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Abstract 

 The item-specific proportion congruent (ISPC) effect in a Stroop task – the 

observation of reduced interference for color words mostly presented in an incongruent 

color – has attracted growing interest since the original study by Jacoby [1]. Two mechanisms 

have been proposed to explain the effect: associative learning of contingencies and item-

specific control through word reading modulation. Both interpretations have received 

empirical support from behavioral data. Therefore, the aim of this study was to investigate the 

responsible mechanisms of the ISPC effect with the classic two-item sets design using fMRI. 

Results showed that the ISPC effect is associated with increased activity in the anterior 

cingulate (ACC), dorsolateral prefrontal (DLPFC), and inferior and superior parietal cortex. 

Importantly, behavioral and fMRI analyses specifically addressing the respective contribution 

of associative learning and item-specific control mechanisms brought support for the 

contingency learning account of the ISPC effect. Results are discussed in reference to task and 

procedure characteristics that may influence the extent to which item-specific control and/or 

contingency learning contribute to the ISPC effect.  

 

Keywords: Stroop task, Item-specific proportion congruent effect, fMRI, Cognitive control, 

Associative learning 
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1. Introduction 

 Cognitive control refers to our ability to flexibly adjust our behavior depending on 

situational demands and changes in the environment. Cognitive control processes are typically 

assumed to be involved in situations where we have to restrain a predominant or 

instantaneous response in order to promote a more appropriate but less obvious and salient 

response. One of the most widely used paradigms in the study of cognitive control is the 

classic Stroop task [2]. In common variants of this task, participants must indicate the color 

that a word is printed in, while ignoring the meaning of the word. In incongruent trials, there 

is a mismatch between the color of the stimulus and the color word, such as the word red 

printed in green ink. Such stimuli require participants to select between competing naming 

and reading responses, unlike congruent stimuli such as the word red printed in red ink. 

Different effects have been associated with the Stroop task. First of all, the 

interference effect consists in slower or less accurate responses for incongruent items than for 

congruent or neutral items. Interestingly, despite the low complexity of task instructions, the 

interference effect is a very robust phenomenon observed in hundreds of studies [3]; it is 

explained by the automaticity and speed of the reading process once it has been fully acquired 

[4, 5]. The facilitation effect, on the other hand, corresponds to faster or more accurate 

responses for words printed in a congruent color than for neutral items. As with the 

interference effect, facilitation occurs when participants rely on the well-practiced word 

reading process rather than on color naming [5, 6]. Together, interference from incongruent 

trials and facilitation from congruent trials represent the Stroop effect. Finally, other effects 

have also been associated with the Stroop task in the literature, namely the proportion 

congruent effect and the item specific proportion congruent (ISPC) effect, which will be 

discussed in the following sections. 
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1.1. The Proportion Congruent Effect 

 The proportion congruent effect reflects the observation of smaller interference and 

facilitation effects in tasks characterized by the presentation of mainly incongruent items [e.g., 

7, 8, 9]. This effect has traditionally been studied at a global or list-wide level by comparing 

performance on congruent and incongruent blocks, namely blocks containing a majority of 

congruent or incongruent items, respectively [10, 11]. The standard interpretation of this 

phenomenon postulates that the inhibition of the word reading process varies depending on 

task context [e.g., 9, 12], with a decreased influence of the word reading process for all the 

items (congruent and incongruent) presented during mostly incongruent blocks compared to 

mostly congruent blocks.  

The Dual Mechanisms of Control model [DMC; 13, 14, 15] explains the modulation 

of word reading according to task context by proposing the existence of two separate 

cognitive control mechanisms. In situations of high interference (when mainly incongruent 

items are presented), subjects would adopt a proactive strategy, which is an anticipatory and 

sustained form of attention, where goal-relevant information is highly activated (i.e., naming 

colors rather than reading words). Conversely, in a situation where interference is less 

frequent, participants would adopt a reactive control strategy, which consists in a late 

correction strategy, where attentional control is recruited only when needed, such as after the 

occurrence of an interfering item in a block where interference is rare.  

1.2. The Item-Specific Proportion Congruent (ISPC) Effect 

In the last decade, the proportion congruent effect has also been observed at a more 

local level, when specific stimuli, rather than blocks of stimuli, are associated with high or 

low conflict (e.g., the stimulus red appearing in red ink 20% vs. 80% of the time). Again, 

smaller interference and facilitation effects for color words that were mainly presented in an 

incongruent color compared to color words usually presented in a congruent way have been 

reported [1, 16].  

In their original study, [1] noted that two dissociable interpretations could account for 

the ISPC effect. First, the modulation interpretation (modulation or item-specific control 

hypothesis) considers that cognitive control might prevent full reading of words just after 

stimulus presentation. Specifically, as proposed by Jacoby and colleagues [1, 17, 18], a word-

reading filter would decrease the activation of irrelevant word dimensions as soon as the item 

is identified with a high probability of being incongruent. As a consequence, word reading 

processes would have a decreased influence on the response to provide. Second, an 

associative mechanism (associative learning or contingency hypothesis) could intervene, 
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whereby participants would rapidly learn the stimulus-response (S-R) associations specific to 

each item (e.g., the word red is often presented in red, whereas the word blue is often 

presented in green). This color-word association would be the main determinant of the 

response [19], independently of any processes (e.g., inhibitory processes) controlling the 

contribution of word reading. 

 Importantly, in Schmidt and Besner’s (2008) view, the interpretation of the ISPC 

effect in terms of cognitive control is due to a general confound in the literature between 

proportion congruency (proportion of congruent items within a condition) and contingency 

(degree of S-R association for a given item). More specifically, this confound comes from 

classically comparing high- versus low-contingency trials within the same proportion 

congruence condition (e.g., high-contingency congruent items with low-contingency 

incongruent items in the high proportion congruent condition) rather than directly comparing 

equivalent contingency trials (e.g., high-contingency congruent trials from the high proportion 

congruent condition with high-contingency incongruent trials from the low proportion 

congruent condition, and similarly for low-contingency trials). In their reanalysis of the data 

from Jacoby et al. (2003), Schmidt and Besner neutralized that confound by reorganizing the 

data and conducting a contingency by item type (or congruency) analysis. According to the 

authors, both the contingency and modulation hypotheses predict a main effect of trial type 

(congruent, incongruent), with longer reaction times for incongruent trials, and a main effect 

of contingency (high, low), with longer reaction times for low contingency trials. However, 

they differ concerning the interaction between these factors. Within the contingency 

hypothesis, it is assumed that the Stroop effect and the contingency effect act independently 

(i.e., the difference between congruent and incongruent trials would not be expected to vary 

by contingency). Within the modulation hypothesis, “incongruent trials should be more 

affected by attention, given that the majority of the Stroop effect is due to interference, with 

little or no facilitation from congruent trials” (Schmidt & Besner, 2008, p. 516). Hence, this 

interaction is predicted, with a smaller Stroop effect for high than low contingency items, if 

attentional control mechanisms are selectively engaged to override word reading in the case of 

high contingency incongruent words. In that regard, the results of that reanalysis showed an 

absence of interaction, indicating that contingency information was enough to explain the 

ISPC effect.  

1.3. Item-specific control mechanisms and proportion congruent effect at the list level 

Importantly, some authors have recently proposed that item-specific control 

mechanisms, rather than variations in control strategy at the list-wide level, may also account 
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for the proportion congruent effect at the global or list level [16, 20, 21]. Indeed, in typical 

list-wide proportion congruency experiments, variations in list-wide proportion congruency 

are confounded with variations in item-specific proportion congruency. For example, in a 

mostly incongruent bloc (80 % of incongruent trials), all the items of the stimulus set (e.g., the 

words Black, Blue, Green, and Red) appear in an incongruent form for 80% of the trials and in 

a congruent form for 20 % of the trials. Hence, a control mechanism acting at the item-

specific level can account alone for the list-wide proportion congruency effect. In that context, 

Bugg et al. (2008) recently unconfounded list-wide and item-specific proportion congruency 

and obtained data supporting the hypothesis that list-wide effects can be accounted for by 

item-specific mechanisms (see also Blais & Bunge, 2010, for similar findings). However, 

other recent studies provided evidence of the involvement of list-level control mechanisms 

when item-specific influences were controlled for [22-24]. Hence, even if item-specific 

control mechanisms may be partly responsible of the list-wide proportion congruency effect, 

it seems too early to dismiss any contribution of list-wide control mechanisms modulating the 

influence of word reading processes. 

1.3. Neuroimaging of Proportion Congruent and ISPC Effects in the Stroop Task 

 Studies that have attempted to determine the brain areas associated with interference 

resolution in the Stroop task have consistently reported the involvement of a large fronto-

parietal network involving the dorsolateral prefrontal cortex (DLPFC), anterior cingulate 

cortex (ACC), inferior frontal gyrus, and parietal cortex [25-27]. Within this network and in 

accordance with the conflict monitoring hypothesis [28, 29], the detection of conflicts in 

information processing occurs in the ACC, which informs and recruits the DLPFC to resolve 

the conflict between incompatible response tendencies by making strategic adjustments in 

cognitive control. Importantly, within Botvinick’s model, the ACC-DLPFC network is 

assumed to be very sensitive to the global amount of conflict within a block or list of stimuli. 

Neural evidence supporting that prediction comes from studies showing higher ACC 

activation for incongruent (in comparison to congruent) items in a mostly congruent list but 

not in a mostly incongruent one, in which case there was no differential activation of that area 

for incongruent and congruent items [30, 31].  

At this time, only one previous study has explored the neural substrates associated 

with the ISPC effect. In a functional magnetic resonance imaging (fMRI) study, [20] recently 

demonstrated that the ACC-DLPFC network was strongly engaged when proportion 

congruency was manipulated at the level of specific items. In their view [see also 21], 

cognitive control, in situations of proportion congruency manipulation, can be implemented in 
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the ACC-DLPFC not only at the global level, but also more locally, at the level of individual 

stimuli. In other words, for Blais and Bunge (2010), the ACC-DLPFC network may thus 

modulate attention to an item based on local attributes of the task (i.e., the level of conflict 

associated with this specific item) rather than global attributes (i.e., the level of conflict 

associated with a list of items).  

1.4. Aim of the Study 

The ongoing debate in the literature concerning the mechanism responsible for the 

ISPC effect has received support from behavioral studies for both the associative learning 

(Schmidt & Besner, 2008) and item-specific control hypotheses [18, 20]. Surprisingly, and as 

mentioned above, only one fMRI study has investigated the neural correlates of the ISPC 

effect (Blais & Bunge, 2010). However, that study only explored whether the ACC-DLPFC 

network might be sensitive to item-specific proportion congruency manipulation by 

contrasting brain activity for incongruent and congruent trials. In fact, these authors did not 

perform the contingency x item type interaction analysis which is, according to Schmidt and 

Besner (2008), the most appropriate to evaluate the underlying mechanism responsible of the 

ISPC effect. Therefore, the objective of the present study was to further investigate the neural 

correlates of the ISPC effect with the classical 2-item sets design. To do this, we used a 

variant of the Stroop task where two color words were mainly presented in a congruent color 

(mostly congruent [MC] set) and two color words in an incongruent color (mostly incongruent 

[MI] set) in order to replicate the well-known ISPC effect (i.e., less interference from 

incongruent and less facilitation from congruent trials in the MI than the MC set).  

Our predictions were as follows. At the behavioral level, we first expected to replicate 

the ISPC effect, namely a modulation of the Stroop effect size as a function of proportion 

congruency (larger interference and facilitation effects in the MC compared to the MI set). In 

addition, we expected to find a significant contingency x item type interaction if the ISPC 

effect was due to item-specific control, but no interaction if pure associative learning 

mechanisms were engaged (see Schmidt & Besner, 2008).  

At the neuroimaging level, we were first interested in determining whether the ISPC 

effect observed at the behavioral level was associated with some modulation of the brain 

activation pattern between the interference effect (incongruent vs. congruent trials) in the 

mostly congruent and the mostly incongruent set. In addition, we performed the contingency x 

item type interaction analysis as suggested by Schmidt and Besner (2008). More specifically, 

if item-specific control underlies the ISPC effect, as argued by Blais and Bunge (2010) in 

their recent study, the presence of specific brain activity in the ACC-DLPFC network 
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(reflecting conflict detection and control implementation, respectively) should be observed for 

the interference effect in low contingency trials (compared to high contingency trials). On the 

contrary, if associative learning mechanisms underlie the ISPC effect with the classic 2-item 

sets design, low contingency incongruent trials (compared to low contingency congruent 

trials) should not elicit specific activations of this ACC-DLPFC network in comparison to 

high contingency incongruent trials (compared to high contingency congruent trials).     

2. Material and Methods 

2.1. Participants 

Twenty-eight participants from the university community were recruited to take part in 

this study. All were right-handed French native speakers and had normal or corrected to 

normal vision (with no color vision or color discrimination deficiencies), and no diagnosed 

psychological or neurological disorders. The Ethics Committee of the Faculty of Medicine of 

the University of Liège approved this study. Moreover, and in line with the Declaration of 

Helsinki, each participant gave his/her written informed consent prior to inclusion in the study 

and was screened for any physical or medical condition that could rule out fMRI 

experimentation. In our sample, three participants were excluded from further analysis 

because of technical problems during scanning or incomplete data acquisition. The 25 

remaining participants included 12 men and 13 women. The mean age was 21.8 ± 2.68 years 

(range: 18 to 29 years). 

2.2. Stimuli 

Four color words (presented in French) were used in this experiment (orange, yellow, 

gray, and mauve). Each of them was presented in a congruent form (compatibility between 

ink color and word meaning) and an incongruent form (incompatibility between ink color and 

word meaning). Neutral items consisted in a nonverbal stimulus, namely a string of five 

percent signs (%%%%%) presented in one of the four color possibilities. All the color words 

and neutral items were presented on a white screen. Color words were divided into two sets: 

one mostly incongruent (MI) and one mostly congruent (MC) set. In the MI set, the two color 

words (i.e., gray and yellow) were presented in an incongruent form 80% of the time (e.g., the 

word gray written in yellow) and in a congruent form 20% of the time (e.g., the word gray 

written in gray). These proportions were reversed for the MC set, where the two color words 

(orange and mauve) were presented 80% of the time in a congruent form and 20% of the time 

in an incongruent form. The assignment of colors to MC or MI set was not counterbalanced 

across participants. The experiment was divided into 30 blocks of 12 items each, for a total of 

360 items. In order to avoid any proportion congruent effect at the list-wide level, each block 
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contained five congruent, five incongruent, and two neutral items, making it impossible for 

participants to make inferences about the congruency of the following item. Concerning the 

item-specific proportion congruency manipulation, four of the five incongruent items of each 

block were color words from the MI set and one from the MC set; conversely for the five 

congruent items, four were from the MC set and one from the MI set. The stimulus 

presentation order was pseudo-randomized across participants, with the use of three different 

presentation order lists.  

2.3. Procedure 

Participants were told that they would have to select the color in which each item was 

printed, and were informed that items would be presented briefly. The instruction was to 

respond as fast and accurately as possible. Participants saw color words on the screen through 

a mirror located on the scanner’s head coil. For each trial, a word was presented in the center 

of the screen, with four response possibilities at the bottom of the screen corresponding to the 

first letter (written in brown, a color never used for the items) of the four color ink 

possibilities. Participants had thus to press one of the four response keys on a keyboard, 

always in the same order (mauve, yellow, grey, orange, respectively). They used the index 

and the middle fingers of their left and right hands for responding. Each item was presented 

for a maximum of 2000 ms or until the participant responded. If the response was given 

before this deadline, a white screen appeared for the remainder of the 2000 ms. If there was 

no response, the screen flashed white after 2000 ms and an interstimulus interval of 500 ms 

was presented prior to the next item. Breaks were provided during the experiment; they 

consisted in a fixation cross on the center of the screen for 5000 ms every two or three blocks. 

Participants performed a practice phase outside the scanner prior to the test phase, to 

ensure that they had properly understood the task instructions. Once in the fMRI scanner, four 

more examples were presented and then the test phase began.  

2.4. Behavioral data analysis 

At the behavioral level, all analyses were performed with a statistical level of p < .05. 

Statistical analyses consisted of repeated measures analyses of variance (ANOVAs) on the 

mean of reaction times associated with correct responses. The first ANOVA was a 2 

(Proportion congruency: MC vs. MI colors) x 2 (Item type: incongruent vs. congruent), and 

the second ANOVA was a 2 (Contingency: low vs. high) x 2 (Item type: incongruent vs. 

congruent). The measure of effect size was reported as partial eta squared ( 2
p ). Moreover, 

post hoc comparisons were performed for all ANOVAs, using pairwise Tukey’s tests (p < 
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.05). Concerning accuracy data analyses, we only compared the number of errors for 

incongruent items in the MI and MC sets, given the floor effect concerning the error rate for 

congruent items in both sets (error rates inferior to 2%). 

2.5. MRI acquisition 

Functional MRI time series were acquired on a 3T head-only scanner (Magnetom 

Allegra, Siemens Medical Solutions, Erlangen, Germany) operated with the standard transmit-

receive quadrature head coil. Multislice T2*-weighted functional images were acquired with a 

gradient-echo echo-planar imaging sequence using axial slice orientation and covering the 

whole brain (32 slices, FoV = 220 x 220 mm², voxel size 3.4 x 3.4 x 3 mm³, 30% interslice 

gap, matrix size 64 x 64 x 32, TR = 2130 ms, TE = 40 ms, FA = 90°). For anatomical 

reference, a high-resolution T1-weighted image (3D MDEFT) was acquired for each subject 

[32; TR = 7.92 ms, TE = 2.4 ms, TI = 910 ms, FA = 15°, FoV = 256 x 224 x 176 mm³, 1 mm 

isotropic spatial resolution]. The first three volumes were discarded to avoid T1 saturation 

effects. Head movement was minimized by restraining the subject’s head using a vacuum 

cushion. Stimuli were displayed on a screen positioned at the rear of the scanner, which the 

participant could comfortably see through a mirror mounted on the standard head coil. 

2.6. Functional data analyses 

Data were preprocessed and analyzed using SPM8 (Wellcome Department of Imaging 

Neuroscience, http://www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB 7.5.0 (Mathworks 

Inc., Sherborn, MA). Images of each individual participant were first realigned (motion 

corrected). After this realignment, we spatially coregistered the mean EPI image to the 

anatomical MRI image and coregistration parameters were applied to the realigned BOLD 

time series. Individual anatomical MRIs were spatially normalized into MNI space (Montreal 

Neurological Institute, http://www.bic.mni.mcgill.ca) and the normalization parameters were 

subsequently applied to the individually coregistered BOLD times series, which was then 

smoothed using an isotropic 8-mm full-width at half-maximum (FWHM) Gaussian kernel.  

For each participant, BOLD responses were modeled at each voxel, using a general 

linear model with events as regressors. Events were modeled according to the set of item (MC 

or MI set) and the type of item (Incongruent, congruent, or neutral). These 6 regressors were 

modeled as event-related responses. Event durations corresponded to the presentation of the 

item until the subject’s response, with a maximum duration of 2 s. Each event was convolved 

with a canonical hemodynamic response function. Incorrect trials and no responses were also 

modeled as separate regressors. The design matrix also included the realignment parameters 

to account for any residual movement-related effect. A high pass filter was implemented 
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using a cut off period of 256 s in order to remove the low frequency drifts from the time 

series. Linear contrasts estimated the simple main effect of each trial type. The resulting set of 

voxel values constituted a map of t statistics SPM[T]. The corresponding contrast images 

were smoothed (6-mm FWHM Gaussian Kernel) and entered into a second-level analysis, 

corresponding to random-effect model. All analyses were conducted using a correction for 

multiple comparisons at the voxel level with a conservative family-wise error (FWE) 

threshold p < .05. A 2 (Set: MC vs. MI) x 2 (Item type: incongruent vs. congruent) whole-

brain voxel-wise repeated measures ANOVA was performed, which allowed us to examine 

the brain regions related to the comparisons of interest (i.e., general interference effect in both 

sets, comparison of incongruent related activity between sets, incongruent vs. congruent trials 

within each set). Finally, the proportion congruency x item type and the contingency x item 

type interactions analyses were conducted in order to investigate specific brain activations 

related (1) to the interference effect in the MC set (compared to the MI set) and (2) to the 

interference effect for low contingency trials (compared to high contingency trials), 

respectively. All activations with a p FWE < .05 were reported. 

3. Results 

3.1. Behavioral data 

3.1.1. ISPC Effect 

A 2 (Proportion congruency: MI vs. MC) x 2 (Item type: incongruent vs. congruent) 

repeated measures ANOVA was conducted on the mean of response times for correct 

responses (see Figure 1a). This analysis showed no main effect of set (F(1,24) = 0.61; p = .44;  

2
p  = .02), indicating that reaction times were globally similar for the two sets, but a main 

effect of item type (F(1,24) = 216.04; p < .0001;  2
p  = .90), showing globally longer reaction 

times for incongruent items than for congruent items. Moreover, the set x item type 

interaction was statistically significant (F (1,24) = 55.24; p < .0001;  2
p  = .70).  

 

INSERT FIGURE 1 HERE 

 

Tukey post hoc comparisons showed interference (incongruent vs. congruent) for both 

the MI and MC (both ps < .001) sets of colors (see figure 1a). More importantly, reaction 

times were slower for incongruent items and faster for congruent items in the MC versus the 
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MI set (both ps < .001). These results showed the presence of the expected ISPC effect, 

namely the expected modulation of Stroop effect size as a function of proportion congruency. 

Concerning accuracy data (percentage of errors and no response), we evidenced a 

larger number of errors for incongruent items in the MC than in the MI set (t (48) = -3.74; p < 

.001), which is in agreement with the ISPC effect. A summary of accuracy data is presented in 

Table 1. 

 

INSERT TABLE 1 HERE 

 

3.1.2. Contribution of Associative Learning 

To determine the respective contributions of associative learning versus cognitive 

control to the ISPC effect, we performed the contingency by item type analysis proposed by 

Schmidt and Besner (2008). The 2 (Contingency: high vs. low) x 2 (Item type: incongruent 

vs. congruent) repeated measures ANOVA on the mean of response times for correct 

responses revealed a main effect of contingency (F(1,24) = 55.24; p < .0001;  2
p  = .70), and 

of item type (F(1,24) = 216.04; p < .0001;  2
p  = .90), but no interaction (F(1,24) = 0.61; p = 

.44;  2
p  = .02; see Figure 1b).  

3.2. fMRI Data 

3.2.1. General interference effect 

 The change in neural activity was compared for incongruent and congruent items, 

independently of the set of colors. This general interference effect in MC and MI sets 

activated the classic fronto-parietal network associated with conflict resolution in the Stroop 

literature, with increased activity especially in the DLPFC, and inferior parietal lobule. 

However, ACC activity was found only at a p < .001 uncorrected statistical level (MNI peak: 

[-8, 24, 42]; Z = 4.16). Details of these patterns of brain activity are presented in table 2.  

 

INSERT TABLE 2 HERE 

 

3.2.2. ISPC effect 

When incongruent-item-related activity was compared in the MC and MI sets, the 

network of brain areas revealed by this contrast evidenced cingulate, parietal and prefrontal 
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activations (see Table 3a and Figure 2). The reverse contrast (incongruent items in MI vs. 

MC) did not reveal any significant increase in activity (Table 3b). 

 

INSERT TABLE 3 AND FIGURE 2 HERE 

.  

Similar results were obtained when we contrasted the incongruent and congruent items 

in the MC set, with increased activity in the same large fronto-parietal network (Table 4a) for 

incongruent items. Moreover, contrasting incongruent and congruent items in the MI set did 

not reveal any differential change in brain activity (Table 4b). 

 

INSERT TABLE 4 HERE  

 

Finally, the proportion congruency x item type interaction ((incongruent vs. congruent 

items in MC set) – (incongruent vs. congruent items in MI set)) confirmed that a network of 

areas including the cingulate, frontal and parietal regions is specifically associated with the 

processing of incongruent items in the mostly congruent set only (see Table 5a and Figure 3).  

As a whole, although this pattern of results (i.e., activation of the ACC-DLPFC 

network at the item level) is in agreement with the item-specific control hypothesis, it does 

not allow us to definitively conclude that item-specific control mechanisms underlie the ISPC 

effect. Indeed, as argued by Schmidt and Besner (2008), these analyses confound proportion 

congruency with contingency. In the next section, we therefore conducted a contingency x 

item type interaction analysis to better assess the possible involvement of associative learning 

mechanisms in the ISPC effect. 

 

INSERT TABLE 5 AND FIGURE 3 HERE 

 

3.2.3. Contribution of associative learning versus item-specific cognitive control 

As mentioned in our hypotheses, item-specific control and contingency learning 

accounts do not predict the same pattern of results concerning the contingency x item type 

interaction ((incongruent in MC set vs. congruent in MI set) – (incongruent in MI set vs. 

congruent in MC set)). More specifically, specific foci of brain activity, especially in the 

ACC-DLPFC network, were expected within the item-specific control view, but not within 

the contingency view in which the interaction was expected to be non significant. In this 

context, this interaction failed to evoke any significant activation at the statistical threshold 
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used (FWE, p < .05), supporting thus the role of associative learning mechanisms in the ISPC 

effect (see Table 5b). 

We also compared high contingency (incongruent items of MI set and congruent items 

of MC set) to low contingency trials (congruent items of MI set and incongruent items of MC 

set) in order to reveal regions that support S-R learning in this paradigm. This analysis only 

revealed a medial frontal activation at a p < .001 uncorrected p threshold (MNI peak: [-12 58 

8]; Z = 3.34). 

4. Discussion 

Previously, support for both the item-specific control and the associative learning 

explanations of the ISPC effect had been found at the behavioral level [e.g., 18, 33]. At the 

brain level, the only existing study of Blais and Bunge (2010) evidenced that the ACC-

DLPFC network, conceived as responsible for conflict detection and control implementation, 

was sensitive to item-specific proportion congruency manipulation. In this context, the present 

study aimed to further investigate neural correlates of the ISPC effect using the contingency x 

item type interaction analysis, with the classical 2-item sets design. 

4.1. Replication of the ISPC Effect 

At the behavioral level, we replicated the now well-established ISPC effect, showing 

that the classic proportion-congruent effect, typically investigated at the list level by 

presenting blocks of stimuli varying the proportion of congruent and incongruent trials 

(Bélanger et al., 2010; Kane & Engle, 2003), can arise when proportion congruency is 

manipulated at the item level. More specifically, interference and facilitation effects were 

larger in the MC than in the MI set of colors. 

With regard to neuroimaging data, we observed incongruent item-related activity in 

the ACC, DLPFC and inferior parietal cortex in the MC set. These areas correspond to the 

brain network typically associated with cognitive control during conflict resolution and the 

proportion congruent effect at the global level in the Stroop task (Carter et al., 2000; Laird et 

al., 2005; Nee et al., 2007; Roberts & Hall, 2008). In line with the recent study by Blais and 

Bunge (2010), the results obtained here showed that brain regions classically associated with 

conflict resolution at a global level, specifically the ACC (detection of conflict) and DLPFC 

(adjustments in cognitive control), which have been argued to implement list-level effects 

(Botvinick et al., 2001), can also be recruited when manipulation of congruency proportion 

occurs at the level of specific items.  
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4.2. The Mechanism Responsible for the ISPC: Associative Learning or Item-Specific 

Control? 

As mentioned above, an important issue currently being debated in the literature 

concerns the underlying mechanisms responsible for the ISPC effect. Two possible candidates 

have been proposed: control and associative learning mechanisms [e.g., 18]. This has led 

some authors to adopt a strict associative learning conception of the ISPC effect (Schmidt & 

Besner, 2008), whereas others consider that both item-specific control and contingency 

learning (learning of S-R associations) may contribute to the effect [1, 18]. 

Concerning behavioral data, the contingency x item type analysis on mean reaction 

times did not evidence any significant interaction. According to Schmidt and Besner (2008), 

the associative learning hypothesis states that the Stroop effect (effect of congruency: 

difference between incongruent and congruent trials) and the contingency effect 

(predictability of color-word associations) reflect distinct processes, and their joint action has 

an additive rather than an interactive effect on performance. So, our results related to response 

times are in agreement with the associative learning explanation.  

With regard to neuroimaging data, the contingency x item type interaction analysis did 

not reveal any significant activation, and thus argued also in favor of associative learning 

mechanisms as responsible for the ISPC effect. Hence, the ACC-DLPFC network that we 

observed using the classical proportion congruency x item type interaction did not emerge in 

this interaction. This finding is consistent with Schmidt and Besner (2008) view, and supports 

the idea that the activation level of the ACC-DLPFC network for incongruent compared to 

congruent trials does not vary as a function of contingency.  

As a consequence, if item-specific control is not the mechanism responsible for the 

ISPC effect, one may ask what is the exact role of the fronto-parietal activations that we 

observed. Indeed, these brain regions are classically associated with conflict detection and 

subsequent implementation of cognitive control [25, 27]. In this line, these regions may be 

involved in detection and subsequent processing of unanticipated stimuli. Indeed, whereas 

events of similar frequency (low contingency) were contrasted in the first term of the 

contingency x item type interaction (incongruent trials of MC set to congruent trials of MI 

set), rare events (low contingency incongruent trials of the MC set) were contrasted to 

frequent events (high contingency congruent trials of the MC set) in the first term of the 

classical proportion congruency x item type interaction. Therefore, brain activity observed in 

the last contrast may reflect processing of unexpected or rare stimuli which did not respect 

previously learned S-R associations [34]. Indeed, [35] have argued that the role of the ACC 
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was not limited to conflict detection. In their error-likelihood hypothesis, they proposed that 

this region may be involved in predicting error likelihood in a given context. In other words, 

this region would be more activated for events potentially associated with a higher perceived 

probability of error (i.e., low contingency trials). Hence, the observed ACC activation in the 

proportion congruency x item type interaction may reflect the higher error prediction for low 

contingency (incongruent trials of MC set) compared to high contingency trials (congruent 

trials of MC set). Concerning the DLPFC, several studies have shown that this region is 

involved in contingency information processing [e.g., 36, 37]. Specifically, the DLPFC 

supports the acquisition of new S-R associations and plays a major role by selecting the 

appropriate response to unexpected stimuli. Moreover, [38] argued that the parietal cortex is 

responsible for representing the possible candidate responses by maintaining the different S-R 

associations activated in working memory, whereas the prefrontal cortex is recruited for the 

acquisition of new S-R associations and for interference resolution after conflict detection by 

the ACC (e.g., Blais et al., 2007; Botvinick et al., 2001). In this regard, parietal activation 

observed in the proportion congruency x item type interaction analysis could reflect the need 

to maintain simultaneously active the different possible S-R associations for low-contingency 

items in comparison to high-contingency ones, for which the need to activate the two S-R 

associations simultaneously is strongly reduced, one of those two contingencies being enough 

to correctly respond in 80% of the trials for that color word.  

In this context, if these brain areas are involved in detecting and processing 

unexpected events, one may wonder why we failed to evidence any differential brain 

activation in the MI set between low expectancy congruent trials and high expectancy 

incongruent trials (data not showed ). A possible explanation may be related to the fact that, in 

this case, the unexpected trial type is congruent. Signals regarding potential errors may be less 

robust due to the ease in processing these trials, even if they still violate expectancy. 

Finally, our analysis directly comparing high contingency trials (incongruent items of 

MI set and congruent items of MC set) to low contingency trials (incongruent items of MC set 

and congruent items of MI set) also brought some support to the contingency hypothesis. 

Indeed, this comparison revealed (at an uncorrected statistical p level) activity in a medial 

frontal area that may play a role in S-R learning and response prediction processes. 

In conclusion, and in agreement with the proposal of Schmidt and Besner (2008), our 

results underline the importance of performing the contingency x item type interaction 

analysis when investigating the neural correlates of ISPC effect. Indeed, although our results 

evidenced an ACC-DLPFC network activation in the classical analyses (e.g., the proportion 
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congruency x item type interaction), the contingency x item type interaction failed to reach 

significance, supporting thus the contingency learning account.  

As a whole, results of the present experiment showed that the ISPC effect (i.e., the 

attenuated interference for mostly incongruent compared to mostly congruent items) was 

better explained within the contingency view of the phenomenon. However, we cannot 

definitively rule out the possible intervention of item-specific control mechanism in the ISPC 

effect. Indeed, behavioral data have shown that the degree to which associative learning 

and/or item-specific control intervene depend on task and procedure characteristics. In this 

context, [18] recently demonstrated that a critical factor determining the responsible 

mechanism is the dimension that serves as ISPC signal (i.e., which dimension constitutes the 

signal that directs all subsequent processing). Specifically, they showed, using a picture-word 

Stroop paradigm, that contingency could not account for the ISPC effect when the relevant 

dimension (i.e., the picture) was used as the ISPC signal, but this was not the case when the 

irrelevant dimension was used as ISPC signal (i.e., word name). In that line, the present study 

used the classic color-word Stroop procedure, which, in their view, promotes the use of 

contingency learning given that this procedure favors the use of the word dimension as ISPC 

signal [see also 24]. In addition, the present study used the classic two-item sets design of 

ISPC effect originally used by Jacoby et al. (2003). In this design, one set of items (i.e., gray 

and yellow) is presented in mostly incongruent form (gray in yellow, yellow in gray) while the 

other set (i.e., mauve and orange) is presented in mostly congruent form (mauve in mauve, 

orange in orange). This set size has been argued to promote contingency learning (e.g., 

respond “yellow” when the word is gray) rather that item-specific control [22, 23, 33]. 

Indeed, [39]Bugg and Hutchison (in press) recently showed a contingency-driven ISPC effect 

with the classical 2-item sets design, but a control-driven ISPC effect when a 4-item sets 

design was employed. Therefore, using 4-item rather than 2-item sets may be helpful in 

disentangling the contribution of both processes. Indeed, in this case, relying on contingency 

learning would be less reliable since the incongruent items in the mostly incongruent set are 

associated with three responses with a similar degree of contingency contrary to the single 

high-contingency response in the 2-item sets design. Understanding which experimental 

conditions elicit and favor the differential involvement of the ACC-DLPFC network between 

low and high proportion congruency trials (item-specific control) is undoubtedly a crucial 

issue for further research. 
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5. Conclusions 

 This study is the first fMRI experiment that evaluated predictions derived from the 

item-specific control and associative learning accounts of ISPC effect. Together, the 

behavioral and fMRI results revealed the involvement of contingency learning mechanisms in 

the ISPC effect, as argued by Schmidt and Besner (2008). However, further neuroimaging 

studies are necessary to confirm any contributions of item-specific control in the ISPC effect 

in general, since task and procedure characteristics appear to influence the extent to which 

item-specific control and/or associative learning mechanisms are involved in the ISPC effect. 
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Figure legends 

Figure 1. (a) Mean of reaction times (ms) in the MI and MC color sets for incongruent and 

congruent items. The item specific proportion congruent effect corresponds to faster reaction 

times for incongruent items and slower ones for congruent items in the MI set compared to 

the MC set. (b) Absence of interaction between congruency and contingency for reaction time 

data. Error bars represent standard deviations. 

 

Figure 2. Larger brain responses for incongruent trials in the MC than in the MI set (Table 3) 

in inferior parietal cortex (left), inferior frontal cortex (middle), and anterior cingulate cortex 

(right). Functional statistical results are overlaid to a canonical structural image (p < .05 FWE 

corrected). Bar graphs illustrate the mean parameter estimates displayed for the different item 

types (incongruent and congruent) of both sets. Error bars represent standard errors.   

 

Figure 3.  Proportion congruency x item type interaction (incongruent vs. congruent in MC 

set) – (incongruent vs. congruent in MI set) revealing specific cerebral activations for 

incongruent trials in the MC set (p < .05 FWE corrected). 
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Table 1 

Accuracy data (percentage of errors and no responses) in MC and MI sets for incongruent 

and congruent items. 

 MI set MC set 

Incongruent  5.60 (2.79) 11.33 (7.14) 

Congruent 1.86 (2.90) 1.23 (1.34) 

Note: Numbers in parentheses correspond to standard deviations.  
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Table 2 

Cerebral areas associated with the general interference effect (incongruent vs. congruent) in 

MC and MI sets. 

Hemisphere Anatomical region MNI coordinates Z score p value 

 x y z 

L Inferior parietal -38 -44 46 4.78 .012 

L Inferior frontal -54 16 36 4.96 .005 

L Middle frontal -48 4 48 4.47 .041 

L Inferior frontal -44 12 28 4.69 .017 

L Fusiform gyrus -40 -50 -22 4.88 .008 

L Fusiform gyrus -36 -64 -18 4.44 .047 

L Inferior occipital -40 -84 -18 4.58 .026 

L = left; R = right; x, y, z: coordinates (mm) in the stereotactic space defined by the Montreal 

Neurological Institute (MNI). This analysis was conducted with a p value < .05 FWE 

corrected.  
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Table 3 

Cerebral areas associated with the ISPC effect: Brain activity related to incongruent items 

Hemisphere Anatomical region MNI coordinates Z score p value 

 x y z 

a) Incongruent items  in MC set versus incongruent items in MI set 

R Inferior parietal  38 –40 36  5.20 .002 

L Inferior Parietal –38 –46 46  5.07 .003 

R Precuneus  14 -64 48  4.44 .046 

L Inferior frontal –40 6 30  4.91 .007 

L Inferior frontal –34 34 26  5.03 .004 

R Inferior frontal 50 14 20  4.74 .013 

L Middle frontal -42 46 12  4.42 .049 

R Superior frontal 22 -4 48  4.75 .013 

R Anterior cingulate 10 10 44  4.54 .031 

b) Incongruent items  in MI set versus incongruent items in MC set 

Nihil 

L = left; R = right; x, y, z: coordinates (mm) in the stereotactic space defined by the Montreal 

Neurological Institute (MNI). This analysis was conducted with a p value < .05 FWE 

corrected.  
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Table 4 

Cerebral areas associated with the ISPC effect: Brain activity related to incongruent versus 

congruent items in MC and MI sets. 

Hemisphere Anatomical region MNI coordinates Z score p value 

 x y z 

a) Incongruent versus congruent items in MC set 

L Inferior parietal  –36 –48 48 7.43 < .001 

L Superior parietal –24 –66 52  6.03 < .001 

R Inferior parietal  38 –40 38  6.03 < .001 

R Superior parietal  32 –58 52 5.66 < .001 

R Superior parietal 50 -28 52 5.50 < .001 

L Inferior frontal –46 16 30  7.07 < .001 

L Inferior frontal –34 32 26  6.20 < .001 

R Inferior frontal 50 14 20  5.66 < .001 

R Middle frontal 28 8 46  5.20 .002 

R Middle frontal 36 38 32  5.29  .001 

L Inferior frontal –46 16 –8  5.31 .001 

L Insula  –34 22 4  5.64 <.001 

R Insula  36 16 –6  5.50 <.001 

L Middle frontal –50 44 10  4.93 .006 

R Superior frontal 12 6 66  4.84 .009 

R Superior frontal 22 -4 48 5.21 .002 

R Anterior cingulate 8 12 48 4.99 .005 

L Anterior cingulate –6 20 44  5.05 .004 

R Fusiform gyrus  40 –68 –18  5.40  .001 

R Inferior temporal 52 –60 –24  4.81 .01 

L Inferior temporal  –48 –50 –18  5.52 < .001 

L Fusiform gyrus –36 –64 –18  5.38  .001 

L Fusiform gyrus –40 –80 –18  5.49 <.001 

R Middle occipital  38 –90 0  4.73 .015 

L Middle occipital  –38 –90 –4  4.79 .011 

b) Incongruent versus congruent items in MI set 

Nihil 

L = left; R = right; x, y, z: coordinates (mm) in the stereotactic space defined by the Montreal 

Neurological Institute (MNI). This analysis was conducted with a p value < .05 FWE 

corrected. 
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Table 5 

Cerebral areas associated with the proportion congruency x item type and the contingency x 

item type interaction analyses. 

Hemisphere Anatomical region MNI coordinates Z score p value 

 x y z 

a) Proportion congruency x item type interaction  

 (incongruent vs. Congruent in MC set) – (incongruent vs. congruent in MI set) 

L Inferior Parietal –36 –46 44  6.07 < .001 

L Superior Parietal -26 -66 52 4.54 .032 

L Superior Parietal -36 -56 58  5.04 .004 

L Inferior frontal -36 34 26 5.84 < .001 

L Inferior frontal –46 16 30  5.65 < .001 

L Inferior frontal –34 6 24  5.67 < .001 

R Inferior parietal  40 –40 36  5.73 < .001 

R Superior parietal  34 –58 50  4.88 .008 

R Precuneus  12 -62 50  4.84 .009 

R Superior frontal 22 0 46  5.21 .002 

R Anterior cingulate 14 8 44 4.76 .013 

R Inferior frontal 48 14 20  5.16 .002 

R Middle frontal 42 2 40  4.45 .044 

L Middle frontal -40 50 -2 4.82 .010 

R Middle frontal 40 36 30  4.81 .010 

R Insula 32 18 0 4.72 .015 

b) Contingency x item type interaction 

 (incongruent in MC set vs. congruent in MI set) – (incongruent in MI set vs. congruent in 

MC set) 

Nihil 

L = left; R = right; x, y, z: coordinates (mm) in the stereotactic space defined by the Montreal 

Neurological Institute (MNI). These analyses were conducted with a p value < .05 FWE 

corrected. 
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