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D. Kronus

Prague, Czech Republic

Th. Pironet

QuantOM, HEC Management School,

University of Liège, Belgium
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1 Context

Production scheduling and transportation planning are well-known processes in operations

management. Although these tasks are consecutive in the supply chain, few optimization

models simultaneously tackle the associated issues (see, e.g., Chen [2]). A most common

situation, in practice, is actually that transportation management is disconnected from

production planning: when production items or batches have been completely processed

by the manufacturing plant, they become available for shipping, and they are consequently

handled by the transportation managers. From a global managerial perspective, and with

a view towards coordination of the product flows and customer satisfaction, this is not

an ideal process. It is by far preferable, indeed, to set up an integrated production-

transportation plan taking into account, among other constraints, the capacity of the

plants and the customer due-dates.

Even when such a plan exists, however, many elements can concur to create significant

differences between the provisions of the tactical plan and the actual situation faced by

transportation managers on a day-to-day basis. Production delays are frequent in most

industrial environments, and customer orders may not coincide with the forecasts used to

establish the plans.

As a consequence, operational shipping decisions often rely solely on available (deter-

ministic) data about items in physical inventory. The main objective of this paper is to

examine whether and how transportation decisions can be improved when information

about future releases of items is taken into account. We consider both expected cost and

robustness to be important criteria when evaluating the quality of the transportation de-



cisions. The problem formulation is based on a real-world application arising in the steel

industry (see Cornillier et al. [3,4] for a related model).

2 Formulation

We consider the following multiperiod stochastic optimization formulation of a vehicle

loading problem. A set of items must be delivered by trucks to M customers over a

discrete (rolling) horizon consisting of T decision periods (typically, days). The objective

is to minimize the total expected logistical costs.

Data relative to the first (current) period t = 1 is deterministic. The subsequent

periods contain forecasts about the availability of items to be released from production.

We represent this information by probabilistic distributions of release dates: pit ∈ [0, 1]

(i = 1, . . . , N ; t = 1, . . . , T ) denotes the probability that item i is released at period t and

hence, is available for shipment in periods t, t + 1, . . . We assume that
∑T

t=1 pit ≤ 1 and

pi1 ∈ {0, 1} for all i (information relative to the first period is fully revealed).

Beside its possible release dates, each item i has several deterministic attributes:

- its weight wi and a time window [Ei, Li] ⊆ {1, . . . , T} for delivery;

- the warehouse location di where the item must be picked up;

- the customer location ci where the item must be delivered;

- the travel time (expressed as an integer number of periods) from di to ci.

There is an unlimited number of trucks. The maximum total weight that can be loaded

on any truck is equal to C.

These, and a number of auxiliary parameters, allow us to compute the cost of a truck

picking up a given subset of items at their respective warehouses and transporting them

to their respective destinations. In our applications, all warehouses are located around the

same plant and customers are close to each other, and we are primarily concerned with

long-haul transportation; therefore, the routing aspects are very easy to handle (as each

truck visits a handful of warehouses and customers). The total cost generated by a truck

only depends on:

- the composition of the load;

- the total distance between the warehouses and the customers visited by the truck;

- the transportation cost per ton and per kilometer;

- an inventory cost, or opportunity cost, depending on the number of periods that each

item spends in the warehouse after it has been released from production;

- penalties linked to early or late deliveries of items to customers.

This broad definition allows us to integrate various specific features of the cost function.

The decisions to be made represent the truckloads to be composed and shipped in

period t = 1. As a general rule, grouping items on a same truck is beneficial, and a good



shipping decision is based on the following insights: It may be appropriate to ship an

item early (with respect to its due-date), or conversely, to wait before shipping it (even

though it has been released or its due-date will be missed) if this results in an reduction

of the expected number of trucks required and, more generally, in smaller expected total

logistical costs.

Since the horizon is rolling, we actually want to solve an (infinite) sequence of opti-

mization problems P`, one for each horizon {` + 1, . . . , ` + T}, where ` = 1, 2, . . . The

objective is to minimize the expected cost of the decision policy by time period, or by unit

amount shipped.

3 Algorithms

Consider a set of items to be shipped, say I, and their release dates, say r(I) = {ri | i ∈ I}.
Each pair (I, r(I)) is viewed as a possible scenario (Birge and Louveaux [1]).

Given a scenario (I, r(I)), optimizing the transportation cost for the items in I can be

expressed as a large set covering (or bin packing) problem, say SC(I, r(I)), where each

column corresponds to a feasible truckload. This reduction holds even when the items

in I are released in several distinct periods. Based on these simple observations, several

strategies have been developed for the stochastic version of the problem.

First period optimization: We solve to optimality the loading problem SC(I, r(I))

associated with the items that are available in period 1: I = {i | pi1 = 1}. Then, these

items are removed from further consideration and the process is repeated for period 2,

period 3, and so on (after observing the random variables corresponding to each period).

Expected release dates: We let I = N . For each item i, the release date is assumed

to be fixed and equal to ri =
∑

t∈T tpit (rounded to the nearest period). This defines a

deterministic scenario. We solve the loading problem SC(I, r(I)), implement all shipping

decisions which only involve items available in period 1 and iterate the process.

Most likely release dates: Similar to the previous strategy, but here ri is the modal

value of the distribution pit: ri = argmax{pit | 1 ≤ t ≤ T}.
Earliest release dates: Similar to the previous strategies, but here ri is the earliest

possible release date of item i: ri = min{t ∈ T | pit > 0}.
The next approach is consensus-based (Van Hentenryck and Bent [5]):

Consensus strategy: A sample of scenarios (I, r(I)) is generated, and the corre-

sponding set covering problems SC(I, r(I)) are solved. Then, items that have been “fre-

quently” selected to be shipped in period 1 are retained to constitute a new scenario, and

an optimal loading plan is computed for these items.

Finally, a more complex, look-ahead strategy has also been implemented:

Restricted evaluation strategy: A sample of scenarios is considered as before.



After solving each set covering problem SC(I, r(I)), the quality of the optimal decision

x(I) obtained for period 1 is cross-evaluated on the remaining scenarios. The decision

x(I) that leads to the smallest overall cost is implemented in period 1.

4 Computational results and conclusions

The above policies have been extensively tested on randomly-generated instances which

share the main characteristics of the industrial application. As we are dealing with stochas-

tic optimization problems, particular attention has been paid to the estimation of the

objective function (expected cost over a rolling horizon), to the statistical significance of

the comparisons, and to the robustness of the results.

Our main conclusions are as follows:

1. Certain policies are clearly dominated by others. In particular, the First period op-

timization approach, which is frequently used in practice, shows poor performance.

2. Policies based on Earliest release dates perform surprisingly well and are robust

under a variety of assumptions regarding the probability distributions of release dates.

3. The expected cost incurred by the best policies is closer to the cost of the optimal plan

(computed under conditions of perfect information) than to the cost of the worst policies.

These conclusions establish the benefit to be drawn from the stochastic optimization ap-

proach.
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