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Summary

Owing to the fact that a correct evaluation of form errors is particularly difficult by the classical
ways, it seems more efficient to develop numerical algorithms from 3D measures. Several
methods are described, including direct and iterative ones. A new method is proposed, which is
based on Lp-norms and a specialized algorithm. It proved to be the most effective and robust one
in every studied application. Another problem which is seldom studied, concerns the sensibility
of form errors to measure errors. A theory is presented which leads to a very simple result.

Résumé

Partant de la considération du fait qu'il est trés malaisé de déterminer les erreurs de forme par les
procédures métrologiques classiques, on s'attache a décrire diverses méthodes de calcul de ces
erreurs a partir de mesures tridimensionnelles. Diverses méthodes sont proposées, dont des
méthodes directes et des méthodes itératives. On présente en particulier une méthode nouvelle,
fondée sur les normes d'ordre p, qui, dans toutes les applications étudiées, s'est révélée trés rapide
et trés stable. On aborde ensuite le probleme rarement étudié de la sensibilité des erreurs de
forme aux imprécisions de mesure, pour lequel un résultat particulierement simple est obtenu.
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1. Introduction

La détermination des défauts de forme revét une tres grande importance dans le domaine
industriel, car elle conditionne dans bien des cas la fonctionnalité des assemblages ou des
mécanismes. Malheureusement, la mesure directe des défauts de forme est tres difficile, voire
impossible.

Que l'on songe par exemple aux mesures de planéité. Classiquement, I'opérateur dégauchit la
piéce, de maniere a la rendre a peu pres paralléle au marbre qui lui sert de référence. Ensuite, il
mesure en fait le parallélisme de la surface ainsi dégauchie par rapport au marbre. Un autre
opérateur aurait dégauchi la piece autrement, et aurait donc obtenu une autre erreur de planéite.

En circularité, a partir d'une mesure des rayons pour divers azimuts, il faut trouver deux cercles
concentriques qui encadrent au mieux le profil obtenu, ce qui est tout aussi délicat. Plus délicate
encore est la recherche de I'erreur de cylindricité pour laquelle il faut encore trouver la bonne
orientation de I'axe. Des recherches effectuées en Allemagne de I'Est ont mené a la norme TGL
39097 qui ne donne que des procedures simplifiees ne conduisant pas toutes au méme résultat

[1].

Les méthodes directes de mesure ne permettent pas de déterminer un défaut de forme de maniere
objective ce qui ouvre la porte a toute espéce de contestation entre fournisseur et acheteur. Il
semble donc indispensable de traiter le probleme par voie numérique, ce qui permet de
s'affranchir de tout dégauchissage.

La méthode consiste alors a enregistrer les mesures en coordonnees puis a calculer I'erreur de
forme au moyen d'algorithmes adaptés. Ceux-ci doivent étre capables de déterminer la vraie
valeur de I'erreur de forme, c'est-a-dire la valeur minimum de I'encadrement des points de
mesure. On satisfait alors a I'exigence d'objectivité, en ce sens que pour des points de mesure
donnés, la solution est univoquement déterminee, au moins en ce qui concerne la valeur du
défaut.

Le présent papier se propose de passer en revue quelques méthodes de calcul de la valeur du
défaut et présente un algorithme nouveau fonde sur les normes p. Il aborde en outre la question
de la sensibilité des erreurs de forme aux incertitudes des données mesurées. Sur ce point, un
résultat trés simple est obtenu.

2. Formalisation du probleme des tolérances de forme

2.1. Fonction d’encadrement

Dans un souci de synthése et de généralité, nous croyons utile de formaliser les problémes de
tolérances de forme. Les mesures tridimensionnelles fournissent un ensemble compact K fini de
points de mesure. Les tolérances de forme s'expriment toujours par un encadrement : deux droites
extrémes dans le cas de la rectitude, deux plans extrémes dans le cas de la planéité, deux cercles
concentriques extrémes en circularité et deux cylindres coaxiaux en cylindricité.
Mathématiquement, on peut parler d'une fonction d’encadrement continue (X, ) dépendant des
coordonnées x et d'un jeu de parametres . Sa valeur f(x;, 1) =f (%) est appelée hauteur du



point X. .

En rectitude, |afonction d'encadrement vaut
f(x,y,9)=x-n @)

ol n =(cos¢,sing). La hauteur du point i se mesure perpendiculairement a la droite de
normale n passant par l'origine des axes (figure 1).
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Figure1: Fonction d’encadrement et valeur Figure 2 : Choix desangles 6 et ¢

d’encadrement en rectitude

En planéité, en supposant la surface mesurée approximativement horizontale, la fonction
d'encadrement vaut

f(X,y¥,2,0,0) =x-n @)

ol n =(cos®,sinBcos@,sindsing). Les angles (0, ¢) sont choisis de maniére a placer le
pole sur I'axe des x afin d'éviter d'eventuels problemes numeériques. La hauteur du point i se
mesure perpendiculairement au plan de normale n passant par I'origine des axes (figure 2).

En circularité, soient a et b les coordonnées d'un centre. La fonction d'encadrement vaut

f(x,y,a,b) =y (x-a)?+(y-b) ®

et la hauteur du point i est la distance de ce point au centre (figure 3).
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Figure 3 : Fonction d’encadrement et valeur d’encadrement
en circularité

Pour la cylindricité, on se ramene au cas de la circularité en commencant par définir un axe de
direction

n =(cosf,sin6cose,sinOsing) @

puis en projetant les points mesurés (X, Y, z) sur les deux axes perpendiculaires

{elz(sine,-cosecoscp,—cosesincp) ®)

e, =(0,sng, -cosg)

La fonction d'encadrement vaut alors

f(x,y,2,0,9,a,b) =/ (x, - a)% + (y, - b)? (®)

ou (a, b) sont les coordonnées d'un centre et (xp : yp) les coordonnées du point projeté dans le
plan (e, e,). La hauteur du point i mesure la distance de ce point a I'axe n.

2.2. Valeur d'encadrement et défaut du compact K

Nous appelons valeur d’encadrement du compact K, pour une valeur des paramétres i, le
nombre

enc(K,L) =supf(x,) - inf f(x,2)

xe K xe K

)

En planéité, par exemple, elle mesure le parallélisme de la surface mesurée par rapport a un plan
perpendiculaire a la normale n. Cela étant, le defaut du compact K est donné par la plus petite
valeur d'encadrement, lorsque I'on varie les parameétres A :



def (K) =inf enc (K, ) ®)
A

Nousne nous étendons pas ici sur lademonstration du fait que cette borne inférieure est atteinte,
c'est-a-dire qu'il s'agit d'un minimum réalisé. Disons simplement que cette propriété se démontre
a partir des proprietés des ensembles compacts.

2.3. Unicité

Uneautrequestion, un peu plusembarrassante, concernel’unicité du minimum: nepeut-il exister
plusieurs jeux de paramétres conduisant au méme minimum du défaut? On peut montrer qu'en
circularité, lasolution est unique. En rectitude et en planéité, par contre, cette unicité n'est pas
assurée, et il est assez aisé de trouver des exemples de non-unicité (figure 4). Mais chacun de
Ceux-Ci suppose certaines symétries rarement rencontrées en pratique, si bien que ce probléme,
sérieux en théorie, ne semble pas avoir de réelles incidences. L'analyse approfondie du cas de la
cylindricité n'a jamais été faite a notre connaissance, mais nous sommes enclins a penser que la
non plus, l'unicité n'est pas garantie.

2.4. Formulation en termes d'écarts

Le probléeme de la recherche des défauts admet une seconde formulation équivalente.
Introduisons un parameétre supplémentaire p et définissons I'écart par

e(x,h,p) =f(X,h) -p ©)
Appelons encore écart maximum sur K la grandeur

emax(Ki;\'!p):SUp|e(X!;"ip)‘ (10)

xe K

Il est assez facile de montrer larelation

enc(K, 1) =2infe . (K,L,p) (1)
p
le minimum étant atteint pour
p:%(supf(x,X)an f(x,N) (12)

xeK xeK

Cette propriété permet de donner une nouvelle définition du défaut :



def (K) :zinfemaX(K,x,p) (13)
P

Sous cette forme, la recherche du défaut apparait comme la recherche de la surface d'équation
f(x,2)=p (14)

dont I'écart maximum a un point de mesure est minimal. C'est un probleme de meilleure
approximation uniforme, s'apparentant a I'approximation des fonctions au sens de Chébyschev
[2,3,4,5].

Ainsi, pour la rectitude, la surface de meilleure approximation est une droite d'équation
XCOSQ +ysSing =C (15
En planéité, elle correspond au plan d'équation
X C0sO +ysind cose +zsinfsing =d (16)

En circularité, c'est un cercle de rayon p et d'équation

J(x-ay+(y-b?=p (17)

et en cylindricité, un cylindre d'axe n , de rayon p et d'équation

J(x, -a)2+ (y, - b)? = p (18)

3. Calcul approché des défauts a partir des moindres carres

L’approximation uniforme etant difficile a traiter, nombreux sont ceux qui se contentent de
I'approximation qui consiste & minimiser la racine carrée de la somme des écarts

def :pr ‘E(X,)\'z;pgﬂ

xe K (19)

ou e =e(x,,A,p), cequi permet de déterminer une valeur (,, p,) du jeu de parametres, a
partir de laquelle on peut obtenir une approximation du défaut, a savoir



def :pr ‘e(xak2!p2)|

xeK (20)

Cette valeur est evidemment approchée par exces car elle ne correspond pas au minimum défini
en (13). L'expérience montre que cette méthode peut mener a des exces non négligeables et
surtout, que les parametres A, peuvent étre grandement en erreur. Ce fait est d'ailleurs confirmé

par la littérature [4,5]. De plus, sur un grand nombre de piéces réelles aux formes complexes, les
moindres carrés tendent a orienter la surface de référence en fonction des zones contenant le plus
de points de mesure. La méthode des moindres carrés n'est donc pas satisfaisante.

4. Méthodes directes de calcul des défauts de forme

Nous appelons méthodes directes des méthodes permettant de calculer le valeur optimum du
défaut en un nombre fini d'opérations. Elles sont fondées sur une analyse géométrique de
I'encadrement ou sur une paraphrase des raisonnements de la théorie classique des
approximations a la Chébyschev.

4.1. Méthode directe d'évaluation de la rectitude

La rectitude d'un profil K étant définie a partir de son encadrement par deux droites, il est
évident que celles-ci encadrent également I’envel oppe convexede K. La premiére étape consiste
donc a construire celle-ci par la méthode dite del'éventail. Il est assez facile de montrer que tout
encadrement subsistant lors d’'une perturbation de la direction des droites est non optimal. Par
conséquent, I'encadrement optimal est nécessairement tel qu'une des deux droites contienne un
coté de I'enveloppe convexe. Il suffit alors de calculer les valeurs d'encadrement s'appuyant sur
les cbtés de I'enveloppe convexe puis d'en déterminer la plus petite valeur. Celle-ci est égale au
défaut.
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Figure4 : Existence de deux solutions en Figure5 : Encadrement en fonction de I'orientation ¢ en
rec“tude r&:titude

Cet algorithme a le mérite d'étre simple a programmer. En outre, il permet d'exhiber des cas de
non-unicité de I'encadrement optimal qui sont généralement dis a des symétries rarement



rencontrées en pratique. La figure 4 montre un profil composé de 6 points de mesure pour lequel
il existe deux orientations de I'encadrement donnant le défaut minimum. L'orientation obtenue
par les moindres carres est la droite oblique notée MC. La figure 5 montre I'évolution de
I'encadrement du profil en fonction de l'orientation ¢ de la droite.

Cependant, la non-unicité de I'encadrement optimal pose des problemes de nature philosophique
si le profil en question doit servir de référence pour une mesure de parallélisme.

4.2. Méthode directe d'évaluation de la planéité

Les mémes raisonnements peuvent étre transposés au cas de la planéité. Il faut ici construire
I'enveloppe convexe de I'ensemble des points de la surface mesurée. Cette construction est
beaucoup plus ardue que celle de I'enveloppe convexe d'un profil. En particulier, les points étant
en pratique peu distants d'un vrai plan, il faut veiller au bon conditionnement du calcul, ce qui
en augmente considérablement le colt. La méthode utilisée, généralisant dans I'espace celle de
I'éventail, oscille en complexité entre O (n?) et O (n?), ol n est le nombre de points de mesure.
Ici, I'encadrement est constitué soit d'un plan contenant une facette de I'enveloppe convexe et du
plan paralléle passant par un sommet, soit de deux plans paralléles appuyés sur deux arétes
gauches de I'enveloppe. L'exploration des couples d'arétes gauches est en principe d'une
complexité O (n*), ce qui est prohibitif, mais il est possible d'éliminer a priori toute une série
de couples sans intérét. Cet algorithme, conceptuellement simple, est cependant assez délicat a
programmer mais il donne des résultats fiables.

On peut également trouver des cas théoriques de non-unicité de I'encadrement optimal mais ce
probléme ne se rencontre quasiment jamais sur des cas réels.

4.3. Méthode directe de calcul de la circularité

En paraphrasant les raisonnements classiques en matiere d'approximation de Chébyschev [2,3],
on peut obtenir les résultats suivants :

a. L'encadrement optimal est unique;

b. Il existe au moins quatre points extrémaux, tels que si on les ordonne en azimut, le premier
soit sur le grand cercle, le second sur le petit, le troisieme sur le grand, et le quatrieme sur
le petit: ceci constitue une caractérisation du meilleur encadrement;

c. Si I'on trouve un cercle de centre C = (a,b) et de rayon p tel guil existe quatre points

d'azimuts croissants P,, P,, P, et P, vérifiant

€ :d(PpC)_p:(_l)mi |ei‘ (21)

avec a =0oul, c'est-a-dire situés alternativement a l'extérieur et a l'intérieur du cercle
considéré, alors le défaut de circularité vérifie



4
def > 2inf| e | (22)
i=1

Cette derniére propriété peut étre mise a profit pour calculer le défaut de circularité : prenons
quatre points de mesure arbitraires ordonnées en 0, soit P, (x;, y;). On cherche le point (c, d)

qui soit a la fois a égale distance de P, et P, et a égale distance de P, et P,, ce qui méne au
systeme linéaire

2(% - X)) C+2(ys-y,)d=Xs +ys - X - Y;

2 2 2 2 (23)
2(X4—X2)C+2(y4—y2)d:X4 Ve X 7Y

Ce point définit automatiquement le centre C d'un cercle pour lequel les conditions (20) sont
verifiées. En notant

A(Py,P,, Py, Py =[P -C[| - |[P,-CJ| (24)
on a donc, par les propriétés b et ¢ ci-dessus

def: |nf A(P1;P21P31P4)

P, .P,,P;, P, ordonnés (25)

ce qui fournit une méthode directe de calcul du défaut. Malheureusement, elle est de complexité O (n*)
et s'avere prohibitive en temps de calcul pour un nombre de points de mesure supérieur a 100.

4.4. Cylindricité

Il n'existe pas, a notre connaissance, de méthode directe pour le défaut de cylindricite.

5. Méthode du simplexe de Nelder et Mead

Il semble plus élémentaire de chercher a minimiser directement I'écart maximal par une
procédure numérique. Malheureusement, cette fonction est peu réguliere. Le minimum est en
forme d'entonnoir, c'est-a-dire que si (A, p,) est le point minimal, on a

€ (o + AN, po+ Ap) 2 € (A, py) +ay||AL]|? + Ap? (26)



et en outre, on trouve de nombreuses vallées ou le
gradient n'est pas uniquement défini (figure 6). Il
en résulte que les méthodes classiques, gradient ou
Newton-Raphson ne s'appliquent pas. 1l faut donc
utiliser une méthode qui ne fait intervenir que les
valeurs de la fonction elle-méme. Ballu et al [5] et
Pauly [7] ont proposé d'utiliser la méthode du
simplexe de Nelder et Mead [6]. Une
expérimentation approfondie nous a montré que
cette methode conduit a de bons résultats pourvu  _. . . .

. , oy . . Figure 6 : Encadrement en fonction des coordonnées
gue le simplexe de départ soit bien choisi. Dansle du centre en circularité
cas contraire, la méthode converge vers une
solution qui n'est pas nécessairement le véritable
optimum, sans qu'il soit possible de se prononcer a ce sujet. Or, le bon choix des conditions
initiales est parfois loin d'étre evident. Ce résultat décevant 6te a nos yeux une bonne part de
I'intérét de la méthode du simplexe.

encadrement

6. Méthode d'approximation en norme p

6.1. Principe

La recherche du défaut consiste a minimiser I'écart maximal. Malheureusement, c'est une
fonction peu réguliere, et sa minimisation est ardue. On est donc tenté de remplacer I'écart
maximal par une fonction approchee plus réguliere. La méthode des moindres carrés peut étre
interprétée comme relevant de cette logique: on remplace e __, par ||e[|,. Le probléeme est ici

que la fonction de remplacement est trés différente de la fonction a minimiser. On peut deés lors
songer a utiliser les normes p définies par

1
ICIONCIRE (27)
|

qui ont la propriété fondamentale

1
b (28)

€rex < |1 €] < B N

ou n est le nombre de points de mesure. Il en résulte que pour p tendant vers I'infini, lanorme p
des écarts tend uniformément vers I'écart maximal sur tout compact de I'ensemble des
parameétres. On peut en outre montrer que pour p tendant vers l'infini,

- le minimum de la norme p tend vers le minimum de I'écart maximum, c'est-a-dire le
demi-défaut;

- la valeur des paramétres (i, p) au minimum de la norme p tend vers la valeur qui minimise



I'écart maximal.
L'idée d'exploiter cette propriété avait déja eté émise par Goch [4], mais il se limitait a des

valeurs de p de I'ordre de 50, vraisemblablement pour des raisons de stabilité numeérique. Or, il
faut monter a des valeurs bien plus grandes pour approcher précisément I'écart maximal.

6.2. Mise en oeuvre

L'erreur liée au remplacement de I'écart maximal par lanorme p de I'écart est, en valeur relative,
de l'ordre de

ol

-1 (29)
ce qui signifie que pour obtenir une précision €y il faut que p vérifie

In(n) 1
>——2 ==|n(n
p>|n(1+€p) e (n) (30)

Il n'est pas rare d'avoir 1000 points de mesure. Dans ce cas, pour une précision de 107°, il faut
que p verifie

p> 10°In(10°) = 6,908 .10° (31)

Il s'agit donc de puissances tres élevées. Le calcul de telles puissances conduit naturellement a
de délicats problémes de dépassement de capacité (overflow) que I'on ne peut éviter que par des
artifices de mise a échelle dont la description détaillée sort du cadre du présent article, mais qui
sont indispensables au calcul effectif. A I'neure actuelle, nous travaillons couramment avec des

puissances allant de 108 & 10°.

6.3. Algorithme de minimisation

L'idée de départ consistait a minimiser directement la norme p avec p suffisamment grand, par
une méthode de Newton-Raphson. Malheureusement, plus p est grand, moins la norme p est
réguliére et plus le processif itératif est long et hasardeux.

En fait, il faut, pour p donné, partir d'une solution initiale d'autant meilleure que p est élevé.
Pour y arriver, on peut imaginer de procéder comme suit: on se donne une suite croissante
P, =2<p,<p,.. et on minimise successivement la norme p, en prenant pour point de départ

le point optimal pour la norme p, _,. L'expérience montre que I'on peut abréger fortement cette
procédure comme suit :



a On recherche d'abord le minimum pour p =2 (moindres carres);

b On fait croitre p en progression géométrique de raison /2. Pour chaque valeur de p, on se
limite a une seule itération de Newton-Raphson, pour autant que I'on ne constate pas d'amorce
de divergence.

¢ On contréle la convergence en se fondant sur l'inégalité de Jensen [8] exprimant que pour le
méme jeu d'écarts, si p<q,

[lellp > |lellq (32)

D'une itération a l'autre, si le processus se passe bien, les normes p doivent donc diminuer,
d'une part parce que p augmente, d'autre part parce que la solution est censée s'améliorer. On

conserve donc a chaque instant la plus petite norme obtenue a titre de réference. Si a un
moment donne, la nouvelle norme lui est supérieure, on bloque p jusqu'a ce que la norme

obtenue soit redevenue plus petite que la référence.

Cet algorithme a été testé sur un grand nombre de problémes et comparé a toutes les autres
méthodes décrites ci-dessus. Il s'est avéré le plus rapide (de I'ordre de 40 itérations pour p = 10°)
et le plus fiable.

7. Influence des erreurs de mesure sur la valeur du défaut

7.1. Position du probleme

Au-dela du calcul des erreurs de forme, il est nécessaire de s'enquérir de leur sensibilité aux
erreurs de mesure. Partant toujours de I'idée de mesures tridimensionnelles, nous admettrons que
les coordonnées (x,Y;,z) mesurées en chaque point sont entachées d'imprécisions

(x., 8y, 6z ). La question qui se pose est de déterminer une borne supérieure, aussi réaliste que
possible, de I'influence de ces imprécisions sur la valeur de I'erreur de forme.

7.2. Les hauteurs et leur imprécision
Pour aborder ce probleme, le plus simple est de partir des hauteurs f. () des points mesurés. Il

est clair que la valeur d'encadrement de I'ensemble K des points de mesure s'écrit alors

enc(i) =sup () -inf f,() (33)

Rappelons que le défaut de forme est la valeur minimale de cette fonction par rapport a A. Une
perturbation des coordonnées conduit aux nouvelles hauteurs



fi (L) =f(x +8%,Yy,+8Y.,Z+87, 1) (34)
et nous admettrons que la différence

8f.(0) =f (1) -f.(h) (35
verifie une inégalité du type

16f.(X)] <e (36)

uniformément par rapport a A. Nous nous réservons de verifier cette relation pour les 4 erreurs
de forme au § 7.6.

7.3. Majoration de I'imprécision sur les enveloppes supérieures et
inférieures

Supposons un instant qu'il n'y ait que deux points. On a
sup(f, ,f,) = sup(f, +of, ,f,+8f,) < sup(f, +e,f,+e) < sup(f,, (37)

En permutant les roles des f. et des f,", on trouve de méme

sup(fy,f,) < sup(fy,f,) +¢ (38)
si bien que
|Sup(ff ’fz*) _Sup(fl'fz)| <€ (39

Un raisonnement analogue montre que

linf(f, ,f,) -inf(f,,f,)] <e (40)
Dans le cas ou il y a n points, le méme résultat subsiste par récurrence,

sup(f,, ..., ) =sup(sup(f,,...f ;).f) (41)

et de méme pour les enveloppes inférieures. On a donc



| supf,” - supf; [ <e
| |

‘ (42)
|inff, —inff | <e
i i

7.4. Majoration de I'imprécision de la valeur d'encadrement
La valeur d'encadrement perturbée est donnée par

enc’ (1) =sup f (h) - inf f (%) (43)

| |

On en deduit directement

|enc” (2) —enc(2) | < | supf (&) -supf,(x) | + | inff" (%) -inff,(2 (44)

La valeur d'encadrement pour un A donné ne peut donc étre perturbée que de 2& au plus.

7.5. Majoration de I'imprecision sur le défaut

En appelant [ le jeu de paramétres, le défaut est donné par

def = inf enc(M) (45)
H
Sa valeur perturbée est
def“ =infenc” () (46)
H
Or, nous savons que pour tout A,
enc” (L) > enc(r) - 2e > infenc(p) - 2¢ (47)

1l
Le dernier membre étant indépendant de A, on a encore

infenc”(A) > infenc(p) - 2¢ (48)
8 "



A l'inverse,

enc(rh)>enc”(A) -2e>infenc” () - 2¢ (49)
u

et, par le méme raisonnement, on obtient finalement

infenc()) -2e <infenc” (1) < infenc(L) + 2¢ (50)
A A A

c'est-a-dire
| def * - def | < 2¢ (51)

C'est le résultat fondamental : La perturbation du défaut de forme n‘excede pas le double de la
perturbation des hauteurs.

7.6. Application aux erreursdeforme

Voyons a présent ce que signifie ce résultat pour les quatres erreurs de forme étudiées. En
rectitude, les hauteurs valent

f.(@) =X cose +y. sing (52)
On a donc visiblement

of (@) = Ox, cos@ + dy, sing (53)

et il résulte de l'inegalité du produit scalaire que

| 5f (@) | <4/0%” + 3y =¢ (54)

En planéité, les hauteurs sont donnees par
f.(0,9) =X cosO +y. sinb cose +zsindsing (55)

et



of. (0, @) = 6x cosb +dy, sin cosg + 5z sind sing (56)

A nouveau, I'inégalité du produit scalaire permet d'affirmer que

| 8f, (6, ¢) | S\/Sxi2+8yi2+842 : (57)

En circulariteé, les hauteurs sont les rayons

fi(a,b) =/ (x -a)* + (y; - b)? (58)

Cette expression n'est pas linéaire des coordonnées. La partie principale de la variation des
hauteurs est donnée par

X - a y,
of (a, b) = — X : YA
(a,b) f@b) ' f(ab) ) 59

et on a encore

| 5f (a,b) | < ,/axf + 3y = ¢ (60)

Pour la cylindricité, nous ne détaillerons pas les calculs qui sont un peu longs. Le résultat est
encore qu'au premier ordre,

5,(a,b,0,¢) | < /6% + 3y’ +57° =« (61)

Dans les quatre cas considérés, I'incertitude sur le défaut n'excede pas le double de l'incertitude
sur les mesures, mesuree par le rayon de la boule d'incertitude. Cette conclusion est stricte en
rectitude et en planéite. Elle est vraie au premier ordre en circularité et en cylindricité.

7.7. Incertitude sur la valeur des parametres ..

Cette question est un peu plus délicate, et nous nous contenterons ici de citer les résultats. Soient A,

I'ensemble des paramétres donnant le défaut non perturbé et i, les paramétres du défaut perturbé.

Pour autant que les perturbations de coordonnées soient faibles, la perturbation des paramétres
veérifie la relation
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ou C est la plus petite valeur du gradient au point de minimum. Ce résultat est cependant assez
difficile a exploiter, dans la mesure ou le gradient minimal est trés délicat a calculer (il sagit en
général du pseudo-gradient d'une vallée).

8. Applications

8.1. Présentation
Nous disposons de mesures effectuées sur 3 piéces mécaniques :

 un barreau cylindrique,
* un bras de suspension,
* un support de paliers d'arbre a cames.

Ces différentes mesures fournissent des données qui permettent de tester les différents
algorithmes (moindres carrés, simplex et normes p) pour les quatres types d'erreurs de forme :
rectitude, planéité, circularité et cylindricité.

Les algorithmes ont été implantés dans des programmes écrits en Fortran 77. Ces programmes
tournent aussi bien sur PC que sur station de travail. Pour les cas les plus complexes, le temps
de calcul n'excede jamais une vingtaine de secondes sur un PC 486 33 MHz et la seconde sur une
station HP PA8000.

Les méthodes directes ont également été programmees car elles fournissent, sauf pour la
cylindricité, la valeur minimum de I'erreur de forme, ce qui permet de vérifier la justesse des
valeurs obtenues par les autres algorithmes. Le tableau | donne la liste des programmes
développés pour les 4 types d'erreurs de forme.

Rectitude Planéité Circularite | Cylindricité
MC * * * *
EC * *
4p *
Si * * * *
NP * * * *

Tableau | : Programmes développés pour les 4 erreurs de forme (MC=moindres carrés, EC=enveloppe convexe, 4P=méthode des 4 points, SI=simplexe,
NP=normes d'ordre p

Tous ces programmes ont été testés non seulement avec des mesures réelles mais également sur



un grand nombre de mesures générées aléatoirement ou encore sur des formes analytiques
(conoide, ellipse, ...).

8.2. Barreau cylindrique

Il s'agit d'un barreau cylindrique tourneé en montage mixte. Chacune des 7 piéces a été palpée sur
22 cercles a des coordonnées z différentes, chaque cercle étant palpé sur 72 points.

Avec ces mesures, on peut calculer :

* les rectitudes des génératrices,
* les circularités des cercles,
* lacylindricité du barreau.

8.2.1. Rectitude

Les deux droites en traits fins représentent I'encadrement du profil obtenu par la méthode des
moindres carres, celles en traits épais celui obtenu par les autres méthodes. Le profil mesuré est
représenté par des cercles reliés par des traits interrompus (figure 7).

En moyenne, le défaut de rectitude calculé par les moindres carrés est de 10 a 15 % supérieur a
la vraie valeur. Sur certains cas, la différence atteint plus de 20 % par rapport au résultat obtenu
avec les autres méthodes (figure 8).

10.945 49|
% 10.94
10.935 ° o [s) ° o NP
10.93 ° °
10.925 ¢ ° MC
10.92 o °
oo ’ Différence relative
Q
1091 © 201 1
10005 M 15-
109
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10.895
750 200 20 00 0z £ s 10 20 30 40 0 60 70
No de la génératrice
Figure 7 : Rectitude calculée par MC, EC, Sl et NP Figure 8 : Rectitudes calculées sur les 72 génératrices

d'un barreau

8.2.2. Circularité

Encircularité, I'encadrement optimum (cercles en traits épais) des points de mesures s‘appuie sur
deux points intérieurs et deux points extérieurs alternés (figure 9).

Ici aussi la méthode des moindres carrés obtient des valeurs nettement en excés. La figure 10
montre la différence entre les circularités calculées par la méthode des moindres carres et celles
obtenues par les autres méthodes pour les 22 cercles palpés d'un barreau.
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Figure 9 : Circularite calculée par MC, EC, Sl et NP Figure 10 : Evolution des circularités d'un barreau
calculées par MC et NP et différences relatives

8.2.3. Cylindricité

Leserreurs de cylindricité calculées par les différentes méthodes sont indiqués au tableau Il. La
méthode du simplex n'atteint jamais la valeur obtenue par la méthode des normes p.

Piece n° MC NP Sl Dif. MC/NP

1 54,5 um 51,1 um 54,5 um 6,6 %
2 51 um 49,1 um 49,3 um 3,8 %
3 49,3 um 47 um 47,5 um 5%

4 48,3 um 44,8 um 47 um 7,9 %
5 37,4 um 36,3 um 42,3 um 3,1 %
6 35,8 um 34,6 um 40,1 um 3,4 %
7 61,4 um 58,2 um 66,7 um 54 %

Tableau |1 : Cylindricités des 7 barreaux

Comme il n'existe pas de méthode directe pour la cylindricité, on ne peut donc pas étre certain
que la valeur obtenue par la méthode des normes p soit la valeur optimale. Cependant, par
analogie avec les solutions trouvees pour les trois autres défauts, on peut dire que |I’encadrement
calcule est optimal si les deux cylindres co-axiaux s'appuient sur au moins 6 points de mesure.
En effet, on peut remarquer que le nombre de points de contacts entre I’'encadrement et | es points
de mesure est égal au nombre de variables du probleme plus un (tableau I1). Dans le cas de la
cylindricité, le nombre de variable étant de 5, le nombre de points de contacts doit au moins étre
égal a 6, ce qui est le cas pour tous les exemples étudiés.



Variables Nbe de points de contact a I'optimum
Rectitude 2 3 (un c6té et un point de I'EC)
Planéité 3 4 (une face et un point ou 2 arétes gauches de
I'EC)
Circularité 3 4 (4 points alternés sur les cercles intérieur et
extérieur)
Cylindricité 5 6
Tableau 111 : Relations entre le nombre de variables (en termes d'écarts) et le nombre de points de contacts en rectitude, planéité, circularité et
cylindricité

8.3. Brasde suspension

Figure 11 : Points de mesure du bras de suspension

Le bras de suspension comporte deux plans fraisés A et B dont on a mesuré les coordonnées
d'une série de points (figure 11). Les tolérances de la piéce sont la planéité de chacun des deux
plans. Le tableau IV donne les valeurs des planéités calculées par les différentes méthodes.

MC EC-SI-NP | Dif. MC/NP
Planéité A 33,8 um 32,7 um 3,5 %
Planéité B 38,1 um 32,8 um 16,3 %
Parallelisme A//B 117,6 um | 134,5um 14,4 %
Parallélisme B//A 131,7 um | 132,9 um 1%

Tableau 1V : Planéités et parallélismes des plans A et B



8.4. Support de paliers d'arbre-a-cames

Laface supérieure de la piéce (figure 12) est fraisee pour 5 conditions de coupe différentes. Les
résultats obtenus dans chacun des cas par les différentes méthode sont donnés au tableau V.

Figure 12 : Points de mesure du support de paliers d'arbre-a-cames

Piece n° MC EC-SI-NP | Dif. MC/NP
1 192 um | 178,4 um 7,6 %
2 4415um | 422,9 um 4,4 %
3 346,8 um | 312,6 um 10,9 %
4 33L,9um | 319,7 um 3,8 %
2 37L,4um | 359,7 um 3,3 %

Tableau V : Planéités des 5 supports de paliers



9. Conclusion

L'évaluation des erreurs de formes ne peut &tre menée que par voie numérique. Ainsi, a partir de
mesures tridimensionnelles, les algorithmes de calcul doivent étre capables d'atteindre la valeur
minimale du défaut de forme afin de respecter le sens de la norme.

Parmi les algorithmes développés, la méthode des moindres carrés ne satisfait pas ce critére car
elle ne fournit qu'une valeur approchée par exces.

Les méthodes directes sont intéressantes car elle permettent d'atteindre la valeur minimale a coup
sir en un nombre fini d'opérations. Cependant, pour la circularité, le temps d'obtention du
minimum deviens prohibitif si le nombre de points de mesure est élevé ce qui rend la méthode
moins intéressante. De plus, il n'existe pas de méthode directe permettant de calculer I'erreur de
cylindricite.

La méthode de minimisation du simplexe s'est avérée peu stable, surtout pour la cylindricité. La
raison de cette instabilité réside dans le choix tres délicat du point initial (simplexe de départ),
ce qui la rend peu attrayante en pratique.

Enfin, pour tous les tests de mise au point et toutes les applications décrites dans cet article, la
méthode d'approximation en normes p a fourni la bonne valeur du défaut (comparée au résultat
des methodes directes). Elle semble donc étre la plus adéquate de toutes les méthodes
développées en ce qu'elle est rapide, tres stable et applicable aux quatre erreurs de forme
étudiées.

L'étude de I'influence de I'incertitude des données mesurées sur la valeur du défaut montre que

la variation de ce dernier est bornée par une valeur tres simple a calculer : le double de
I'incertitude sur les points de mesure.
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