes les méthodes
développées en ce qu'elle est rapide, très stable et applicable aux quatre erreurs de forme
étudiées.

L'étude de l'influence de l'incertitude des données mesurées sur la valeur du défaut montre que
la variation de ce dernier est bornée par une valeur très simple à calculer : le double de
l'incertitude sur les points de mesure.
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