MINISTÈRE DE LA RÉGION WALLONNE
Conférence Permanente du Développement Territorial

7.2. – OPTIMISATION DES GRANDES INFRASTRUCTURES

TOME IA : AÉROPORTS

LES AÉROPORTS WALLONS : SUITE

RAPPORT FINAL

SEPTEMBRE 2000

Université Libre de Bruxelles
GUIDE

Université de Liège
LEPUR
(ULg-FUSAGx)
PILOTES
LEPUR : H.-J. Gathon et B. Thiry

CHEFS DE SERVICES
GUIDE : J. Charlier et Ch. Delepiere
LEPUR : J. Marchal et B. Mérenne

CHARGÉS DE RECHERCHE
GUIDE : P. Lefebvre, G. Perpinien et Y. Rouyet
LEPUR : N. Javaux, J. Juprelle, A.-C. Klinkenberg, J.-Ch. Marchal,
G. Perpinien,
S. Risack et Z. Zhang

COLLABORATEUR SCIENTIFIQUE
LEPUR : A. Ndiaye

LEPUR
 Université de Liège, Rue de l'Aunaie, 30-32, B38, Sart Tilman, 4000 Liège
 Tél. : 04/366-58-88 Fax : 04/366-58-90 E-mail : lepur@ulg.ac.be

GUIDE
 Université Libre de Bruxelles, Avenue Buyl, 87 bât. C 5ème étage
 BP. 1050 Bruxelles
 Adresse postale: Avenue. F. D. Roosevelt, 50 CP194/7
 Tél: 02/650-45-24; 34-67 Fax: 02/650-27-83 E-mail: guide@ulb.ac.be
TOME IA : AÉROPORTS

LES AÉROPORTS WALLONS : SUITE

TABLE DES MATIÈRES

INTRODUCTION GÉNÉRALE ... 1

PARTIE 0 : COMPLÉMENTS RELATIFS À L’AÉROPORT DE LIÈGE-BIERSET

Chapitre I : LES DERNIERS DÉVELOPPEMENTS SUR L’AÉROPORT DE LIÈGE-BIERSET 3

I.1 Arrivée de Kintetsu World Express (KWE) ... 3
I.1.1 Accord avec TNT .. 3
I.1.2 D’autres alliances ... 4
I.2 Les nouvelles constructions ... 4
I.3 Aviation générale ... 5
I.4 Les compagnies aériennes .. 5
I.5 Réservations de nouveaux terrains .. 6
I.6 L’emploi .. 6
I.7 L’environnement .. 7
I.8 Liège Logistics .. 7
INTRODUCTION GENERALE

Chapitre II : LES PERSPECTIVES DE DÉVELOPPEMENT DE L’AÉROPORT DE LIÈGE-BIERSET ... 8

II.1 Introduction ... 8
II.2 Infrastructures aéronautiques .. 9
II.3 Front des installations et bâtiments .. 9
 II.3.1 Volet passagers ... 9
 II.3.2 Volet fret ... 10
 II.3.2.1 Nouvelle zone de fret .. 10
 II.3.2.2 zone de fret TNT ... 10
 II.3.2.3 Maintenance avions .. 11
 II.3.2.4 Aviation d’affaires ... 11
II.4 Accès routiers et parcs de stationnement .. 11
II.5 Accès ferroviaires - intermodalité .. 11
II.6 Equipements et réseaux ... 11

PARTIE I : L’AÉROPORT DE CHARLEROI-BRUXELLES SUD

Chapitre I : PRÉSENTATION DE L’AÉROPORT DE CHARLEROI-BRUXELLES SUD 12

I.1 Historique .. 12
I.2 Description de Charleroi-Bruxelles Sud .. 12
 I.2.1 Localisation ... 12
 I.2.2 Généralités .. 13
 I.2.3 Structures et infrastructures de l’aéroport 13
I.3 Gestion ... 14
I.4 Trafics ... 15
I.5 Entreprises liées aux activités aéroportuaires 21
I.6 Disponibilité d’accueil des entreprises ... 21
 I.6.1 Taux de remplissage des 9 parcs industriels 21
 I.6.2 Enquête concernant le taux d’utilisation des infrastructures aéroportuaires 22
INTRODUCTION GÉNÉRALE

I.7 Conclusion ... 24

Chapitre II : VISION STRATÉGIQUE DU DÉVELOPPEMENT DE GOSSELIES 26

II.1 Rôle des aéroports régionaux européens dans le transport aérien de demain 26
II.2 Retombées économiques sur les sites aéroportuaires .. 28
II.3 L’aménagement du territoire et l’implication des autorités régionales au niveau des
aéroports secondaires européens ... 35
II.4 Promotion des activités et besoins en infrastructures .. 36
II.4.1 Activités à promouvoir dans le secteur aéroportuaire et aéronautique à Charleroi.. 36
 II.4.1.1 Réservation de l’affectation du sol au bénéfice des activités économiques 36
 II.4.1.2 Activités aériennes ... 37
 a) A propos de l’étude TRACTEBEL ... 40
 II.4.1.3 Activités aéronautiques .. 42

Chapitre III : MESURES ENVIRONNEMENTALES ET DE COMMUNICATION À GOSSELIES ..44
INTRODUCTION GÉNÉRALE

PARTIE II : PROBLÉMATIQUE D’UN NOUVEL AÉROPORT

Chapitre I : PROBLÉMATIQUE DE LA LOCALISATION D’UN ÉVENTUEL DEUXIÈME AÉROPORT NATIONAL

I.1 Position du problème .. 45

I.1.1 La relative saturation de Brussels Airport (Zaventem) ... 46

I.1.1.1 Le contexte : la congestion croissante du ciel européen ... 46

I.1.1.2 La configuration d’ensemble de l’aéroport ... 49

I.1.1.3 La configuration des pistes ... 49

I.1.2 Evolution du trafic à Bruxelles-National : quelques chiffres 51

I.1.3 Accessibilité terrestre .. 54

I.2 Localisation éventuelle à l’Est de Louvain ... 55

Chapitre II : POUR L’IMPLANTATION D’UN PÔLE DE MULTIMODALITÉ À CHIÈVRES 56

II.1 Configuration générale des installations ... 56

II.2 L’accessibilité ferroviaire et routière du site .. 57

II.3 Vers un système bipolaire .. 58

PARTIE III : LA PROBLÉMATIQUE DES VERTIPORTS

Chapitre I : LA PROBLÉMATIQUE DES VERTIPORTS ... 59

I.1 BREF APERÇU TECHNIQUE ... 59

I.2 Un large éventail de relations potentielles... 60
I.3 Des vertiports en Wallonie !... 60

CONCLUSION GENERALE. ... 62

BIBLIOGRAPHIE .. 63
ANNEXES 0: Besoins programmés pour 2010 et 2020.
ANNEXES III : Impacts économiques d’un site aéroportuaire et des investissements qui y sont réalisés
ANNEXES IV : Agence de développement économique IGRETEC.
ANNEXES V : Les trafics aéroportuaires dans le quadrilatère FLAP
Ce rapport relatif aux aéroports est constitué de deux tomes. D’une part, le Tome IA poursuit la réflexion sur le développement des aéroports wallons et d’autre part, le Tome IB qui, quant à lui, analyse la gestion environnementale au sein de plusieurs aéroports européens et en particulier des deux aéroports wallons, à savoir Charleroi-Bruxelles Sud et Liège-Bierset.

Le premier Tome IA est structuré en cinq parties.

La Partie 0 expose en deux chapitres les développements récents et futurs de l’aéroport de Liège-Bierset, le second chapitre étant consacré au nouveau Plan de Masse à horizon 2020. Il nous est essentiel de présenter, en complément à notre rapport CPDT de septembre 19991, ces éléments nouveaux, afin de cadrer la réflexion le plus complètement possible dans l’optique d’une vision stratégique à moyen et long termes du développement des aéroports wallons.

La Partie I est composée de trois chapitres. Dans un premier temps, une présentation de la localisation, du fonctionnement de l’aéroport de Charleroi-Bruxelles Sud ainsi qu’une description des activités aéronautiques présentes à proximité du site de l’aéroport est opérée. Le second chapitre, quant à lui, présente une réflexion sur le développement de Gosselies2. Ce chapitre explique également quels types de retombées économiques sont à attendre des investissements réalisés sur les sites aéroportuaires et esquisse, de façon générale, le rôle actuel des aéroports régionaux. Le troisième chapitre expose brièvement les mesures environnementales et la politique de communication en cette matière appliquées à l’aéroport de Charleroi-Bruxelles Sud.

La Partie II se subdivise en deux chapitres. Le chapitre I pose la problématique de la localisation d’un éventuel deuxième aéroport national, conséquence de la relative saturation de Brussels Airport (Zaventem). Le chapitre II, quant à lui, expose les potentialités du site de Chièvres, notamment en tant que pôle de multimodalité.

La Partie III constitue une courte réflexion sur la problématique des vertiports. Cette partie donne tout d’abord un aperçu technique de ces vertiports et esquisse ensuite les relations potentielles de ces appareils susceptibles de révolutionner le domaine des relations aériennes à courte distance.

2 Le but n’est pas de refaire ce qui a été réalisé par l’IGEAT (étude d’incidences de l’allongement de piste de l’aéroport de Charleroi) et par TRACTEBEL (étude stratégique du développement de l’aéroport), mais bien de procéder, tout en tenant compte de ces études, à une analyse de la situation existante de l’aéroport de Charleroi-Bruxelles Sud ainsi qu’à une réflexion au sujet de ses capacités de développement.
La partie **conclusion générale** tente, quant à elle, de tracer les différentes pistes potentielles à suivre pour le développement futur du système aéroportuaire wallon.

Une grosse annexe statistique, dérivée des travaux en cours d’une partie de l’équipe dans le cadre du projet COFAR (Common Options for Airport Regions) soutenu par la Région wallonne, complète ce tome. Elle permet de situer les aéroports wallons dans le cadre du quadrilatère FLAP (Francfort-Londres-Amsterdam-Paris), au cœur duquel ils sont situés et au sein duquel ils sont caractérisés par une dynamique récente particulièrement forte.
Chapitre I : LES DERNIERS DÉVELOPPEMENTS À L’ÂÉROPORT DE LIEGE-BIERSET

Cette partie consacrée à l’aéroport de Liège-Bierset se veut être un complément au précédent rapport CPDT de septembre 1999. Liège Airport, parallèlement à son succès croissant mais relatif dans le transport des passagers (212 000 passagers), a enregistré en 1999 une progression remarquable de ses activités fret. Il fait maintenant partie du top 12 du fret européen avec 207 000 tonnes (une progression de 26,7% par rapport à 1998).

Par ailleurs, les facteurs de développement ne manquent pas pour le futur, que ce soit par la mise en service du TGV (TGV fret), la disponibilité de nouveaux terrains et de nouvelles zones industrielles, l’allongement de la piste principale, la prise en charge des questions liées à l’environnement...

I.1 ARRIVÉE DE KINTETSU WORLD EXPRESS (KWE)

Actif dans le groupage et le dégroupage de fret aérien, maritime, routier et ferroviaire, le groupe nippon Kintetsu World, numéro trois mondial du fret aérien, a en effet choisi l’aireport de Liège pour y établir son hub international de fret aérien venant de ou allant au Japon, en Amérique du Nord et en Asie du Sud-Est. Les marchandises transportées seront des produits à haute valeur ajoutée: composants électroniques, produits pharmaceutiques...

I.1.1 ACCORD AVEC TNT

Le groupe, déjà présent à Luxembourg, cherchait une nouvelle base européenne, et cela en raison de l’exiguité du centre Luxair, de l’absence de possibilité de croissance immédiate et future mais aussi de l’impossibilité à Luxembourg de gérer lui-même le fret en magasin. De plus, la présence du hub européen du géant du courrier express TNT à Liège Airport n’est pas étrangère à cette décision. KWE a en effet signé en février dernier une alliance stratégique avec TPG (groupe TNT), avec effet immédiat en Asie, qui prévoit le développement d’une coopération avec TNT au niveau des activités européennes, notamment l’utilisation de la flotte de TNT durant la journée pour des destinations européennes (Scandinavie, Portugal, Espagne et pays de l’Est).

A Liège Airport, Kintetsu dispose, depuis le 7 juillet 2000, du hall fret III de 4.000 m² d'aire de stockage et de 480 m² de bureaux, loués à la SAB.

Cette nouvelle arrivée est un grand succès pour la Région wallonne et pour l'aéroport de Liège car Kintetsu espère de plus attirer des grandes entreprises japonaises à Liège pour qu'elles y implantent leurs centres européens de distribution. Actuellement 30 à 50 emplois ont été créés sur le site de l'aéroport par l'opérateur japonais. Ce nombre pourrait passer à plus de 200 dans les trois années à venir.

Il est fort probable que Kintetsu soit présent aussi bien dans Liège Logistics que dans Liège Airport ; en effet, il existe un accord, visant à l'usage d'un document manifeste de transit sous douane autorisant le transfert sous douane de marchandises entre le hall fret III (Liège Airport) et les bâtiments de Liège Logistics. Kintetsu entend en effet utiliser dans le cadre de son activité tous les moyens de transport (air, route, rail, eau) qui sont disponibles dans la région.

I.1.2 D'AUTRES ALLIANCES

Nous devons également préciser que la collaboration avec TNT prévoit aussi de «mettre ensemble leurs capacités, en créant des lignes aériennes internationales et en développant des produits communs». KWE prévoit en outre de coopérer avec TNT au niveau du réseau routier de distribution européen. Le groupe japonais souhaite d'ailleurs étudier prochainement d'autres stratégies d'alliance, notamment dans le secteur postal.

Précisons que, Kintetsu a son siège principal à Tokyo, est présent dans 35 pays (dont la France, l'Allemagne, le Royaume-Uni, les Emirats arabes et les États-Unis), emploie 5400 personnes de par le monde et réalise un chiffre d'affaires de 60 milliards de francs.

I.2 LES NOUVELLES CONSTRUCTIONS

Cette année 2000 a vu la construction du hall fret 3. Cet entrepôt de 4000 m², opérationnel depuis juillet 2000, a une capacité globale de 60 000 tonnes/an et une capacité de l'Etv de 90 positions sur 2 niveaux. Le concept du hall fret 3, sa capacité à traiter des avions gros porteurs ainsi qu'un accès direct au parking avions sont des outils additionnels favorisant un service plus rapide de la part des opérateurs. La situation permet un positionnement d'un B747 « face à l'entrepôt », avec accès immédiat à l'autoroute, comme tous les autres entrepôts situés sur la plate-forme.

Un nouvel entrepôt de 7000 m² situé entre les bâtiments de Lachs et le hall fret 3 sera opérationnel pour septembre 2001. Celui-ci fait toujours à l'heure actuelle l'objet de discussions entre les représentants de Lachs et les gestionnaires de la SAB.

Un nouveau complexe de bureaux a été érigé à côté du bâtiment des douanes ; il comprend une quarantaine de bureaux de 25 m², avec parkings souterrains et est occupé par TNT Airways.

3 Précisons cependant qu'en ce qui concerne le développements non spatial, l’aéroport de Liège-Bierset s’est doté d’un programme de qualité « Flight Scheduler » SISPAW. Ce serveur SISPAW est le centre d’un réseau internet-intranet améné à diffuser des informations relatives aux vols prévus sur le site de l’aéroport. L’objectif principal de ce programme est de mettre à disposition de tous les acteurs sur le site toutes les informations leur permettant de planifier leurs interventions.
Les projets de l’implantation attendue d’un radar propre à l’aéroport régional ainsi que la construction d’une nouvelle aérogare (capacité du terminal de 1 million de passagers) sont toujours d’actualité.

Un permis de construire a, par ailleurs, été déposé pour la réalisation du bâtiment de maintenance situé à l’extrémité sud-ouest de la plate-forme à côté du hangar de maintenance TNT.

I.3 AVIATION GÉNÉRALE

En ce qui concerne l’aviation générale, le nombre de mouvements est stationnaire et tend à être limité. Les bâtiments actuels ne seront pas détruits, une partie de ceux-ci est d’ailleurs actuellement relouée par TNT Airways pour le stockage de pièces d’avions.

I.4 LES COMPAGNIES AÉRIENNES

Les compagnies actuelles, qui opèrent à Bierset, sont Cargo Airlines, Icelandair Cargo, CityBird, MK Airlines et TNT Airways.
Cette dernière est en activité depuis février 2000. Depuis lors, la compagnie a déjà effectué 572 vols commerciaux. Le budget total de fonctionnement est de 11 milliards à concurrence de 1.5 milliard pour la maintenance, 1.5 milliard pour le personnel, 694 millions pour les charges salariales de Liège uniquement, 186 millions pour la formation et 133 millions pour les investissements 2000 en dehors de la flotte (frais d’installation,…). Avec une trentaine d’avions en fin 2002 (17 British Aerospace 146 et 14 Airbus A300), TNT Airways deviendra ainsi la deuxième compagnie belge.

Pour le volet de l’emploi, suite à l’implantation de TNT Airways, l’augmentation de 69 équivalents temps plein sur un total de 153 est prévue pour la fin 2000 et 346 en 2003.

Dans le domaine de la formation, TNT travaille en collaboration avec Technifutur et la WAN pour les formations dans les métiers techniques ; en ce qui concerne la formation des pilotes, TNT étudie la création d’un centre de formation à Liège.
En matière d’environnement, une réflexion est déjà menée à l’heure actuelle pour la suppression des Boeings B727 et en vue d’anticiper la période après « Chapitre 3 ».

CAL (Cargo Air Lines) opère actuellement à Liège avec 2 avions (elle utilise le deuxième appareil de CityBird en attendant de réceptionner un second B747 propre). Les derniers développements touchant la compagnie israélienne en font une compagnie plus complète et lui permettent d’effectuer de l’import/export de general cargo entre Israël et l’Europe et de l’express cargo. Liège Airport devient la base européenne de CAL et des connections avec d’autres réseaux ont été nouées pour des liaisons intercontinentales. L’expansion des activités de CAL a un effet positif sur Lachs, notamment en termes d’emploi.

City Bird Cargo opère depuis 1999 et démontre l’intérêt des différents opérateurs fret pour l'Aéroport de Liège-Bierset.
La compagnie MK Airlines effectue toujours des vols vers l’Afrique.

I.5 RÉSERVATIONS DE NOUVEAUX TERRAINS

Le développement des activités civiles de Liège Airport nécessite la réservation et l’acquisition de nouveaux terrains et notamment ceux appartenant aux militaires au Nord et à l'Est des pistes. Le développement des activités civiles de Liège Airport ne doivent pas faire oublier qu’y préexistaient une activité militaire importante. D’où la question d'un partage des terres et de leur indemnisation ; un compromis a cependant été trouvé entre le Ministère de la Défense nationale et la Région wallonne. Un plan savant de redistribution des zones, de transfert de bâtiments, de découpage territorial et de réaffectation de sites a été adopté en juin 2000.

L’opération vise avant tout un regroupement rationnel des terres et des activités. In fine, les militaires cèdent quelque 163 ha sur les 450 ha qu’ils occupaient jusqu’ici, tout leur domaine n’étant d’ailleurs pas occupé de manière maximale. Les installations destinées aux hélicoptères seront pour des raisons de sécurité aérienne, reportées sur la piste la plus éloignée, vers le Nord du site aéroportuaire, tandis qu’une convention d’hébergement des pilotes garantira à ceux-ci un logement de qualité, autonome et d’accès aisé.

Il en coûtera à la Région wallonne 300 millions FB pour couvrir l’opération de déplacement et 60 millions pour l’aménagement de logements destinés aux militaires. Par contre, l’acquisition de terrains destinés aux entreprises devrait se solder par une opération nulle puisqu’il s’agit d’hectares à revendre aux opérateurs économiques.

I.6 L’EMPLOI

Les deux sites de Liège Logistics et de Liège Airport cumulent 2000 emplois directs en 1999, dont 900 « de jour » et 1 100 « de nuit »4. 65% de ces emplois sont des temps pleins et les qualifications rencontrées sont très variées, avec 600 ouvriers non qualifiés et environ 500 ouvriers qualifiés, le même nombre d’employés ou encore 13 pilotes, le solde étant constitués de cadres.

I.7 L’ENVIRONNEMENT

En ce qui concerne les mesures visant à améliorer la vie quotidienne des riverains de l’aéroport de Liège Airport (cf. la gestion environnementale Tome IB), il a été proposé, par le Ministre wallon de l’Économie, de racheter les maisons des personnes les plus exposées au bruit ainsi que l’octroi de primes à l’isolation pour les habitations se trouvant plus éloignées des nuisances sonores, primes pouvant aller de 25 à 100 % du coût à l’isolation, en fonction des zones dans lesquelles se trouvent les logements.

I.8 LIÈGE LOGISTICS

Liège Logistics poursuit son développement qui est planifié en 3 phases. La première est actuellement réalisée puisque tous les terrains ont été vendus; la phase 2 est en cours de réalisation : en effet, 12 ha sur 35 sont vendus et l’expropriation des terrains proches des voies ferrées ainsi que leur viabilisation sont en cours. Pour la phase 3, l’accord de coopération entre la Défense nationale et la Région wallonne prévoit la mise à disposition possible des 65 ha appartenant à la Défense nationale.

Voici, plus concrètement, les développements ultérieurs à notre précédent rapport sur l’aéroport :

- installation du « European Distribution Center » de l’entreprise PFS Europe (Priority Full Services Europe), société active dans le service logistique des marchandises non périssables (accessoires informatiques pour IBM), des appareils téléphoniques, des pièces détachées automobiles ou des vêtements. Ce nouvel outil, est géré en partenariat avec la société Weerts Transports & Logistics, a généré 70 emplois supplémentaires et a représenté un investissement de 260 millions de FB ;
- installation de la société ECLA (Group Portier Industries) pour le stockage et l’entreposage des produits ADR ainsi que dans le nettoyage de citernes, aussi bien alimentaires que chimiques ou industrielles ;
- viabilisation des terrains à proximité des installations de TTS sa pour une extension de sa gestion commerciale ;
Le Comité de Direction de la SAB a approuvé, en juin 2000, un nouveau Plan Masse. Il concerne le développement de l’aéroport pour les vingt prochaines années et est le fruit des réflexions d’architectes et ingénieurs des Aéroports de Paris, qui ont de toute évidence, puisé une partie de leurs propositions dans notre précédent rapport.

Le Plan Masse de l’aéroport est un outil de travail qui envisage le développement de Liège Airport en termes d’occupation d’espace et de réalisations d’investissements, tout en tenant compte de deux pôles : le fret et le passager. Portant sur vingt années, ce plan envisage l’aspect spatial (au niveau des terrains), mais aussi l’aspect commercial, c’est-à-dire le développement de l’activité aéronautique en fonction des clients existants et du taux de croissance estimé.

L’objectif de ce plan est de permettre à Liège Airport de rester au top européen pour le fret et de pouvoir prétendre se situer parmi les aéroports où le trafic passagers passe le million de passagers.

En ce qui concerne Liège Logistics, le Plan Masse estime que cette zone représente un formidable potentiel de développement, notamment pour les nombreuses entreprises qui ont déjà choisi de s’y installer pour travailler en multimodalité (air-rail-route), bien que la connexion au réseau ferré ne soit pas encore effective.

II.1 INTRODUCTION

Tout d’abord, en ce qui concerne le pôle « passagers » pour lequel le Plan Masse estime que l’évolution sera liée à la fois au développement du trafic charter et à l’installation de lignes régulières, la SAB a programmé la construction d’une nouvelle aérogare (en 2002-2003) dont la localisation se ferait dans le même secteur que l’aérogare existante.

Le réseau routier aux abords de l’aéroport subira diverses adaptations : tracés de routes modifiés, voiries aménagées…

Les divers besoins programmés dans le temps sont en annexe 0.

En matière de cargo, l’achat des terrains militaires est étudié dans le Plan Masse afin de permettre à cette activité de nouvelles extensions, le fret aérien devant connaître d’ici 20 ans un triplement de sa capacité et des tonnages transportés.

Le Plan Masse se base sur des hypothèses suivantes de trafic de fret :
Figure 1 : Prévisions du trafic fret

<table>
<thead>
<tr>
<th></th>
<th>Actuel 1999</th>
<th>2010 Hypothèse Basse</th>
<th>2010 Hypothèse Haute</th>
<th>2020 Hypothèse Médiane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fret</td>
<td>216 207 t/an</td>
<td>400 000 t/an</td>
<td>600 000 t/an</td>
<td>700 000 t/an</td>
</tr>
<tr>
<td>Evolution Fret TNT</td>
<td>157 800 t/an</td>
<td>230 000 t/an</td>
<td>250 000 t/an</td>
<td>280 000 t/an</td>
</tr>
<tr>
<td>Evolution Fret tout Cargo</td>
<td>49 900 t/an</td>
<td>170 000 t/an</td>
<td>350 000 t/an</td>
<td>420 000 t/an</td>
</tr>
</tbody>
</table>

II.2 INFRASTRUCTURES AÉRONAUTIQUES

Le projet propose l’allongement de 413 m de la piste principale 05R/23L, côté seuil 23L, de manière à disposer d’une piste de 3700 m x 45 m ainsi qu’une série d’aménagements aux abords. La piste principale ainsi allongée permettra d’accueillir des gros porteurs à pleine charge pour des vols intercontinentaux (pour des destinations en Asie ou en Afrique du Sud).

Les doubles fonctions (piste et taxiway), qui ne peuvent être dissociées, de la piste 05L/23R, et la problématique d’un développement de la zone nord conduisent à traiter en parallèle les besoins de desserte des seuils de la piste principale par un taxiway parallèle et l’allongement de la piste secondaire. Pour 2010, il est prévu un allongement de cette seconde piste de 520 m de manière à la faire coïncider avec le seuil 23L et pour 2020, un allongement de 460 m pour la faire coïncider avec le seuil 05R.

Il est également proposé de réaliser 2 aires de dégivrage, la première en 2010 et la seconde en 2020.

II.3 FRONT DES INSTALLATIONS ET BÂTIMENTS

L’étude a permis de déterminer le front des installations de la zone terminal passagers et de la zone Nord tout cargo.

II.3.1. VOLET PASSAGERS

La localisation de la nouvelle aérogare passagers est prévue en zone Est de l’aéroport, dans le même secteur que l’actuelle. L’emprise totale de l’aérogare sera de 6,6 ha durant la première phase (1 ha pour le terminal et 2.250 places de parking) et de 10,1 ha lors de la deuxième phase (2 ha pour le terminal et 3.240 places de parking).

En termes de passagers, la capacité annuelle devrait passer de 200.000 personnes actuellement à 500.000 à l’horizon 2010 puis à 800.000 ou 1 million de passagers d’ici 2020. Pour ce qui est des vols, leur nombre augmentera, de même que le choix des destinations proposées.
La hauteur actuelle de la tour de contrôle est apte à supporter les évolutions futures.

Le service incendie SSIS et les différents bâtiments administratifs feront l’objet à terme d’un déplacements afin de permettre une extension de la zone de stationnement et d’éventuelles zones d’aviation d’affaires.

La construction d’un hôtel 3 étoiles de 200 chambres est également prévue pour les années à venir. Il sera installé à proximité de l’aérogare (Sud-Est) et bénéficiera d’un parking de 200 places.

L’aménagement de deux zones de développement tertiaire est prévue. L’une est située au Nord-Est d’une surface de 20 000 m² et réservée à des activités directement liées à la maintenance avions. La deuxième au sud de l’autoroute E 42 (55 000 m² de surface de réservation), est destinée à des bureaux d’opérateurs aériens, semblables à ceux que la SAB a récemment réalisés pour TNT Airways (7000 m² avec une extension de 2 400 m² possible d’ici 2010).

Le futur bâtiment de maintenance de l’aéroport aura été implanté au Sud-Ouest de la plate-forme ; il recevra les équipements stockés actuellement dans les hangars situés à l’extrémité Nord-Est. Il s’étendra sur une surface de 6 600 m² et permettra de gérer les besoins futurs de l’aéroport.

II.3.2 VOLET FRET

II.3.2.1 Nouvelle zone de fret

Le Pan Masse de développement propose le transfert en zone Nord des activités tout cargo et de réserver la zone fret Sud à l’extension de TNT.

L’emprise foncière de la zone fret tout cargo se situe en partie au sud de la commune de Velroux et sur la zone militaire.

Dans un premier temps, les terrains disponibles sur la commune de Velroux permettent de réaliser un hangar de 25 000 m² capable de traiter environ 16 000 tonnes ainsi qu’une aire de stationnement avions de 4 gros porteurs. Cette capacité est insuffisante pour gérer la croissance des volumes de fret.

Dès lors, en cas d’acquisition des terrains militaires, le développement se poursuivra sur ces terrains avec une emprise générale de 21 ha comprenant un hangar de 50 000 m². En 2020, une extension des hangars de fret de 22 000 m² et des activités annexes permettront de mener à terme les objectifs de développement, soit le traitement de 500 000 tonnes de fret.

II.3.2.2 Zone de fret TNT

Les terrains libérés par le transfert en zone Nord de l’activité tout cargo permettent l’extension des activités TNT. Le projet prévoit les réalisations d’un bâtiment de bureau et d’un hangar de 12 000 m² pour 2010 et d’une extension de 7 000 m² en 2020 de manière à atteindre une capacité de traitement de 300 000 tonnes.

Une aire de stockage de matériel de piste de 8 500 m² sera implanté entre le hangar de fret TNT actuel et le nouveau bâtiment de maintenance.
II.3.2.3 Maintenance avions

Le Plan Masse propose, pour la maintenance avions TNT, de réserver une surface pour réaliser un hangar de 14 000 m² offrant la possibilité d’entretenir un avion type A300-600 et 2 avions type BAE 146.

Une nouvelle zone de maintenance avions est prévue au Nord-Est de la plate-forme à proximité de la zone d’avitaillement. Cette zone de maintenance, destiné aux opérateurs tout cargo autres que TNT, comprendra une aire de stationnement avion et un hangar (8 000 m² en 2010, 15 000 m² en 2020). Il est en effet impératif de s’adapter aux normes, aux tailles et volumes des avions que l’aéroport accueillera dans le futur. Une infrastructure plus moderne, plus complète et plus adaptée (pour des Boeing 747 notamment) est donc nécessaire.

II.3.2.4 Aviation d’affaires

Une zone de 5 000 m² serait réservée à cet effet sur l’espace récupéré après la démolition du bâtiment administratif et du hall fret 1.

II.4 ACCÈS ROUTIERS ET PARCS DE STATIONNEMENT

Les parcs de stationnement (capacité de 2250 places en 2010) seront situés à proximité du terminal, le deuxième parc se trouvant au sud de l’autoroute E42.

II.5 ACCÈS FERROVIAIRE-INTERMODALITÉ

Du côté de l’intermodalité, la mise en place d’un réseau fret à grande vitesse est pour Liège (Voir Tome IIB : « Grande vitesse ferroviaire – Potentiel d’intermodalité air-route/rail en Région wallonne ») une occasion exceptionnelle avec comme atout principal l’installation d’une plate-forme multimodale air-fer-route. Dans ce cas, il s’agirait d’une intermodalité rail-route, étant donné qu’une intermodalité air-fer pour tout le cargo n’est pas réellement envisagée. L’installation d’une gare multimodale est d’ores et déjà à l’ordre du jour et plusieurs sites sont envisagés.

II.6. EQUIPEMENTS ET RÉSEAUX

Les équipements d’aides visuelles et radioélectriques seront adaptés ou déplacés en fonctions des dispositions retenues pour les allongements de piste.

Toute une série d’aménagements sont également prévus afin de tenir compte de la puissance électrique nécessaire, de la problématique des eaux usées et pluviales ainsi que du déplacement nécessaire de la zone d’avitaillement.
PARTIE I : L’AÉROPORT DE CHARLEROI-BRUXELLES SUD

Chapitre I : PRÉSENTATION DE L’AÉROPORT DE CHARLEROI-BRUXELLES SUD

I.1 HISTORIQUE

En 1919, le Roi Albert Ier inaugure la première école de pilotage belge au champ d’aviation de Gosselies, au lieu dit « Mont des Bergers », point culminant de toute la région gosseliennne. Dès l’année suivante, la SEGA débute ses activités de maintenance aéronautique, prélude à l’installation en 1931 de la société « Avions Fairey ». Le coup d’envoi est donné pour faire de Gosselies le centre de l’aéronautique belge.

Après la guerre, Gosselies est classé dans la catégorie des aérodromes publics et son exploitation est assurée par la Régie des Voies Aériennes. En 1954, associée à Fairey, la SABCA (installée à Haren) crée une seconde usine à Gosselies. En 1978, la Sonaca est créée pour reprendre les activités de Fairey. Toutefois, sur le plan des liaisons intérieures peu d’initiatives se concrétisent durablement.

Malgré la tentative d’une liaison régulière biquotidienne entre Charleroi et Londres, les résultats sont décevants.

La région décidera ensuite de concéder la gestion de ses deux aéroports, Charleroi et Liège, à des sociétés de droit privé soumises aux lois coordonnées sur les sociétés commerciales.

I.2 DESCRIPTION DE CHARLEROI-BRUXELLES SUD

I.2.1 LOCALISATION (Cartes 1 et 2)

L’aéroport de Charleroi-Bruxelles Sud est situé à 55 km du centre de Bruxelles, à 30 km du ring de Bruxelles, à 6 km au nord de la Ville de Charleroi, 2 km de l’échangeur des autoroutes en direction de Paris (270 km), Cologne (130 km), Amsterdam (250 km) et à moins d’1 km de l’autoroute E 42. Le site aéroportuaire s’inscrit en bordure Sud d’une vaste zone de près de 890 ha enclavée entre l’autoroute de Wallonie (E42), une portion du R3 et les nationales 5 et 568. L’occupation de cette zone est presque exclusivement de type

6 Voir point I.3 page 14, pour la composition de l’actionnariat de BSCA.
industriel et agricole, mais on y dénombre également quelques habitations et un important site classé\(^7\), le "Bois du Lombu" ainsi que l'hôpital civil de Jumet, situé en bout de piste de décollage. L'aéroport de Charleroi-Bruxelles Sud bénéficie d'une localisation assez favorable au développement des activités commerciales, grâce à la proximité de zones à forte densité d'habitat et aussi grâce à la proximité immédiate du réseau autoroutier qui assure des liaisons faciles et assez rapides avec de grandes agglomérations belges et étrangères. En effet, l'aéroport est idéalement situé pour des compagnies qui veulent desservir la partie centrale de l'Europe du Nord. L'interland de Charleroi couvre une région de 5 millions d'habitants (incluant Bruxelles, Courtrai, Liège, Namur, Charleville-Mézières) à une heure de route et 9 millions d'habitants à 2 heures de route.

Taxis, location de voitures à partir de l'aérogare, bus, cars ou trains (la gare principale de Charleroi se situe à 7 km de l'aéroport) sont les services disponibles à partir de l'aéroport. Un accord a également été conclu entre la TEC et la SNCB prévoyant de fournir des billets combinés rail/bus pour 300 FB à destination de tout point en Belgique à partir de l'aéroport.

1.2.2 GÉNÉRALITÉS

Le plan général des infrastructures de l'aéroport est présenté à la carte 3.

Le domaine aéroportuaire s'étend actuellement sur une superficie de 200 hectares\(^8\). Un peu moins d'un quart de celle-ci est couverte par la piste, les parkings et les bâtiments. Le reste des surfaces du domaine est recouvert de pelouses.

Outre les infrastructures propres aux activités aéroportuaires, on trouve, sur la partie Ouest de l'aéroport, les bureaux, les entrepôts et les ateliers de la SABCA, société de construction aéronautique.

1.2.3 STRUCTURES ET INFRASTRUCTURES DE L’AÉROPORT

La piste, longue de 2 550 m et large de 45 m, est composée de dalles en béton. Elle est de type souple et la résistance du sol qui la supporte est forte. Cette piste est dépourvue d’accotements en dur. Elle est délimitée par deux seuils, le seuil 07 à l'Ouest et 25 à l'Est (voir carte 3). Seul le seuil 25 est pourvu d’un équipement d’aide à la navigation (ILS) permettant les atterrissages aux instruments. La piste est également équipée d’un balisage latéral constitué de lampes placées en bordure extérieure de celle-ci.

La piste est desservie par deux taxiways implantés au sud et au nord de la piste. Le taxiway nord est muni de 3 bretelles d’accès et ne dessert que la moitié Ouest de la piste. Le Sud comporte 5 bretelles et dessert l’entièreté de la piste. Les taxiways ont une largeur de 23 m pour le sud et 20 m pour le nord. La distance entre l’axe de la piste et celui du taxiway nord est de 112 m, distance qui varie entre 120 et 155 m pour le taxiway sud.

La capacité d’accueil de l’aéroport de Charleroi est, en terme de mouvements, assez élevée et dépasse largement le trafic actuellement enregistré. La capacité d’accueil théorique de ce système est cependant fortement liée au types d’appareils et aux types de vols et atteint 17 à 38 mouvements par heure suivant les scénarios.

\(^8\) Des parcelles sont en cours d’acquisition, dans le cadre du projet d’allongement de piste.
Les bâtiments du domaine aéroportuaire sont localisés au sud de la piste, le long de l’axe routier N568. Dans la partie Sud-Ouest du site sont localisés les hangars, ateliers, bureaux et entrepôts de la SABCA.

Les bâtiments de l’aérogare (S6, carte 3), qui font partie du « centre névralgique » de l’aéroport localisé dans sa partie centrale, sont essentiellement destinés à l’accueil et au transit des passagers. Ces bâtiments accueillent également les bureaux du Ministère de l’Équipement et des Transports, la tour de contrôle ainsi que les bureaux de BSCA (S7).

La capacité d’accueil des passagers est, par contre, fortement dépendante de la capacité de l’aérogare qui, actuellement, ne peut accueillir simultanément qu’environ 700 passagers et leurs accompagnants. De quoi remplir trois avions moyens porteurs ou deux gros porteurs.

Dans la partie Est de l’aéroport, on trouve principalement des hangars (S8, S10,S13, S14), entrepôts (S14), ateliers (S9)

Le domaine aéroportuaire compte deux zones destinées au stationnement des avions : le parking nord (55.600 m²) et le parking sud (dalles P1 à P5).

Au niveau du parking voitures, l’aéroport dispose d’un parking de 406 places, composé de deux plateaux. Le premier est localisé en surface et comporte 127 places, le second, en sous-sol, en totalise 279.

Un second parking pour le personnel est localisé le long du bâtiment S9 et comporte 130 emplacements.

Trois types de carburant sont stockés sur le site aéroportuaire : le Kérosène (ou Jet-1) stocké dans des cuves enfouies sous la station de carburant à l’ouest du bâtiment S15, l’Avgaz, également stocké dans une cuve enfouie au même endroit et le Diesel stocké dans une cuve près du bâtiment S10.

I.3 GESTION

La société Brussels South Charleroi Airport S.A. est une société de droit privé, dont le capital s’élève à 153 millions de francs, détenue majoritairement par le holding public Sambrinvest à concurrence de plus de 126 millions de francs. Les autres actionnaires figurent au tableau qui se trouve ci-après. Elle est responsable de la promotion et du développement de l’aéroport. Elle s’occupe également de la supervision de toutes les activités de piste, du handling passagers, du service d’assistance complet en cas de retard, de la coordination du catering et la supervision de la mise à bord, du traitement et du suivi de tous les messages opérationnels, de l’assistance pour équipage (briefing, remplissage du plan de vol, obtention des créneaux aériens, informations météo,…), de la coordination générale entre le client et les autorités locales, du traitement des plaintes et des bagages perdues et des services financiers.
Figure 2 : Composition de l’actionnariat de BSCA :

<table>
<thead>
<tr>
<th>Actionnaires</th>
<th>Montants souscrits au 31.12.96</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMBRINVEST SA</td>
<td>126.750.000</td>
</tr>
<tr>
<td>CISET INTERNATIONAL SA</td>
<td>10.000.000</td>
</tr>
<tr>
<td>COCKERILL SAMBRE</td>
<td>5.000.000</td>
</tr>
<tr>
<td>IGRETIC SC</td>
<td>3.500.000</td>
</tr>
<tr>
<td>PROVINCE DE HAINAUT</td>
<td>1.000.000</td>
</tr>
<tr>
<td>BATIMONT IMMOBILIER SA</td>
<td>1.000.000</td>
</tr>
<tr>
<td>KOEKELEBERG SA</td>
<td>1.000.000</td>
</tr>
<tr>
<td>SABCA SA</td>
<td>1.000.000</td>
</tr>
<tr>
<td>SONACA SA</td>
<td>1.000.000</td>
</tr>
<tr>
<td>FRANCIMEX SA</td>
<td>750.000</td>
</tr>
<tr>
<td>BRUSSELS SECURITIES SA</td>
<td>500.000</td>
</tr>
<tr>
<td>CAROLO PARKING SA</td>
<td>500.000</td>
</tr>
<tr>
<td>COMPAGNIE NATIONALE A PORTEFEUILLE SA</td>
<td>500.000</td>
</tr>
<tr>
<td>LOGIS MODERNE SA</td>
<td>500.000</td>
</tr>
<tr>
<td>TOTAL CAPITAL SOUSCRIT ET LIBÉRÉ</td>
<td>153.000.000</td>
</tr>
</tbody>
</table>

Source : Rapport annuel BSCA 1998

I.4 TRAFICS

Selon le rapport annuel de BSCA 1999, près de 84 % des mouvements enregistrés étaient des mouvements de vols d’entraînement cette année-là. Les vols charter ne représentaient qu’une faible proportion du nombre total des mouvements (1%) et les vols réguliers 4,2 %. L’aviation d’affaires représentait 3 %. Les vols de tourisme et de plaisance représentaient quant à eux 4%. Le reste des vols étaient composés de vols divers tels les sauts de parachute, les vols militaires, les vols médicaux....

Figure 3 : Evolution du nombre de mouvements à Charleroi de 1990 à 1999.

<table>
<thead>
<tr>
<th>Années</th>
<th>Nombre de mouvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>49.231</td>
</tr>
<tr>
<td>1991</td>
<td>42.483</td>
</tr>
<tr>
<td>1992</td>
<td>69.886</td>
</tr>
<tr>
<td>1993</td>
<td>80.322</td>
</tr>
<tr>
<td>1994</td>
<td>69.173</td>
</tr>
<tr>
<td>1995</td>
<td>76.221</td>
</tr>
<tr>
<td>1996</td>
<td>77.199</td>
</tr>
<tr>
<td>1997</td>
<td>74.433</td>
</tr>
<tr>
<td>1998</td>
<td>62.539</td>
</tr>
<tr>
<td>1999</td>
<td>60.060</td>
</tr>
</tbody>
</table>

Actuellement, il existe sur l’aéroport, deux principaux types de vols commerciaux :

- Les vols charters : principalement durant la période estivale et à destination de l’Espagne, la Turquie, la Crète, le Sud de l’Italie, etc.

- Les vols réguliers :

 - La compagnie low-cost9 irlandaise Ryanair. Fondée en 1985, Ryanair a comme objectif de concurrencer les compagnies nationales grâce à la libéralisation du ciel européen. Ses bases principales sont aujourd’hui Dublin, Londres-Stansted et Glasgow-Prestwick. Elue, en 1997, compagnie la plus ponctuelle d’Europe, elle traite 4 millions de passagers. La seule ligne régulière de Ryanair à Charleroi est la ligne de et à destination de Dublin assurée par des Boeing 737-200 (130 passagers et une charge à vide de 52 tonnes) qui fut lancée le 1er mai 1997. Les vols à destination de Dublin sont actuellement au nombre de 4 par jour le lundi, jeudi et vendredi, et de 2 par jour les autres jours de la semaine. En 1999, Ryanair a transporté environ 175.000 passagers10 vers et au départ de Charleroi ;

9 Voir point II.1 page 26, pour une description plus détaillée des compagnies low-costs.

10 Rapport annuel BSCA 1999
Figure 5 : Evolutions de Ryanair de 1995 à 1999.

Figure 6 : Evolution du marché entre la Belgique et Dublin de 1996 à 1999.

Le marché global a doublé grâce à l’arrivée de Ryanair et Charleroi représente 51 % du trafic total, à plus ou moins égalité avec Bruxelles.

- La compagnie privée algérienne Ecoair qui effectue, depuis le début du mois de mars 2000, deux vols hebdomadaires Charleroi-Alger, assurés par un Boeing 737. Cette compagnie est attirée par les marchés de la France et de la Belgique, ce qui explique le choix de l’aéroport de Charleroi pour sa localisation jugée idéale pour attirer la clientèle du nord de la France ainsi que la communauté algérienne de Belgique. Les 2 vols hebdomadaires Alger/Charleroi/Alger s’effectuent le jeudi et le dimanche avec un Boeing 737 (130 places). Cette double rotation hebdomadaire doit particulièrement intéresser les communautés algériennes établies en Belgique et dans le nord de la France. Le partenaire commercial d’Ecoair est International Tour à Paris. La compagnie Ecoair, qui n’opérait actuellement que des vols domestiques sur le territoire algérien, entend maintenant développer ses activités, outre Charleroi, au départ de plusieurs grandes villes françaises. Le taux d’occupation actuel de ces vols est de l’ordre de 50 %, ce qui pour l’heure peut-être est considéré comme satisfaisant.

Ces relations algéro-wallonnes ont d’ailleurs été réactivées à leur niveau de 1997. En effet, à ce moment-là, près de 65.000 passagers d’Air Algérie avaient transité par les pistes de Gosselies. Cette compagnie compte reprendre, au départ de la métropole sambrienne, les cadences de 1997 avec une soixantaine de vols pour quelque 10.000 sièges offerts (une estimation réalisée en juillet dernier tablerait plutôt sur une prévision à la baisse d’une trentaine de vols). Le retour à Charleroi se justifie d’abord par une demande de plus en plus forte de déplacements vers l’Algérie, croissance soutenue d’ailleurs par des campagnes de promotion organisées en Europe. Par ailleurs, Air Algérie ne peut obtenir, en été notamment au départ des aéroports parisiens, le nombre de « slots » souhaités.

Si nous décomposons maintenant les vols passagers à l’aéroport de Charleroi une analyse des données révèle que :

- la majorité des passagers (79%) étaient à rapporter aux vols réguliers ;
- les vols charter représentaient quant à eux 11% du nombre total de passagers ;
- 30% des passagers utilisant l’aéroport de Charleroi proviennent de la Belgique (50% pour la Flandre, 25% pour Bruxelles, 25% pour la Wallonie)\(^\text{11}\), 33% d’Irlande, 5% des Pays-Bas, 2% des Etats-Unis et 1% pour la France/Luxembourg/Allemagne/Grande-Bretagne et 10% d’autres origines. Le motif de voyage des passagers est pour 50 % le tourisme, 27 % les affaires, 21 % pour autres motifs et 2 % de non réponse.

Par ailleurs, la société de handling britannique Execair\(^\text{12}\) vient de choisir l’aéroport de Gosselies pour y installer sa première base continentale de full services destinées à l’aviation d’affaires. Déjà active dans 6 aéroports britanniques, Execair espère pouvoir mettre à disposition ses services de handling au bénéfice des quelque 4500 vols d’affaires que devrait accueillir l’aéroport d’ici 2002/2003. Ce service de handling était auparavant pris en charge par le personnel de BSCA.

\(^\text{11}\) Rapport annuel BSCA 1999.
\(^\text{12}\) L’Echo 18/07/2000
Figure 7 : Top 10 des compagnies du 01/01/1999 au 31/12/1999 (passagers)

<table>
<thead>
<tr>
<th>Compagnies</th>
<th>Passagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryanair</td>
<td>174.792</td>
</tr>
<tr>
<td>Air Algérie</td>
<td>13.389</td>
</tr>
<tr>
<td>Futura</td>
<td>9.455</td>
</tr>
<tr>
<td>Virgin express</td>
<td>8.171</td>
</tr>
<tr>
<td>Nouvel Air</td>
<td>5.762</td>
</tr>
<tr>
<td>Air Alfa</td>
<td>2.218</td>
</tr>
<tr>
<td>British Midland</td>
<td>1.930</td>
</tr>
<tr>
<td>Turkish Airlines</td>
<td>1.601</td>
</tr>
<tr>
<td>Istambul Airlines</td>
<td>1.124</td>
</tr>
<tr>
<td>Sabena</td>
<td>890</td>
</tr>
</tbody>
</table>

Sous-total 219.332
Autres 16.217
TOTAL 235.549

Source : BSCA s.a. rapport annuel 1999

Figure 8 : Top 8 des destinations de 01/01/1999 au 31/12/1999 (passagers)

<table>
<thead>
<tr>
<th>Destinations</th>
<th>Passagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dublin</td>
<td>174.492</td>
</tr>
<tr>
<td>Palma</td>
<td>7.964</td>
</tr>
<tr>
<td>Alger</td>
<td>7.419</td>
</tr>
<tr>
<td>Monastir</td>
<td>4.942</td>
</tr>
<tr>
<td>Malaga</td>
<td>4.691</td>
</tr>
<tr>
<td>Oran</td>
<td>4.508</td>
</tr>
<tr>
<td>Istanbul</td>
<td>3.081</td>
</tr>
<tr>
<td>HERALKION</td>
<td>1.983</td>
</tr>
</tbody>
</table>

Sous-total 209.060
Autres destinations 25.940
TOTAL 235.549

Source : BSCA s.a. rapport annuel 1999

Figure 9 : Evolution du nombre de passagers à Charleroi de 1990 à 1999.

STATISTIQUES PASSAGERS DE 1990 À 1999

<table>
<thead>
<tr>
<th>Années</th>
<th>Nombre de passagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>40.665</td>
</tr>
<tr>
<td>1991</td>
<td>29.935</td>
</tr>
<tr>
<td>1992</td>
<td>44.807</td>
</tr>
<tr>
<td>1993</td>
<td>70.791</td>
</tr>
<tr>
<td>1994</td>
<td>34.604</td>
</tr>
<tr>
<td>1995</td>
<td>41.099</td>
</tr>
<tr>
<td>1996</td>
<td>86.724</td>
</tr>
<tr>
<td>1997</td>
<td>211.065</td>
</tr>
<tr>
<td>1998</td>
<td>210.727</td>
</tr>
<tr>
<td>1999</td>
<td>235.549</td>
</tr>
</tbody>
</table>

Source : Web site aéroport de Charleroi
Figure 10 : Graphique de l’évolution du nombre de passagers de 1990 à 1999.

En ce qui concerne le fret, l’aérogare dispose d’un hangar de 1.000 m², dont la surface est relativement grande, mais peu adapté au traitement et à la manutention des marchandises. La capacité de l’entrepôt en terme de fret est d’environ 9.000 tonnes, c’est-à-dire presque dix fois la charge actuellement transportée. Actuellement, le fret est donc une activité presque inexistant à l’aéroport de Charleroi.

Figure 11 : Evolution du tonnage fret à Charleroi de 1994 à 1998.

Statistiques fret de 1994 à 1999

<table>
<thead>
<tr>
<th>Années</th>
<th>Tonnage fret</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>82</td>
</tr>
<tr>
<td>1995</td>
<td>195</td>
</tr>
<tr>
<td>1996</td>
<td>623</td>
</tr>
<tr>
<td>1997</td>
<td>829</td>
</tr>
<tr>
<td>1998</td>
<td>725</td>
</tr>
<tr>
<td>1999</td>
<td>1250</td>
</tr>
</tbody>
</table>

Source : Web site aéroport de Charleroi

Figure 12 : Graphique de l’évolution du tonnage fret de 1994 à 1999.
I.5 ENTREPRISES LIÉES AUX ACTIVITÉS AÉROPORTUAIRES

L’arrondissement de Charleroi présente une spécialisation marquée dans le domaine de la construction aéronautique. On peut y trouver des entreprises telles SONACA (Société Nationale de Construction Aéronautique, Gosselies), ALCATEL ETCA (équipement électronique, systèmes et services télématiques), SOFTWINGS (simulateurs pour l’aviation générale), SABCA (Société Anonyme Belge de Construction Aéronautique, Gosselies), BELAIRBUS13, GEM’S, CeFAé et AIRTRONICS. Mais cette spécialisation s’explique surtout par la présence de deux entreprises importantes, la SABCA et la SONACA, qui sont situées à proximité de l’aéroport et dénombrent un nombre important d’emplois. SONACA, SABCA, ALCATEL ETCA et SOFTWINGS représentaient à elles seules 2.605 emplois en 199814 sur les 4.467 emplois du secteur aéronautique et spatial que compte actuellement la Wallonie, soit 58 % du total. Même si l’aéroport de Charleroi constitue une importante base de l’aéronautique travaillant avec le monde entier, ces sociétés n’utilisent que très rarement les infrastructures aéroportuaires (ex : vols d’essais par la SABCA). Elles envisagent cependant d’utiliser l’aéroport pour le déplacement de leurs cadres et d’organiser la maintenance de certains avions.

I.6 DISPONIBILITÉ D’ACCUEIL DES ENTREPRISES (voir carte 2)

I.6.1 TAUX DE OCCUPATION DES 9 PARCS INDUSTRIELS PROCHES

Figure 13 : Les parcs industriels dans un rayon de 5 km autour de l’aéroport15

<table>
<thead>
<tr>
<th>Parc industriel</th>
<th>Superficie totale</th>
<th>Superficie occupée</th>
<th>Taux de occupation actuel</th>
<th>Superficie disponible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aéropole</td>
<td>120 ha</td>
<td>55 ha</td>
<td>49 %</td>
<td>65 ha</td>
</tr>
<tr>
<td>Charleroi-Gosselies I</td>
<td>101 ha</td>
<td>101 ha</td>
<td>100 %</td>
<td>0</td>
</tr>
<tr>
<td>Charleroi-Gosselies II</td>
<td>44 ha</td>
<td>44 ha</td>
<td>100 %</td>
<td>0</td>
</tr>
<tr>
<td>Charleroi-Jumet</td>
<td>74 ha</td>
<td>74 ha</td>
<td>100 %</td>
<td>0</td>
</tr>
<tr>
<td>Heppignies</td>
<td>83 ha</td>
<td>76 ha</td>
<td>91 %</td>
<td>7 ha</td>
</tr>
</tbody>
</table>

IGRETEC16 estime que les parcs industriels proches seront saturés d’ici à 2010. De plus, peu d’activités présentes actuellement sur ces sites ont malheureusement recours au transport aérien.

Figure 14 : Les parcs industriels dans un rayon de 5 à 10 km de l’aéroport

<table>
<thead>
<tr>
<th>Parc industriel</th>
<th>Superficie totale</th>
<th>Superficie occupée</th>
<th>Taux de occupation actuel</th>
<th>Superficie disponible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courcelles</td>
<td>100 ha</td>
<td>38 ha</td>
<td>38 %</td>
<td>62 ha</td>
</tr>
<tr>
<td>Martinrou</td>
<td>60 ha</td>
<td>27 ha</td>
<td>45 %</td>
<td>33 ha</td>
</tr>
<tr>
<td>Fleurus-Farciennes</td>
<td>154 ha</td>
<td>145 ha</td>
<td>94 %</td>
<td>9 ha</td>
</tr>
<tr>
<td>Montignies sur Sambre</td>
<td>31 ha</td>
<td>25 ha</td>
<td>80 %</td>
<td>6 ha</td>
</tr>
</tbody>
</table>

13 Belairbus : Association créée en 1979 regroupant des partenaires belges du secteur de la construction aéronautique dans le cadre du programme industriel d’Airbus. Les principaux membres de ce consortium sont la SONACA (Charleroi-Gosselies), Asco Industries (Zaventem) et Eurair (Bruges).
16 IGRETEC : Intercommunale pour la gestion et la réalisation d’études techniques et économiques.

CPDT – Thème 7.2 – Rapport Final – LEPUR/GUIDE – Optimisation des grandes infrastructures – 21
A part la zone de Martinrou (zone PME) dont la superficie encore disponible est de 33 ha, il faut se rendre à l’évidence que les autres zones d’activités sont saturées et ne permettent plus d’accueillir de grandes entreprises.

IGRETEC a, par ailleurs, soumis à la Région wallonne 5 propositions de nouveaux parcs industriels. Deux d’entre elles seraient l’extension de 2 parcs existants, Charleroi-Jumet et Fleurus-Farciennes. Les autres propositions concerneraient 3 nouveaux parcs et nécessiteraient une révision des plans de secteurs.

I.6.2 ENQUÊTE CONCERNANT LE TAUX D’UTILISATION DES INFRASTRUCTURES AÉROPORTUAIRES

Nous avons réalisé début mai 2000, sur base des fichiers d’IGRETEC, une enquête auprès d’un échantillon de 248 entreprises situées sur les 9 zonings industriels de Charleroi concernant leur taux de recours aux différents réseaux de transport dans le cadre de leur activité. Le questionnaire envoyé comportait, outre la demande de renseignements quant à la nature de l’activité de l’entreprise, le nombre d’emplois et la superficie occupée, une série de questions concernant le taux d’utilisation des différents réseaux de transport, la raison de ce taux d’utilisation, l’importance que représente la localisation à proximité d’un aéroport, l’importance de la relation entretenu avec une entreprise ayant recours aux services aéroportuaires, la répartition (en %) des modes de transport utilisés ainsi que le recours au transport combiné.

Nous avons reçu 80 réponses sur ces 240 questionnaires envoyés, ce qui représente un taux de réponse de 32%. Il ressort d’une première analyse que 45 de ces réponses proviennent d’entreprises situées dans un rayon de 5 kilomètres autour de l’aéroport de Charleroi-Bruxelles Sud et que 31 sont situées dans un rayon de 5 à 10 kilomètres. Les 4 entreprises restantes ayant répondu à ce questionnaire n’ont aucun recours au moyen de transport, car la nature de leur activité ne le justifie pas (entreprises de maintenance, administration communale, entreprise d’ingénierie de télécommunications…).

Parmi les 45 entreprises situées dans un rayon de 5 km, 76 % ont uniquement recours à la route. Il s’agit en majorité d’entreprises de fabrication de matériaux lourds tels moteurs diesel, pièces métalliques et autres matériaux de construction ainsi que de nombreux grossistes en tous genres (mobiliers, carrelage, informatique, …). Ces sociétés n’ont aucun lien avec les activités aéroportuaires et n’utilisent que le mode de transport routier.

Figure 15 : Proportion d’entreprises, localisées dans un rayon de 5 km de l’aéroport, ayant exclusivement recours à la route.

![Proportion de "100 % route" dans une rayon de 5 km](image-url)
Pour les autres 24 % (11 entreprises), le taux de recours moyen aux infrastructures routières est de 74 %, 21 % pour les infrastructures aéroportuaires et 5 % pour le rail. Parmi ces entreprises, 6 ont recours au transport combiné simple, plus précisément 4 au transport combiné air/route, il s’agit d’entreprises ayant principalement des activités de production d’alliage en titane et de matériel Télécoms, et 2 (activité de recherche et grossiste en matériel électrique) au transport rail/route. Les entreprises ayant le plus souvent recours au transport aérien sont celles produisant des biens d’exportation à haute valeur ajoutée, comme par exemple Afrilink Belgium s.a. (télécoms par satellite) et Settas s.a. (fonderie et alliages en titane). Les entreprises aéronautiques, telles la SABCA et la SONACA ont également recours à l’aéroport. La localisation à proximité de l’aéroport, pour le reste des entreprises, c’est-à-dire une grande majorité, n’est donc pas justifiée de ce point de vue ! Elles justifient d’ailleurs leur présence sur de tels sites, notamment pour l’image de marque ou la facilité d’accès à leur entreprise pour leurs clients (bon accès routiers et localisation rapide de l’aéroport).

Figure 16 : Recours moyens aux différents modes de transport pour les entreprises, situés dans un rayon de 5 km de l’aéroport, qui ne recourent pas exclusivement à la route.

<table>
<thead>
<tr>
<th>Proportion du recours aux différents modes de transport pour les autres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avion</td>
</tr>
<tr>
<td>0%</td>
</tr>
</tbody>
</table>

Pour les 31 entreprises situées dans un rayon de 5 à 10 km autour de l’aéroport, 81 % ont également recours à la route uniquement.

Figure 17 : Proportion d’entreprises, localisées dans un rayon de 5 à 10 km de l’aéroport, ayant exclusivement recours à la route.

<table>
<thead>
<tr>
<th>Proportion de "100 % route" dans un rayon de 5 à 10 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 % route</td>
</tr>
<tr>
<td>19%</td>
</tr>
<tr>
<td>81%</td>
</tr>
</tbody>
</table>
Pour les autres 19 %, le recours moyen à la route est de 58,3 %, de 28,3 % pour l’aérien, 12 % pour le rail et 1,6 % pour la voie fluviale. Ces 19 % restant, soit 6 entreprises, utilisent donc un autre mode de transport que la route. Quatre d’entre elles ont notamment recours au transport combiné simple. La première (production de matériaux de soudage) utilise le transport combiné simple rail/route, la deuxième (production et distribution de radio-isotopes) le route/air, la troisième (fabrication de produits en verre) le route/eau et la quatrième (transport de radiotypes à usage médical) le air/route.

Figure 18 : Recours moyens aux différents modes de transport pour les entreprises, situés dans un rayon de 5 à 10 km de l’aéroport, qui ne recourent pas exclusivement à la route.

I.7 CONCLUSION

Au niveau de la disponibilité d’accueil des entreprises, il existe 9 parcs industriels dans un rayon de 10 km autour de l’aéroport. Ces parcs ont actuellement atteint un taux d’occupation assez élevé. Selon l’étude TRACTEBEL17, l’évolution constante de l’attractivité du site aéroportuaire permet d’envisager d’ici à 2000 la saturation de six des neuf zonings proches (Gosselies I, Gosselies II, Montignies-sur-Sambre, Fleurus-Farciennes, Fleurus-Herppignies et Jumet). Les 175 ha encore disponibles sur les trois autres zonings (Fleurus-Martinrou, Courcelles et l’Aéropole) seront saturés, selon Monsieur Desplat, conseiller économique à IGRETEC, dans un délai de 5 à 6 ans, ce qui créerait 3.500 emplois équivalents temps plein (on note en effet un taux moyen de 20 emplois par ha). Si l’on considère généralement qu’un parc industriel génère 0,1 emploi de service aux entreprises par emploi, 350 emplois supplémentaires seront ainsi créés plus 105 emplois induits pour satisfaire aux besoins des personnes employées (0,03 emploi par emploi industriel). Encore faut-il bien évidemment faire la distinction importante entre les créations nettes d’emploi et les simples changements de localisation de ceux-ci.

Si l'on observe les graphiques, à l'annexe I point 3, des emplois générés par le projet d'allongement de piste selon l'étude TRACTEBEL, on observe qu'au début la croissance des emplois sera dû en plus grande partie à l'arrivée de nouvelles activités attirées par la présence d'un site aéroportuaire. Par contre, à long terme, les emplois directement liés aux activités aéroportuaires prendront à nouveau de l'importance, et cela dû à la saturation des sites d'implantation d'activités.

Il faut néanmoins adopter une politique vigilante et veiller à réserver sur ces sites l'espace encore disponible, bien que déjà très réduit, à des entreprises ayant un recours effectif aux infrastructures aéroportuaires, contrairement à ce qui a été autorisé jusqu'à maintenant, comme le montre les résultats de notre enquête. Les terrains encore disponibles devront donc notamment être prioritairement réservés à des PME des secteurs de pointe (voir point II.4.1.1, page 36).
Chapitre II : VISION STRATÉGIQUE DU DÉVELOPPEMENT DE GOSSELIES

II.1 RÔLE DES AÉROPORTS RÉGIONAUX EUROPÉENS DANS LE TRANSPORT AÉRIEN DE DEMAIN

Le trafic total de passagers traité par les aéroports communautaires de plus de 200.000 passagers est passé, entre 1988 et 1997, de 471 millions à 751 millions. Cette croissance correspond à une augmentation de 59 % sur la période considérée et à une croissance moyenne annuelle de 5,3 %. Entre 1998 et 1999, le trafic passagers en Europe continentale a augmenté de 5,6 % 18.

Cette croissance importante du trafic aérien dans les aéroports communautaires a amené l’émersion de diverses contraintes au bon fonctionnement et à l’expansion du nombre de mouvements au niveau des aéroports. En fait, on peut distinguer trois grandes catégories de facteurs limitatifs concernant la capacité aéroportuaire. Ces trois éléments principaux sont : son accessibilité terrestre, son accessibilité aérienne et la capacité des infrastructures au sol. Cette dernière peut être divisée en sous-systèmes : pistes, aires de stationnement, aérogares et équipement de navigation aérienne.

La capacité aéroportuaire dépend par ailleurs de facteurs, qui échappent à la gestion de l’autorité aéroportuaire proprement dite, tels que le niveau de congestion de l’espace aérien ou la composition de la flotte d’une compagnie utilisant l’aéroport.

On notera que d’autres contraintes sont également venues, au fur et à mesure du temps, s’inscrire dans la liste des contraintes auxquelles doit faire face le développement aéroportuaire. On peut citer ainsi les contraintes environnementales, dont l’enjeu majeur est la réduction des nuisances sonores dans le but d’un respect de la santé et de la qualité de la vie. Cette contrainte que subit la plupart des aéroports relève tout d’abord de leur proximité des zones urbanisées – ou de l’urbanisation des zones proches de l’aéroport - ainsi que de l’augmentation de leur trafic. Une autre contrainte, qui est de plus en plus d’actualité, est la lourdeur des procédures administratives qui pèse sur le développement des aéroports.

La libéralisation progressive du trafic communautaire et mondial ainsi que la saturation des aéroports principaux ont mené à une réorganisation profonde du système de transport aérien, dont notamment l’émergence d’aéroports régionaux en tant qu’acteurs actifs du transport aérien, ainsi qu’au développement de nouvelles compagnies (compagnies régionales et low-cost) qui nous intéressent particulièrement.

Les opportunités offertes par la libéralisation ont donc permis l’émergence et le développement de compagnies charters, de compagnies régionales comme Crossair, Air Littoral, Regional Airlines ou Brit Air ainsi que de compagnies low-cost, c’est-à-dire des compagnies à bas tarif comme Virgin Express, Go, Ryanair, EasyJet ou Buzz. Ces compagnies ont permis de créer de nombreuses liaisons directes à partir d’aéroports régionaux et, de ce fait, ont contribué à la croissance du trafic de ceux-ci.

18 Source : Association des compagnies Aériennes Européennes.
Avec une croissance annuelle de 12 à 15 % par an19, croissance deux fois plus rapide que celle des grandes compagnies, le trafic des compagnies régionales a plus que quadruplé au cours de la dernière décennie. Cette spectaculaire envolée du transport régional européen s’appuie sur la multiplexification des échanges intra-européens et l’ouverture des frontières européennes. Mais elle doit aussi beaucoup aux transferts de lignes opérés par les grandes compagnies, désireuses de réduire leurs coûts en sous-traitant l’exploitation de leurs réseaux régionaux. De plus, les transporteurs régionaux ont largement bénéficié de la politique de « hub », qui conduit les grandes compagnies à multiplier les liaisons régionales pour alimenter leurs vols internationaux.

Les compagnies low-cost se développent depuis 1997 à un rythme soutenu et les destinations se multiplier. D’ores et déjà, Ryanair assure depuis 1997 des liaisons régulières à destination de l’Irlande à partir de plates-formes secondaires comme l’aéroport de Charleroi, de Beauvais (à 60 kilomètres de Paris), St Etienne (Lyon) et Carcassonne (Toulouse). Dernièrement, cette compagnie a ouvert une ligne Beauvais-Glasgow (Charleroi était d’ailleurs également demandée pour cette liaison). L’été 1999, Ryanair a enrichi son réseau de huit nouvelles routes. Il s’agit des vols de Stansted sur Hambourg, Malmö, Nîmes, Perpignan, Lamezia, Brescia et Alghero et d’un vol entre Glasow-Prestwick en Ecosse et Hahn près de Francfort. Dans les deux années à venir, Ryanair a en outre l’intention de développer un hub sur un important marché émergeant comme l’Allemagne, la Suède, la France ou l’Italie.

Les compagnies low-cost profitent de la libéralisation du transport aérien en proposant des tarifs nettement inférieurs à ceux des autres compagnies, grâce à des coûts d’exploitation très faibles et à l’offre d’un service minimum. Actuellement, ces compagnies low-cost représentent 1 à 2 % du marché total européen alors qu’aux États-Unis elles sont présentes depuis 1971 et ont une part de marché de plus de 40 %. Les parts de marché des compagnies low-cost aux États-Unis montrent bien le potentiel à venir pour ce type de compagnies en Europe.

Plus pour permettre une réduction maximale des coûts d’exploitation, les compagnies low-cost recherchent en outre, une implantation sur des aéroports secondaires, mais proches de grandes agglomérations. L’implantation sur de tels aéroports s’explique essentiellement par des contraintes moindres en termes de créneaux, un temps de rotation au sol très court, des coûts de redevances et de handling moins élevés.

Un des segments de trafic qui a fortement augmenté ces dernières années est le fret express. Aux États-Unis, il représentait seulement 4 % du total de fret aérien dans les années 70. Il en représentait aujourd’hui plus de 50 %. Cette évolution devrait s’étendre au niveau mondial dans quelques années où la part du fret express est seulement aujourd’hui de 6 %. Les taux de croissance de ce marché sont généralement de l’ordre de 15 à 20 % par an. Ce type de fret est essentiellement transporté par les intégrateurs et le secteur postal. Les compagnies aériennes traditionnelles se positionnent généralement de plus en plus comme sous-traitants pour les intégrateurs.

19 Source : Association des compagnies Régionales Européennes (ERA).
20 IATA : International Air Transport Association, rapport sur le fret aérien, 1999.
Des contraintes de plus en plus fortes se marquent au niveau des grands aéroports sur l’activité fret. Ces contraintes sont principalement d’ordre technique et environnemental. Elles limitent les effets de concentration sur quelques aéroports et favorisent de ce fait, l’émergence et le développement d’aéroports régionaux spécialisés dans le traitement de l’activité « full fret ».

On constate donc que, depuis 10 ans, la part des quatre aéroports majeurs (Amsterdam, Francfort, Londres et Paris) reste majoritaire (52 %) mais a tendance à décroître légèrement au profit des aéroports régionaux de 1 à 10 millions de passagers et des aéroports plus petits, comme celui de Liège bien placés dans le quadrilatère Londres/Amsterdam/Francfort/Paris.

Confrontées à la saturation, les sociétés gestionnaires d’aéroports optent pour une spécialisation des aéroports constituant le système aéroportuaire, comme à Londres ou Paris. Cette optimisation, comme l’illustre le cas londonien, se traduit par une hiérarchisation des trafics en fonction de leurs contributions respectives. Ainsi, sur l’aéroport principal de la compagnie majeure (ex: Heathrow pour British Airways), on opte pour promouvoir les vols longs courriers et un report spécifique des autres trafics sur le ou les autres aéroports du système.

II.2 RETOMBÉES ÉCONOMIQUES SUR LES SITES AÉROPORTUAIRES

La réalisation d’études approfondies est nécessaire si l’on souhaite estimer avec une certaine précision les retombées économiques réelles des investissements réalisés sur un site aéroportuaire, ainsi que les différents impacts du développement des activités de celui-ci.

Il convient tout d’abord de définir le contexte régional d’un aéroport. La base de l’impact économique d’un aéroport doit être en effet sa région ou, dans un sens plus large, les bénéfices retirés par tout le pays de l’activité de l’aéroport. Cependant, une surface de référence trop étendue dilue les effets. Il est donc essentiel de définir la région par rapport aux effets dont l’estimation est recherchée. Si la surface de recherche est trop large, le taux des revenus et d’emplois relatifs à l’aéroport est assez faible et, d’un autre côté, si la région choisie est trop réduite, les effets deviennent incroyablement élevés.

Une approche pratique pour définir une région peut être l’usage de la région naturelle politique – l’aéroport est-il le seul de sa région ? – surtout si c’est celle-ci qui a consenti aux investissements. On pourrait également définir la région par rapport à l’infrastructure. Par exemple, la zone d’influence pour les passagers de tourisme, les passagers d’affaires et le fret aérien. Une autre option consiste en rassembler toutes les communautés locales dans

21 Pour information, voir annexe II : Budgets engagés en matière d’investissement à Charleroi-Bruxelles Sud de 1991 à 1998.
lesquelles plus d’un pourcentage fixe de la force de travail est employée directement ou indirectement par l’aéroport dans son ensemble.
Finalement, un dernier facteur peut être de considérer la région comme pouvant être étendue au-delà des frontières nationales.

Une fois le contexte régional établi, il convient de distinguer les différents types d’impacts que peut avoir un aéroport sur sa région. Le premier de ceux-ci est composé de ce que l’on appelle les impacts directs. Ces impacts résultent des activités sur le site aéroportuaire réalisées par un grand nombre d’agences et d’entreprises, c’est-à-dire les recettes d’exploitation générées par l’activité de transport de passagers et de fret.
Les postes suivants ont été identifiés comme pouvant apporter une contribution significative aux résultats futurs de l’aéroport :

1. Ventes de produits et services
 1.1 Commerces
 1.2 HORECA
 1.3 Carburant
 1.4 Transport de surface (passagers)
 1.5 Maintenance avions
 1.6 Catering
 1.7 Parkings
 1.8 Handling
 1.9 Autres retombées
 • Transport terrestre de fret
 • Services : nettoyage, entretien domaine
 • Compagnies aériennes, agences de voyage, tour opérateurs

2. Recettes liées au trafic aérien
 2.1 Taxes d’atterrissage
 2.2 Taxes de stationnement
 2.3 Taxes d’embarquement (passagers)

3. Recettes domaniales

Les aéroports sont comparables à des unités de production, produisant des unités de transport aérien par le biais d’une interaction complexe de ressources et de procédures. Tout comme d’autres grands secteurs, les aéroports exercent un impact économique considérable sur les zones qui les entourent, fournissant emplois directs, prospérité économique et stabilité aux régions. Pour comprendre la contribution que peut apporter un aéroport à une région, il est nécessaire de quantifier sa valeur économique. Cette partie examine l’impact direct exercé par les aéroports sur les zones voisines, impact qui se traduit principalement par la création d’emplois.

L’estimation de l’impact direct d’un aéroport se fait par l’examen de la valeur économique des activités des sociétés opérant sur le site de l’aéroport, et dont les activités soutiennent directement l’activité sur le site. La « valeur économique » est généralement décrite comme étant l’emploi, les revenus/valeur ajoutée, l’output et les revenus provenant de taxes générés par les sociétés et les agences opérant sur un aéroport.

23 Location de bureaux, entrepôts, terrains et parkings voitures.
Une fois les impacts directs estimés, il convient de déterminer les **impacts indirects** de l’activité aéroportuaire. Ils proviennent en général des activités économiques des entreprises situées hors site aéroportuaire et qui servent les usagers de l’aéroport. Cela peut inclure des agences de voyage et des tour opérateurs, des hôtels, restaurants, détaillants et attractions pour les touristes, et des parkings voitures hors de l’aéroport. Il faut tenir compte du plus grand nombre possible de ces entreprises.

Le troisième type d’impacts est celui des **impacts induits** qui résultent du calcul des différentes vagues de dépenses générées par les différents bénéficiaires directs et indirects. On obtient d’habitude l’effet induit par la multiplication de la somme des bénéfices directs et indirects par un facteur donné. Il existe différentes méthodes pour le calcul de ce multiplicateur\(^24\). L’impact total d’un aéroport comprend donc les impacts directs, indirects et induits.

Finalement on ne peut négliger les effets qualitatifs d’un aéroport. L’image de marque est incontestablement un élément important. Cette réputation est basée sur des caractéristiques telles que le fait d’être un hub ou pas, la localisation près d’une ville importante, l’accessibilité à des industries importantes, la qualité de l’infrastructure (autoroutes, services, télécommunications), un espace aérien non restreint, des conditions météorologiques optimales et des opérations aéroportuaires 24h/24.

Plus la réputation de l’aéroport est bonne plus la motivation est grande pour les entreprises de s’implanter à proximité. L’effet de réputation est lié à l’habilité des gouvernements locaux d’utiliser l’aéroport en tant qu’instrument de marketing afin d’attirer des compagnies près de l’aéroport, et convaincre les compagnies aériennes d’utiliser l’aéroport comme hub ou comme site pour la concentration de leurs installations de maintenance.

L’existence et les opérations de l’aéroport font que certaines de ces entreprises reçoivent des bénéfices en terme de recherche et développement et en innovations, c’est ce que l’on appelle l’ « effet d’innovation ».

Pars ailleurs, Il ne faut pas négliger non plus les emplois « catalyseurs » générés par des entreprises non directement liées aux activités aéroportuaires, mais attirées par l’image du site. Une étude menée par l’ACI\(^25\) en 1998 auprès de 23 aéroports européens de tailles diverses conclut à la création moyenne de 4.000 emplois par million de passagers annuels dont 1.100 emplois directs liés aux activités aéroportuaires proprement dites, 1.100 emplois indirects et induits et 1.800 emplois « catalyseurs ». L’emploi indirect et l’emploi induit peuvent ainsi représenter plus du double de l’emploi direct sur site. Pour le fret, on parle généralement de 1.000 emplois créés pour 100.000 tonnes traitées, estimation plus que confirmée à Liège Airport par exemple. A Charleroi, une première analyse sur les trois graphiques ci-dessous, réalisés à partir des chiffres parus dans le rapport annuel de BSCA 1999, montre la relation évidente entre l’évolution des investissements réalisés, l’évolution du trafic passagers et le nombre d’heures de travail prestées au sein de l’aéroport.

\(^24\) The Economic Impact Study Kit, ACI, 1993, p.11.
Figure 19 : Graphiques reprenant les investissements réalisés, l’évolution du trafic passager de 1995 à 1999 et l’évolution des heures de travail à Charleroi-Bruxelles Sud, de 1995 à 1998.

Source : Rapport annuel BSCA 1999
L’emploi direct représente l’emploi de main d’œuvre à l’aéroport ou dans sa proximité immédiate. Il s’agit de l’impact le plus souvent étudié et quantifié. Les aéroports comptent souvent parmi les plus gros employeurs dans les économies nationale et régionale, et dans les zones adjacentes aux grands aéroports, le taux de chômage est souvent plus bas que la moyenne.

Il existe trois types d’emplois générés par les aéroports :
- emploi dépendant des compagnies aériennes ;
- emploi dépendant de l’aéroport ;
- emploi dépendant des activités commerciales.

Figure 20 : Nombre d’emplois directs sur site et hors site, sur 4 aéroports européens26

<table>
<thead>
<tr>
<th>Aéroport</th>
<th>Année</th>
<th>Total passagers (’000.000)</th>
<th>Emplois directs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sur site</td>
<td>Hors site</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>1997</td>
<td>31,0</td>
<td>46,519</td>
</tr>
<tr>
<td>Zurich</td>
<td>1997</td>
<td>18,3</td>
<td>17,195</td>
</tr>
<tr>
<td>Barcelone</td>
<td>1994</td>
<td>10,7</td>
<td>4,503</td>
</tr>
<tr>
<td>Manchester</td>
<td>1993</td>
<td>13,1</td>
<td>12,193</td>
</tr>
</tbody>
</table>

Les facteurs déterminant la densité de l’emploi peuvent être résumés comme suit :

- structure du trafic passagers
 Trafic régulier/charter, passagers affaires/loisirs et passagers domestiques ou internationaux
- utilisation de la capacité
 Les très petits aéroports ont en général un niveau d’utilisation de la capacité peu élevé et un nombre fixe d’employés
- volume fret
 Les aéroports traitant des volumes élevés de trafic fret génèrent des niveaux d’emploi élevés par mppa (millions de passagers annuels)
- rôle de l’aéroport
 les grandes hubs qui accueillent une large gamme d’activités professionnelles connaissent en général de fortes densités d’emploi

26 ACI Europe, Emploi et prospérité en Europe, septembre 1998.
• **nombre de compagnies aériennes basées**
 Les compagnies aériennes dominent l’emploi sur le site dans bon nombre d’aéroports, par exemple :
 - équipages basés
 - installations de maintenance
 - siège social national ou régional
 - opportunités de développement
 - exploitation d’activités associées aux aéroports, comme le développement de bureaux

Les emplois indirects et induits hors site peuvent, quant à eux, représenter plus du double de l’emploi sur le site. L’échelle du multiplicateur peut être aussi fonction de la taille de la zone d’étude. De manière générale, le multiplicateur s’élève proportionnellement à l’étendue de la zone étudiée.

Ces différents impacts sont illustrés à la figure 21 reprenant l’emploi de 19 aéroports européens sur 23. L’ensemble de ces 19 aéroports génère à lui seul près de 335.000 emplois directs auxquels s’ajoutent quelque 400.000 emplois indirects. L’impact total direct, indirect et induit sur l’emploi est en moyenne pour ces aéroports de 2.681 emplois par million de passagers.
Figure 21 : Impact total d'un aéroport sur l'emploi: quelques chiffres

<table>
<thead>
<tr>
<th>Aéroport</th>
<th>Année</th>
<th>Total Passagers</th>
<th>Total Personnes</th>
<th>M.U.T.</th>
<th>Direct</th>
<th>Indirect</th>
<th>Induit</th>
<th>Total</th>
<th>Total des emplois directs par mppa</th>
<th>Total des emplois directs/induits par mppa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>1997</td>
<td>31</td>
<td>1,200,00</td>
<td>43</td>
<td>49,000</td>
<td>25,000</td>
<td>74,000</td>
<td>1,581</td>
<td>1,140</td>
<td>2,387</td>
</tr>
<tr>
<td>Barcelone</td>
<td>1994</td>
<td>10,7</td>
<td>58,883</td>
<td>11,289</td>
<td>4,903</td>
<td>4,951</td>
<td>9,854</td>
<td>458</td>
<td>434</td>
<td>921</td>
</tr>
<tr>
<td>Birmingham</td>
<td>1994</td>
<td>4,9</td>
<td>18,767</td>
<td>5,088</td>
<td>4,938</td>
<td>640</td>
<td>1,710</td>
<td>7,288</td>
<td>1,008</td>
<td>1,487</td>
</tr>
<tr>
<td>Bruxelles</td>
<td>1993</td>
<td>10</td>
<td>306,463</td>
<td>13,065</td>
<td>19,800</td>
<td></td>
<td>29,909</td>
<td>1,980</td>
<td>1,515</td>
<td>2,991</td>
</tr>
<tr>
<td>Cardiff</td>
<td>1997</td>
<td>1,2</td>
<td>741</td>
<td>1,207</td>
<td>1,684</td>
<td>140</td>
<td>140</td>
<td>2,464</td>
<td>1,570</td>
<td>1,560</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>1997</td>
<td>15,5</td>
<td>70,866</td>
<td>16,209</td>
<td>12,000</td>
<td>5,760</td>
<td>9,216</td>
<td>26,976</td>
<td>774</td>
<td>1,740</td>
</tr>
<tr>
<td>Exeter</td>
<td>1994</td>
<td>0,2</td>
<td>2</td>
<td>563</td>
<td>205</td>
<td>205</td>
<td>973</td>
<td>2,815</td>
<td>2,815</td>
<td>4,865</td>
</tr>
<tr>
<td>Gatwick</td>
<td>1996</td>
<td>24,3</td>
<td>267,320</td>
<td>26,973</td>
<td>24,000</td>
<td>8,800</td>
<td>15,180</td>
<td>40,950</td>
<td>988</td>
<td>890</td>
</tr>
<tr>
<td>Glasgow</td>
<td>1995</td>
<td>5,5</td>
<td>13,059</td>
<td>5,631</td>
<td>5,244</td>
<td>7,285</td>
<td></td>
<td>12,529</td>
<td>953</td>
<td>931</td>
</tr>
<tr>
<td>Grande Canarie</td>
<td>1994</td>
<td>7,6</td>
<td>35,000</td>
<td>7,950</td>
<td>2,807</td>
<td></td>
<td></td>
<td>369</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>Hambourg</td>
<td>1994</td>
<td>7,5</td>
<td>85,000</td>
<td>8,350</td>
<td>12,530</td>
<td></td>
<td></td>
<td>1,671</td>
<td>1,501</td>
<td></td>
</tr>
<tr>
<td>Heathrow</td>
<td>1991</td>
<td>40,5</td>
<td>654,625</td>
<td>47,046</td>
<td>58,742</td>
<td>44,100</td>
<td>88,730</td>
<td>191,572</td>
<td>1,450</td>
<td>1,249</td>
</tr>
<tr>
<td>Malaga</td>
<td>1995</td>
<td>6,3</td>
<td>7,138</td>
<td>6,371</td>
<td>2,488</td>
<td>4,863</td>
<td></td>
<td>7,351</td>
<td>395</td>
<td>390</td>
</tr>
<tr>
<td>Manchester</td>
<td>1993</td>
<td>13,1</td>
<td>86,006</td>
<td>13,960</td>
<td>19,093</td>
<td>4,400</td>
<td></td>
<td>30,693</td>
<td>1,457</td>
<td>1,368</td>
</tr>
<tr>
<td>Milan</td>
<td>1994</td>
<td>13</td>
<td>160,284</td>
<td>14,603</td>
<td>8,436</td>
<td>25,798</td>
<td></td>
<td>34,234</td>
<td>649</td>
<td>578</td>
</tr>
<tr>
<td>Munich</td>
<td>1996</td>
<td>15,7</td>
<td>76,000</td>
<td>16,460</td>
<td>16,883</td>
<td>22,025</td>
<td>11,424</td>
<td>50,332</td>
<td>1,075</td>
<td>1,026</td>
</tr>
<tr>
<td>Newcastle</td>
<td>1994</td>
<td>2,5</td>
<td>997</td>
<td>2,510</td>
<td>2,167</td>
<td></td>
<td></td>
<td>2,780</td>
<td>867</td>
<td>863</td>
</tr>
<tr>
<td>Nice</td>
<td>1994</td>
<td>5,9</td>
<td>22,291</td>
<td>6,123</td>
<td>4,496</td>
<td></td>
<td></td>
<td>13,000</td>
<td>745</td>
<td>734</td>
</tr>
<tr>
<td>Oslo</td>
<td>1996</td>
<td>11,1</td>
<td>53,237</td>
<td>11,632</td>
<td>9,480</td>
<td></td>
<td></td>
<td>22,480</td>
<td>854</td>
<td>815</td>
</tr>
<tr>
<td>Paris CDG</td>
<td>1996</td>
<td>31,7</td>
<td>864,112</td>
<td>40,361</td>
<td>49,463</td>
<td>60,537</td>
<td></td>
<td>110,000</td>
<td>1,560</td>
<td>1,226</td>
</tr>
<tr>
<td>Paris Orly</td>
<td>1996</td>
<td>27,4</td>
<td>246,369</td>
<td>29,864</td>
<td>29,262</td>
<td>22,695</td>
<td></td>
<td>51,957</td>
<td>1,068</td>
<td>1,896</td>
</tr>
<tr>
<td>Valence</td>
<td>1994</td>
<td>1,8</td>
<td>9,000</td>
<td>1,890</td>
<td>940</td>
<td>410</td>
<td>6,599</td>
<td>7,949</td>
<td>522</td>
<td>497</td>
</tr>
<tr>
<td>Zurich</td>
<td>1997</td>
<td>18,3</td>
<td>472,273</td>
<td>23,023</td>
<td>17,914</td>
<td>27,512</td>
<td></td>
<td>979</td>
<td>778</td>
<td></td>
</tr>
</tbody>
</table>

(Source : Emploi et prospérité en Europe, Impact économique et social des aéroports, PG 27, ACI Europe, 1998)
Source : York Consulting
The Economic Impact of Airports (Mai 1998)

II.3 L’AMÉNAGEMENT DU TERRITOIRE ET L’IMPLICATION DES AUTORITÉS RÉGIONALES AU NIVEAU DES AÉROPORTS SECONDAIRES EUROPÉENS

Bien que l’impact économique d’un aéroport soit largement reconnu, l’acceptation sociale et politique des projets de développement devient de plus en plus difficile, ceci quelle que soit la taille de l’aéroport (ex : aéroport de Tokyo-Narita). On remarque néanmoins que, de plus en plus, la participation des principaux acteurs du développement régional est un facteur important pour la constitution de pôles secondaires, susceptibles d’offrir une capacité aéroportuaire alternative. Les cas de l’Europort de Bâle-Mulhouse, de l’aéroport de Clermont-Ferrand et celui de Liège27, par exemple, montrent comment un aéroport peut être utilisé comme outil au service du redéploiement économique régional. Ce développement de capacités aéroportuaires alternatives qui se met en place sous la pression du marché, et en partie à cause de la saturation croissante des grands aéroports, favorise la constitution d’un réseau d’aéroports plus riche et plus équilibré. Cette tendance à la décentralisation, répond aux objectifs d’une politique d’aménagement du territoire qui conduit à rechercher une meilleure distribution des activités au sein de l’espace européen, une réduction des inégalités spatiales et économiques, un développement des infrastructures de desserte et d’ouverture vers l’extérieur.

Pour obtenir des avantages économiques réels aux différentes échelles territoriales, il faut que le système aéroportuaire soit en mesure d’assurer un niveau suffisant de services aériens intra-européen et international (en destinations et fréquences). C’est ce niveau de service qui déterminera les investissements économiques nécessaires à l’implantation locale ainsi que le niveau de création d’emplois et ses effets induits. La question est de savoir quelle est l’organisation du système la plus à même d’offrir le meilleur niveau de service tout en respectant les objectifs de développement durable. Il est également important de prendre en compte les impulsions pouvant être données par différents partenaires publics et sociétés de développement locales (SPI+, Meusinvest, IGRETEC, services de douane, contrôles sanitaires et phytosanitaires...). Nous pouvons citer comme exemple la mise en place du WAN « Wallonie Aerotraining Network », à Gosselies, qui joue le rôle d’intégrateur. En effet, les formations actuelles et futures sont organisées par l’a.s.b.l. WAN et ses opérateurs de programmes de formation en relation avec les activités aéronautiques (ATC, UT, CPE., BSCA, s.a. Samtech, TNT, Forem, Sabena handling, Technifutur Assemblage...).

27Voir l’ « Etude de la meilleure valorisation possible de l’aéroport de Liège-Bierset », ULG (LEPUR) - ULB (Guide), finalisée en septembre 1999, pour le Ministère de la Région wallonne, dans le cadre de la CPDT (Conférence Permanente du Développement Territorial).
II.4 PROMOTION DES ACTIVITÉS ET BESOINS EN INFRASTRUCTURES

II.4.1 ACTIVITÉS À PROMOUVOIR DANS LE SECTEUR AÉROPORTUAIRE ET AÉRONAUTIQUE À CHARLEROI

II.4.1.1 Réservation de l’affectation du sol au bénéfice des activités économiques

La zone d’influence d’une plate-forme multimodale peut être divisée en aires concentriques de 5 à 30 km de rayon à partir du « cœur » de la zone.

Le « cœur » concentre les activités aéroportuaires et les opérateurs multimodaux. Les entreprises de fabrication de produits à moindre valeur ajoutée sont les plus éloignés.

Figure 22 : Représentation schématique du cadre spatial de la zone d’influence d’une plate-forme multimodale

Les entreprises d’électronique et d’informatique ont largement recours au fret aérien, notamment au fret express, du fait de la haute valeur ajoutée, des faibles poids et volumes des composants électroniques, des longues distances et de la nécessité de rapidité (just in time).

Les aéroports agissent comme pôles d’attraction, entre autres en termes d’image de marque, pour les technopôles (secteurs de pointe). Ils ne constituent cependant pas le seul facteur de localisation optimale de ces technopôles : proximité d’universités et de centres de recherche, qualité du cadre de vie, service aux entreprises, disponibilité de capital-venture, proximité d’une grande ville … sont également des facteurs d’attrait.

II.4.1.2 Activités aériennes

Pour le développement de l’aéroport de Charleroi, il convient de mener la réflexion dans une perspective de long terme de développement au niveau wallon. À cette fin, un bref rappel s’impose.

Ces dernières années, nos aéroports ont connu un essor non négligeable. De nombreuses sociétés et investisseurs étrangers ont été intéressés par leur évolution et par le dynamisme dont faisaient preuve les sociétés gestionnaires, les autorités régionales ainsi que le monde politique. Néanmoins, cette croissance et l’espoir qu’on en attend ne doivent pas engendrer une concurrence vive entre les autorités aéroportuaires et un sous-régionalisme.

En matière de fret, il est certain que la prédominance de l’aéroport de Liège sur Charleroi est incontestable.

Figure 23 : Comparaison du volume fret transporté à Charleroi et à Liège de 1994 à 1998

<table>
<thead>
<tr>
<th>Statistiques fret à Charleroi-Bruxelles Sud</th>
<th>Statistiques fret à Liège Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Années</td>
<td>Fret (en tonnes)</td>
</tr>
<tr>
<td>1994</td>
<td>82</td>
</tr>
<tr>
<td>1995</td>
<td>195</td>
</tr>
<tr>
<td>1996</td>
<td>623</td>
</tr>
<tr>
<td>1997</td>
<td>829</td>
</tr>
<tr>
<td>1998</td>
<td>725</td>
</tr>
<tr>
<td>1999</td>
<td>1250</td>
</tr>
</tbody>
</table>

Source : Web site aéroport de Charleroi

Source : Web site de Liège Airport

L’aéroport de Liège a en effet réussi à trouver des opérateurs et développer cette activité cargo sur son site. La présence de TNT (78 % du trafic total) et de CAL (16 % du trafic total) ont contribué majoritairement à amener l’aéroport de Liège à sa 12ème place dans le classement fret des aéroports européens. En ce qui concerne le trafic passagers, la spécialisation entre les deux aéroports est moins nette. Le nombre de passagers recensés l’an dernier à l’aéroport de Charleroi et à l’aéroport de Liège ne diffère d’à raison que de 10 % de plus en faveur de Charleroi. L’aéroport de Liège connaît une croissance constante depuis 1995, de l’ordre de 25.000 à 50.000 passagers par an, alors que pour l’aéroport de
Charleroi, la croissance est surtout marquée par l’arrivée de la compagnie Ryanair (+150 % entre 1996 et 1997). En fait, on remarque que la structure du trafic est différente pour les deux aéroports. L’aéroport de Gosselies offre actuellement trois lignes régulières, Charleroi-Dublin à 3 ou 4 fréquences par jour qui drainent plus des trois quarts des passagers, ainsi qu’une deux nouvelles lignes régulières vers l’Algérie. En effet, la société privée Ecoair assure, depuis le mois de mars 2000, 2 vols hebdomadaires Charleroi-Alger et, depuis le 25 juin 2000, la compagnie privée Antinea Airlines opère au départ de l’aéroport de Charleroi 2 vols réguliers en alternance vers 4 villes algériennes (depuis septembre 2000, seule Alger est desservie). Alors que pour Liège, l’aéroport n’offre aux passagers que des lignes charters, c’est-à-dire saisonnières. Le nombre de passagers transportés par charter en 1999 s’élève approximativement à 55.000 pour Charleroi et à 212.000 pour Liège.

Quelles activités pourraient alors être développées à Charleroi-Brussels South ? Nous tenons avant tout à insister sur le fait que, même si nous privilégions certains types d’activités sur un aéroport, le développement particulier d’un type de trafic sur un site n’implique pas l’interdiction d’accepter ce trafic sur un autre aéroport. Une spécialisation relative de chaque aéroport wallon devrait permettre de mieux répartir les marchés ciblés ainsi que les investissements éventuels.

Bien que jouissant de la proximité à Bruxelles, d’un excellent réseau autoroutier et d’un marché important (5 millions d’habitants à une heure de route et 9 millions à deux heures de route), l’aéroport de Charleroi ne propose actuellement que très peu de services et d’installations adaptés en ce qui concerne le traitement de marchandises. Ce type d’activité est en effet limité par plusieurs facteurs.

La longueur de la piste (2.550 m actuellement, alors que le standard serait d’environ 3.400 m), sa catégorie et son utilisation future, qui se veut uniquement diurne, ainsi que le manque d’espace, limitent l’essor d’une telle activité. Notons qu’en 1996 le MET (D142) a déposé auprès de la DGATLP une demande de permis de bâtir pour amener la longueur de la piste à 3.400 m. L’allongement de la piste de 2.550 m à 3.400 m permettrait en effet de faire décoller et atterrir à pleine charge et rayon d’action maximum de plus gros porteurs (ex. B747) et de proposer ainsi des destinations plus lointaines. La décision récente de limiter l’allongement à 3200 m va imposer un certain nombre de restrictions opérationnelles à ces gros porteurs (du moins en matière de fret, ainsi que pour d’éventuels vols passagers à très longues distances), la piste étant d’une pointure inférieure à ce qui s’observe à ce niveau dans les aéroports du quadrilatère FLAP Francfort-Londres-Amsterdam-Paris (Figure 24). Des réservations sont en tout état de cause à faire pour prévoir un taxiway et une nouvelle aérogare en cas d’augmentation du trafic dans le long terme.
L’absence de liaisons par chemin de fer est également un facteur limitatif. En effet, la situation au niveau ferroviaire pourrait paraître favorable. Nous constatons l’existence d’un avant-projet de construction d’une bretelle sur la ligne 140 Charleroi-Ottignies. L’étude préalable de la rentabilité socio-économique de cette bretelle s’impose néanmoins. A priori, le rapport bénéfices/coûts d’une telle ligne semble plutôt médiocre. En effet, un volume de trafic suffisant est loin d’être atteint actuellement pour justifier un tel investissement et l’accès à Bruxelles serait loin d’être performant.

Finalement, l’aéroport de Charleroi est encerclé par divers parcs d’activités et le domaine classé du Bois de Lombu. Cependant, tous ces parcs d’activités sont déjà pratiquement saturés (voir point I.6, page 21) ce qui limite fortement l’implantation et le développement de nouvelles activités économiques davantage consommatrices de transport aérien. Or les activités présentes actuellement sont malheureusement peu ou pas consommatrices du transport aérien. Accorder la préférence aux activités faiblement consommatrices d’espace est donc une nécessité face à ce problème de manque de territoire. Le potentiel de Charleroi se caractérise également par des difficultés d’insertion des PME et TPE dans les secteurs à capacité d’innovation technologique élevée, induites par l’absence d’université complète et de parcs technologiques, ou technopôles. Ce dernier concept exprime à la fois la centralisation marquée d’activités industrielles et de recherche de pointe et, d’un point de vue plus dynamique, le pôle de développement économique que celles-ci induisent à l’échelle régionale.

L’aéroport pourrait néanmoins accroître ce trafic fret sans devoir réaliser trop d’investissements, rien que par le traitement de fret dans les soutes d’avions passagers et les vols diurnes « full cargo » occasionnels.

29 Voir annexe IV : Parcs industriels de la région de Charleroi, IGRETEC.
Ces caractéristiques locales et la tendance du marché aérien amènent donc à orienter l’aéroport de Charleroi principalement vers le transport passagers et plus particulièrement vers deux principales niches de marché. Le premier marché est celui des compagnies régulières et plus particulièrement celui des low-cost. L’aéroport s’oriente vers ce type de compagnies qui offre des liaisons de point à point à prix plus bas que les autres compagnies. Ces compagnies low-cost sont de plus en plus tentées d’opérer sur des aéroports régionaux proches des grandes métropoles et offrant des avantages opérationnels et financiers par rapport aux grands aéroports. BSCA est d’ailleurs actuellement en discussion avec des compagnies de trafic régulier low-cost telles BUZZ, Virgin Express, Easy Jet ...30. L’implantation d’une compagnie régionale à Charleroi peut aussi être envisagée, s’agissant cependant plus particulièrement de compagnies d’Europe du Nord et de l’Est, et aussi du Nord de l’Afrique. Ces compagnies trouvent, en effet, difficilement des créneaux horaires à leur convenance dans les grands aéroports.

Le deuxième cheval de bataille potentiel de l’aéroport de Charleroi est l’aviation d’affaires, déjà présente sur le site. L’aéroport de Charleroi est en effet une bonne alternative à Bruxelles car la saturation progressive de l’aéroport de Zaventem et la lenteur des opérations au sol sont des inconvénients pouvant profiter à l’aéroport de Charleroi. A ce niveau, Anvers est le concurrent le plus direct mais il présente l’inconvénient de proposer une piste très courte et une liaison routière avec la capitale souvent congestionnée.

Un nouveau créneau possible est celui des lignes d’affaires régulières assurées par des business jets de type Falcon 20 fonctionnant non à la demande mais selon des horaires publiés, à des tarifs identiques à ceux de la classe affaires des grandes compagnies. Un premier exemple s’observe déjà entre deux aéroports secondaires de New York (Teterboro) et de Chicago (Midway) via lesquels des temps très compétitifs de centre à centre sont proposés, en tablant sur la rapidité des passages aéroportuaires et sur l’usage des couloirs aériens distincts de ceux des jets commerciaux. En Europe, une application de ce concept pourrait être envisagée pour la liaison Paris-Londres, via les aéroports de London-City et du Bourget, alors que Charleroi-Bruxelles Sud pourrait être préféré à Zaventem dans le cas de la relation Londres-Bruxelles, de façon à bénéficier de cieux moins encombrés et d’un aéroport non congestionné.

a) A propos de l’étude TRACTEBEL.

L’absence d’une salle de transit, la capacité du parking voitures, des salles d’embarquement, des tapis à bagages, des guichets de contrôle, ... ainsi que l’infrastructure pour le transport de passagers entre l’aérogare et les avions sont cependant des facteurs limitatifs. La faible capacité des réservoirs à kérosène (200.000 litres) et la longueur actuelle de la piste, comme nous l’avons précisé avant, sont des facteurs limitant la capacité d’accueil des avions de type moyens et longs courriers. Néanmoins, moyennant certaines adaptations des infrastructures aéroportuaires (aérogare, parking visiteurs, infrastructures de stockage et de

30 Cfr. interview avec Monsieur Fernemont, responsable communication au BSCA.
traitement du fret, ...), ainsi que l’allongement de la piste à 3.400 m – distance autorisant le décollage de longs courriers et permettant d’atteindre le seuil de viabilité de l’aéroport, qui se situerait, suivant l’étude stratégique réalisée par Tractebel, entre 700.000 et 1 million de voyageurs par an31, l’aéroport de Charleroi Bruxelles-Sud pourrait raisonnablement développer ses activités commerciales et passer d’une capacité actuelle de 430.000 passagers par an à ces ± 700.000 passagers par an, mais aussi atteindre 2.000.000 de passagers32 en 2020.

Il s’agit là d’un des points-clé de l’étude TRACTEBEL relative au développement de la plate-forme carolorégienne, par rapport à laquelle nos principales observations sont les suivantes, étant entendu que, sous réserve d’éléments nouveaux, notre sentiment est que les perspectives ne sont pas globalement aussi favorables que pour Bierset et qu’il faut à tout prix éviter de se lancer dans une politique d’équilibrages sous-régionaux :

- L’allongement de la piste de 2.600 à 3.200 m procède pour partie du principe des coups partis, mais est intéressant dans la mesure où il permettra aux charters moyens-courriers d’opérer à charge maximale et rayon d’action maximal ; ce créneau est assurément porteur, notamment en délestage de Zaventem, et Gosselies a aussi des possibilités, déjà exploitées, dans le domaine des low-costs (cfr supra) ; la réduction récemment décidée de 3400 à 3200 m limite par contre fortement les possibilités en matière de fret ;

- L’objectif de 1 million de passagers à moyen terme et de 2 millions à plus long terme avancé pour justifier la construction d’une nouvelle aérogare et de parkings avions au Nord de la piste peut sembler quelque peu optimiste (alors qu’à cet horizon, Liège affiche un objectif deux fois moins ambitieux (800 000 à 1 million de passagers en 2020)), mais le volontarisme est souvent payant en transport aérien ; par ailleurs, cet outil peut être vu comme une mesure intermédiaire en attendant la réalisation, évoquée au chapitre suivant, d’un aéroport d’une toute autre dimension à Chièvres ;

- La desserte ferroviaire suggérée de la nouvelle aérogare Nord s’inscrit certes dans un louable esprit de mobilité durable, mais le trafic raisonnablement envisageable paraît bien maigre pour justifier un tel investissement ; de plus, l’accès à Bruxelles se ferait via Ottignies et les lignes 140 et 161, lente pour la première et saturée pour la seconde, en attendant la mise en place du RER ; curieusement l’étude TRACTEBEL parle d’autorails pour assurer les navettes Gosselies-Zaventem via Bruxelles (gares de Luxembourg et Schuman) !

- Les développements espérés dans le domaine du fret paraissent les plus problématiques et en concurrence directe avec Bierset ; de plus, ils s’inscrivent mal dans le cadre d’une plate-forme limitée aux vols de jour, même s’il ne s’agissait pas de fret express.

Une analyse de la situation du transport aérien en Europe et des capacités aéroportuaires existantes ainsi que des extensions en cours ou prévues à ce niveau nous a convaincu de l’imminence d’une sous-capacité importante à assez brève échéance au cœur du dispositif européen. C’est ainsi que, de l’aveu même de ses responsables, Zaventem sera saturé, au rythme actuel, en 2007, sans aucune possibilité d’extension, du moins au niveau airside. Les Néerlandais envisagent un deuxième aéroport national (vraisemblablement situé en Mer du Nord) et les Français une troisième plate-forme parisienne (projet de nouveau d’actualité, après que les délestages envisagés aient montré leurs limites ; il serait même question

31 Des simulations de capacité en terme de passagers ont été réalisées dans le rapport TRACTEBEL, Etude stratégique du développement de l’aéroport de Charleroi, Rapport de deuxième phase, point 2, pp. 2-17.
d’ouvrir à nouveau Le Bourget au trafic commercial pour soulager Roissy !). Les développements envisagés dans le domaine des passagers à Gosselies permettraient de capter une partie de la croissance attendue aux niveaux belge et européen, mais ne seraient qu’une réponse très partielle à l’augmentation de la demande globale ; le fait qu’ils puissent être mis en œuvre rapidement plaide cependant pour leur engagement, dans une optique de phasage avec ceux mentionnés plus loin à propos de Chièvres.

II.4.1.3 Activités aéronautiques

L’activité économique wallonne reste encore empreinte d’une désindustrialisation profonde au fur et à mesure que les secteurs traditionnels de son industrie lourde s’adaptent et se modernisent. Malgré ces restructurations successives, les responsables de la politique économique wallonne souhaitent favoriser le plus possible, la reconversion de la base économique en renforçant les industries de pointe et les secteurs d’avenir.

Au niveau européen, avec une croissance annuelle évaluée à 4,4 % ces dernières années (soit le double de la croissance économique moyenne), l’industrie aéronautique présente toutes les caractéristiques d’un secteur d’avenir. La Wallonie compte ainsi une vingtaine d’entreprises, totalisant plus de 3.000 travailleurs et si l’on tient compte des principaux sous-traitants, le chiffre d’affaires du secteur dans notre région est évalué par l’Association des Entreprises Aéronautiques de Wallonie (EWA) à quelques 20 milliards de FB (pour 1997) et le nombre de salariés à 6.500. L’industrie aéronautique et spatiale européenne représente 0,25 % de l’emploi européen. En Wallonie, les 3012 emplois de 1997 représentent une proportion de 0,28 % de l’emploi total. Il s’agit donc d’un des rares secteurs dits de pointe où l’industrie wallonne occupe une place comparable à la moyenne européenne.

La stratégie wallonne en matière aéronautique doit reposer sur un plan de développement du secteur, dont le récent « Plan aéronautique wallon » du CESRW, qui doit servir d’aide à la décision aux responsables économiques. Ce plan de développement du secteur aéronautique distingue deux orientations principales à développer si l’on veut que ce secteur reste un de nos savoir-faire reconnus en Europe et dans le monde. La première option stratégique à développer est de s’inscrire, dès le départ, dans des programmes aéronautiques d’avenir (le choix actuel de participation de la SONACA aux projets Embraer33 ERJ-135, -145, -170 et -190 ainsi qu’au projet de l’avion militaire d’Airbus Industrie A-400 M (Future Large Aircraft, en collaboration de la SABCA) semblent déjà particulièrement judicieux). Pour participer dès le début à ces programmes qui nécessitent une planification à long terme des besoins, et qui accroissent le potentiel de développement du secteur en Wallonie, il faut élever le niveau des entreprises et de leur réseau de sous-traitants spécialisés ainsi que mobiliser les ressources. Un des programmes d’avenir dans le secteur aéronautique est la possibilité de voir le consortium Belairbus participer au développement éventuel du futur avion gros porteur d’Airbus, l’A3XX. Pour SONACA, qui prend 45 % des activités de Belairbus à son compte, le chiffre d’affaires potentiel de 90 milliards de FB pourrait lui revenir si le seuil des 600 appareils vendus est atteint et si les coûts de développement, soit environ 16 milliards au total pour la Belgique et 8,4 milliards à la charge de la Région wallonne, étaient pris en charge par les divers participants.

Le deuxième choix stratégique à côté de ces programmes de construction, est de s’attacher beaucoup plus aux activités de maintenance aéronautique qui sont non seulement fortement

33 Une confiance renouvelée pour la SONACA, en raison de la qualité de sa production. Précisons qu’en termes de prestations récurrentes, la tâche de la SONACA représente environ 4% du coût des ERJ-145 et –135. En ce qui concerne les ERJ-170 et –190, avions plus élaborés, la SONACA a été choisie pour la réalisation de pièces plus complexes, en l’occurrence les becs de bord d’attaque, une spécialité développée auparavant pour la famille des Airbus.
génératrices d’emploi mais représentent actuellement plus de 20 % du chiffre d’affaires du secteur au niveau européen.

Ces orientations stratégiques en aéronautique et le développement du transport aérien dans notre région, induisent une augmentation de la formation de travailleurs et de cadres. Une adaptation de l’offre d’enseignement, à tous niveaux, doit également constituer une priorité, via notamment l’accroissement d’un partenariat enseignement/entreprise.

La mise en place du « Wallonie Aerotraining Network » (WAN) au sein de l’aéropôle de Gosselies est à souligner. Il s’adresse aux grands métiers de l’aéronautique : constructeurs, mantenanciers (cellules, moteurs, avionique civile, militaire et spatiale) et entreprises de transport et de logistique par voie aérienne. Le WAN dispense un service de formation continue des travailleurs d’une part et la formation des étudiants et demandeurs d’emploi d’autre part. La mise en place d’un graduat en aérotechnique à l’Université du Travail à Charleroi s’est concrétisée récemment. La région liégeoise a mis en place un service de formation d’aides mécaniciens, de mécaniciens certifiés, d’ingénieurs certifiés en aéronautique grâce à l’initiative de la société TNT et d’autres sociétés régionales spécialisées dans l’aéronautique. Ces formations se font en collaboration avec le WAN et Technifutur dans les locaux de Forem Logistics. Avec la création de la compagnie TNT Airways en juillet dernier, opérant sous pavillon belge, plusieurs centaines de nouveaux emplois vont être créés prochainement à Liège, mais aussi dans les 28 aéroports desservis par les avions TNT. Notons également, que TNT aura besoin de 125 nouveaux pilotes dans les trois prochaines années. En fait, c’est toute l’Europe qui connaît une pénurie importante en pilotes. Pour pallier ce manque, TNT est en pourparlers avec la Sabena, le Forem et d’autres organismes étrangers en vue de créer une filière de formation plus accessible à tous et non plus une formation élitiste comme c’est le cas pour l’instant. Ces formations auront aussi pour but d’anticiper la demande future d’autres opérateurs dans ce secteur voulant éventuellement s’implanter en région wallonne.
Chapitre III : MESURES ENVIRONnementALES ET DE COMMUNICATION À GOSSELIES

Les mesures environnementales et de communication appliquées aujourd’hui à Gosselies, de l’initiative de BSCA ou par arrêtés régionaux, peuvent être résumées comme suit :

- **Bruit**
 - Limitation à la source :
 - interdiction des « Chapitre 2 » entre 23 et 7h ;
 - interdiction des vols d’entraînement les soirs (21h), week-ends et jours fériés ;
 - réduction de 10% des vols de nuit par rapport à 97 ;
 - réduction des bruits rampants (APU34 et positionnement des appareils) ;
 - orientation vers les vols de jour.
 - Limitation à la perception :
 - rachat sur base volontaire des biens en zone A (SERINFO) (Attention : mesure prévue mais non mise en œuvre) ;
 - isolation des habitations en zone B (EDSI) (Attention : mesure prévue mais non mise en œuvre) ;
 - interdiction de construire de nouveaux logements en zones A et B et obligation d’insonoriser tout nouveau bâtiment en zones B, C et D.

- **Communication**
 - Comité de suivi et réunions trimestrielles avec les riverains.
 - Diffusion de statistiques.
 - Numéro d’appel.

- **Autres** :
 - ensemble des mesures reprises dans une politique environnementale et existence au sein de BSCA d’un service environnemental ;
 - navettes de bus pour les passagers adaptés aux heures de vols ;
 - versement de 35% des redevances aéronautiques dans le Fonds de l’environnement.

Il faut y ajouter les mesures supplémentaires prévues par l’accord cadre de juillet sur le « développement des aéroports régionaux et les mesures environnementales y relatives ».

Ces différents sujets sont abordés en détail dans le volume 1B de ce rapport : « Aéroports et environnement : « La gestion environnementale des aéroports – situation en Région wallonne et propositions » (pages 8-12).

34 Auxiliary Power Unit : sorte de groupe électrogène qui fournit l’énergie aux appareils au sol
PARTIE II : LA PROBLÉMATIQUE D’UN NOUVEL AÉROPORT

Chapitre I : LA PROBLÉMATIQUE DE LA LOCALISATION D’UN ÉVENTUEL DEUXIÈME AÉROPORT NATIONAL

I.1 POSITION DU PROBLÈME

Même si les mesures récemment décidées au niveau fédéral donneront un ballon d’oxygène à court terme à l’aéroport national de Zaventem, sa saturation à moyen – et long termes paraît inéductable. En effet, le trafic aérien mondial de passagers devrait doubler d’ici à 2010 ou 2015, selon les fourchettes haute et basse de diverses prévisions, et celui du fret augmentera encore plus fortement.

Dans un tel contexte, Zaventem pourra de plus en plus difficilement rencontrer la demande, qu’il s’agisse de sa capacité horaire lors des pointes diurnes de trafic, au moment des cinq vagues quotidiennes du hub de la Sabena, ou de son accessibilité terrestre lors des pointes de trafic routier matinales et de fin d’après-midi, quand le trafic propre de l’aéroport (passagers et employés) se superpose à celui du ring de Bruxelles. Par ailleurs, son imbrication dans le tissu périurbain deviendra de plus en plus contraignante au niveau des vols de nuit et la proximité de zones densément habitées est un facteur négatif au plan de la sécurité des personnes et des biens, rarement mentionné mais que la multiplication des accidents aériens liée à l’essor du trafic doit inciter à mettre fortement en exergue. Enfin, l’intermodalité air/fer n’y sera pas optimale pour les passagers (rupture de charge pour les passagers par rapport à la future gare TGV de Schaerbeek, même si certains TGV vers et depuis les Pays-Bas pourraient aussi desservir directement l’aéroport via le futur diabolo de Vilvoorde ; pour le fret, difficulté de coupler un terminal air/fer à la zone de Brucargo).

Pour ces divers motifs, il est proposé de chercher, dès maintenant, un site pour un second aéroport international qui, tout en étant fédéral, se situerait sur le territoire de la Région wallonne, à la fois dans un souci de symétrie par rapport à la situation de Zaventem en Région Flamande et parce qu’il paraît difficile, pour des raisons physiques et politiques, d’implanter une telle seconde plate-forme dans cette dernière région. Le site de celle-ci devrait répondre aux contraintes fortes suivantes, par ordre décroissant de sévérité des critères :

- se situer à une distance raisonnable de Bruxelles et des principales métropoles régionales, tout en étant dans une zone aussi peu densément habitée que possible pour limiter au maximum les nuisances ;
- présenter une superficie suffisante, de l’ordre d’au moins 2.500 ha, pour la réalisation d’une plate-forme largement dimensionnée pour son fonctionnement et bordée de zones tampons limitant les conflits de voisinage ; idéalement, en fonction des vents dominants, les pistes, au nombre de deux au minimum, devraient être orientées Est-Ouest plutôt que Nord-Sud ;
se situer sur une ligne ferroviaire à grande vitesse ou à proximité immédiate de cette dernière, de façon à favoriser les complémentarités air/fer pour les trafics de passagers et de fret à moyenne distance et à assurer par des navettes de type airport express des pré- ou post-acheminements sur Bruxelles, dans des temps équivalents à ceux offerts vers ou depuis Zaventem ;
se situer sur un axe autoroutier depuis Bruxelles et pouvoir y accéder depuis le reste du pays dans de bonnes conditions, quitte à devoir réaliser des infrastructures complémentaires ;
disposer d’une bonne desserte ferroviaire régionale, tant sur Bruxelles que sur la Wallonie et la Flandre.

Les première et troisième contraintes amènent à éliminer d’emblée le site ardennais de Jehonville (voir figure 31, page 55), qui ne pourrait être envisagé qu’à long terme comme doublet de Luxembourg pour le fret. La troisième condition fait que, puisque le réseau TGV comporte trois branches dont une en direction d’Anvers dans une zone fortement urbanisée où toute nouvelle infrastructure lourde est exclue, un éventuel deuxième aéroport national ne pourrait se situer qu’à l’Est de Louvain sur la branche Bruxelles-Liège ou au Sud-Ouest de Hal sur la branche Bruxelles-Paris/Londres via Lille. Ces deux alternatives ont été étudiées par notre groupe sur base de travaux antérieurs d’autres équipes et de nouvelles analyses, assorties de visites des différents sites déjà proposés ou envisageables par ailleurs.

I.1.1 LA RELATIVE SATURATION DE BRUSSELS AIRPORT (ZAVENTEM)

Nous ne cherchons pas, dans le cadre de cette étude, à déterminer précisément le niveau de saturation de l’aéroport de Bruxelles-National. Il nous paraît néanmoins utile d’ennumérer et de pointer quelques facteurs les plus évidents qui seront inévitablement à la source de ce niveau de saturation dans le contexte actuel du développement du transport aérien.

I.1.1.1 Le contexte : la congestion croissante du ciel européen

La croissance attendue du transport aérien dans le cadre d’un marché libéralisé est confrontée, de manière générale en Europe mais avec toutefois quelques disparités, à une tout aussi prévisible insuffisance des capacités aéroportuaires. Cette insuffisance sur le plan des infrastructures est encore amplifiée par les nouvelles exigences relatives aux contraintes environnementales, auxquelles elle est, en dernière analyse, intimement liée. Indépendamment de ces dernières, nous remarquons cependant que la capacité aéroportuaire s’exprime directement à plusieurs niveaux, parmi lesquels :

- la capacité de l'espace aérien et de son contrôle;
- la capacité du nombre de mouvements sur les pistes;
- la capacité de traitement des terminaux passagers et fret;
- l'accessibilité terrestre liée à l'hinterland.

retards liés à la gestion du flux du trafic aérien (ATFM - Air Traffic Flow Management) fut estimé à 500 millions d'euros\(^{35}\).

A l'échelle européenne, le problème fondamental de la gestion des flux de trafic aérien est très certainement lié à la fragmentation du contrôle et à son manque de coordination. Chaque pays contrôle encore jalousement son propre espace aérien et les systèmes nationaux ne peuvent se coordonner pour former un seul réseau paneuropéen, à l'image du marché unique. Une simple comparaison avec le système américain est à ce point édifiante.

Figure 25 : Comparaison entre système américain et européen

<table>
<thead>
<tr>
<th>Espace aérien</th>
<th>Superficie couverte (x 1000 km²)</th>
<th>Nombre de systèmes de contrôle</th>
<th>Nombre de centres de contrôle</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A.</td>
<td>7828</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Europe (région CEAC)</td>
<td>4643</td>
<td>22</td>
<td>42</td>
</tr>
</tbody>
</table>

Source : CEAC : Conférence Européenne de l'Aviation Civile.

Sur l'ensemble du continent européen, on dénombre pas moins de 31 systèmes nationaux de contrôle, 49 centres de contrôle, 18 fournisseurs de matériel informatique, 22 systèmes d'exploitations et 30 langages de programmation différents.

L'organisme européen pour la sécurité de la navigation aérienne, Eurocontrol, dont 28 états européens sont pourtant membres ne peut que constater cette absence de coordination et prévoir les problèmes qui se dessinent à moyen terme mais ne possède, en l'état des choses, aucune autorité pour régir l'ensemble de la région. Eurocontrol n'assure effectivement le contrôle aérien que sur deux pays, la Belgique et les Pays-Bas, et une région, le Nord-Ouest de l'Allemagne.

L'Association des compagnies aériennes européennes (AEA - Association of European Airlines) a récemment publié un bilan annuel des retards de plus de quinze minutes enregistrés dans 27 aéroports européens. Bruxelles-National y prend la neuvième place dans l'ordre décroissant des retards pour l'ensemble de l'année 1999 avec 35,4 % de vols retardés par rapport à une moyenne européenne de 30,3 %. La tendance la plus récente ne serait pas moins préoccupante, puisque au quatrième trimestre de 1999, Bruxelles prendrait la deuxième place de ce classement avec 35,2 % de vols retardés. Les chiffres provisoires relatifs aux premier et deuxième trimestre 2000 ne font que confirmer cette situation de plus en plus pénible pour les usagers.

Sur la moyenne annuelle européenne de 1999, parmi les retards de départ pour lesquels une cause claire fut être identifiée, plus de 72 % (contre 63 % en 1998) furent attribués à une raison liée aux aéroports ou au contrôle du trafic aérien (ATC - Air Traffic Control), 23 % à des problèmes de manutention au sol ou à des problèmes techniques et moins de 4 % à des problèmes météorologiques. Une large majorité de ces 72 % de retards sont liés aux créneaux de contrôle du trafic aérien (ATC slots) accordés aux décollages. Les performances de ponctualité d'un aéroport sont donc clairement influencées par l'infrastructure aéroportuaire elle-même mais aussi largement par le taux de congestion de l'espace aérien qui le domine ou par la performance du contrôle régional qui le régit. Pour l'année 1999, il est certain que le taux impressionnant d'augmentation des retards en Europe fut lié à une réorganisation importante du contrôle aérien en France et en Suisse (période de mars à avril) ainsi qu'à l'intervention militaire de l’OTAN dans les Balkans (période de mars à juin) pour les périodes concernées, néanmoins la progression des retards fut également sensible dans les quatre derniers mois de l'année par rapport à la même période de 1998.

\(^{35}\) (Source : Eurocontrol, "Medium Term Capacity Shortfalls 2003 - 2005", oct 1999)
Figure 26 : Graphiques illustrant l’évolution des retards dans les aéroports européens

Source : association of European Airlines (2000)
1.1.1.2 La configuration d'ensemble de l’aéroport (carte 4)

Même si l’aérogare passagers de Bruxelles-National sur le site actuel de Zaventem ne fut développée qu’à partir de 1955, dans la perspective de l'Expo 58, la localisation des pistes y était préexistante puisque cette nouvelle aérogare remplaçait à cette époque les anciennes installations de Melsbroek qui avaient été construites durant la seconde guerre mondiale par l'occupant, puis développées entre 1945 et 1954, en remplacement de l'ancien aérodrome d'Evere-Haren qui était déjà devenu, dès l'avant-guerre, trop petit et était situé trop près de la capitale. La date de cette première relocalisation explique donc la proximité actuelle de zones habitées apprises depuis. La proximité du centre urbain n’est intéressante que pour les voyageurs aériens ayant comme origine ou destination finale Bruxelles, elle indiffère les voyageurs en transit au hub. Le nombre de voyageurs en transit ne cesse pourtant d’augmenter, au point de former désormais plus de la moitié de ceux de la SABENA et près de 31,3 % du total général, toutes compagnies confondues.

Figure 27 : Nombre de voyageurs en transit (c-à-d voyageurs en transfert + en transit) à Bruxelles-National et pourcentage /total pax (en millions de passagers)

<table>
<thead>
<tr>
<th>Année</th>
<th>Millions de passagers</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>2,63</td>
<td>21 %</td>
</tr>
<tr>
<td>1996</td>
<td>2,76</td>
<td>20,4 %</td>
</tr>
<tr>
<td>1997</td>
<td>4,11</td>
<td>25,7 %</td>
</tr>
<tr>
<td>1998</td>
<td>5,49</td>
<td>29,6 %</td>
</tr>
<tr>
<td>1999</td>
<td>6,28</td>
<td>31,3 %</td>
</tr>
</tbody>
</table>

La nouvelle aérogare de 1958 (devenue le terminal C) occupait une position centrale par rapport aux deux pistes (07/25 et 02/20) préexistantes, auxquelles furent rajoutés une troisième piste (07R/25L), un nouvel accès routier et une liaison ferroviaire (première mondiale) vers la capitale, et de nouvelles voies de circulation internes.
C'est sur base de cette configuration de 1958, que l'aéroport de Bruxelles-National n'a cessé de se développer et d'être continuellement modifié pour répondre aux besoins croissants de l'activité aéronautique en Belgique. Parmi ces nombreuses modifications successives, notons:

- 1959: allongement et aménagement de la piste 07L/25R et d'un ILS pour recevoir les premiers B-707;
- 1975-81: construction d'une nouvelle ville-cargo, "BRUcargo", au nord-ouest des pistes, le long de la nouvelle autoroute E19 Bruxelles-Antwerpen;

Ces derniers travaux de modernisation ont notamment permis d'accroître la capacité de l'aéroport en terme de mouvements. A cet effet, ils ont principalement consisté en l'ajout de nouveaux taxeways ("high speed taxeways") et de points intermédiaires de sortie et d'entrée des pistes pour accélérer les cadences d'atterrissages et de décollages. De ce fait, la capacité horaire est passée de 45 à 70 mouvements.

1.1.1.3 La configuration des pistes

Les trois pistes ont les longueurs et les orientations suivantes (carte 4) :

- 07L/25R: 3.638 m (principalement utilisée pour les atterrissages);
- 07R/25L: 3.211 m (quasi exclusivement utilisée pour les décollages);
- 02/ 20 : 2.984 m (piste oblique secondaire);

Le développement de la stratégie de hub, essentielle pour la Sabena, pose dès à présent le problème principal de capacité aéroportuaire. Ce développement implique en effet un important accroissement de mouvements aux heures de pointe, correspondant aux plages horaires où les avions convergent vers l'aéroport pour assurer les correspondances des passagers. Or la configuration actuelle des pistes est telle que l'aéroport ne peut accroître indéfiniment sa capacité de mouvements durant ces plages horaires réduites. En effet, dans les conditions atmosphériques les plus fréquentes, les atterrissages peuvent s'effectuer indépendamment sur les deux pistes parallèles 25 R et 25 L, les décollages doivent par contre s'effectuer sur la seule piste 25 R. Cette seule piste de décollage en service suscite aux heures de départ la formation de files importantes d'avions en attente, facteur de retard et de mauvais rendement pour les compagnies. L'usage occasionnel actuel de la piste oblique en plus de la piste 25 R ne peut fournir qu'un gain marginal de mouvements, les trafics des deux pistes ne pouvant être totalement séparés physiquement.

Une première solution serait d'allonger la piste 07R-25L de 600 m vers l'Est, de façon à ce que les avions atterrissent beaucoup plus en avant du croisement avec la 02/20, qui pourrait être ainsi utilisée plus intensément, mais cette formule serait moins pratique et à moindre débit qu'avec deux pistes parallèles.

Une seconde solution consisterait à la fois à allonger la piste 25 L de plus de 600 m vers l'est dans la direction de Erps-Kwerps et Everberg et à aménager un taxiway jusqu'au seuil de cette piste. Les décollages pourraient dès lors aussi s'effectuer depuis cette piste dans la direction du noyau urbain de la commune de Zaventem, ce qui constitueraient toutefois un facteur de risques (à cause des virages serrés qui seraient imposés) et de nuisances.
supplémentaires. En plus de la complexité des travaux à effectuer, ce projet rencontre aussi l’opposition des autorités et des populations des communes concernées. Cette nouvelle configuration de pistes permettrait néanmoins un trafic indépendant et simultané sur les deux pistes parallèles. La configuration générale des pistes deviendrait alors comparable à celle de London Heathrow qui compte actuellement une quantité de mouvements supérieure de près de 60 % à celle de Bruxelles. L’utilisation simultanée de ces deux pistes parallèles au décollage permettrait également de limiter le survol de la capitale par une séparation des flux de trafic.

I.1.2 L’évolution du trafic à Bruxelles-National : quelques chiffres

Figure 28 : Evolution du nombre de mouvements de 1991 à 1999

<table>
<thead>
<tr>
<th>Années</th>
<th>Nombre de mouvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>202.000</td>
</tr>
<tr>
<td>1992</td>
<td>205.000</td>
</tr>
<tr>
<td>1993</td>
<td>211.000</td>
</tr>
<tr>
<td>1994</td>
<td>226.000</td>
</tr>
<tr>
<td>1995</td>
<td>245.000</td>
</tr>
<tr>
<td>1996</td>
<td>264.000</td>
</tr>
<tr>
<td>1997</td>
<td>277.000</td>
</tr>
<tr>
<td>1998</td>
<td>300.000</td>
</tr>
<tr>
<td>1999</td>
<td>312.892</td>
</tr>
</tbody>
</table>

Source : BIAC-COO/data management group.
Figure 29 : Evolution du nombre de passagers de 1991 à 1999
Source : BIAC-COO/data management group.

<table>
<thead>
<tr>
<th>Année</th>
<th>Nombre de passagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>8.200.000</td>
</tr>
<tr>
<td>1992</td>
<td>9.200.000</td>
</tr>
<tr>
<td>1993</td>
<td>10.000.000</td>
</tr>
<tr>
<td>1994</td>
<td>11.200.000</td>
</tr>
<tr>
<td>1995</td>
<td>12.500.000</td>
</tr>
<tr>
<td>1996</td>
<td>13.400.000</td>
</tr>
<tr>
<td>1997</td>
<td>15.900.000</td>
</tr>
<tr>
<td>1998</td>
<td>18.400.000</td>
</tr>
<tr>
<td>1999</td>
<td>20.048.532</td>
</tr>
</tbody>
</table>

Evolution du nombre de passagers de 1991 à 1999
Figure 30 : Evolution du tonnage de fret de 1991 à 1999
Fret total, y compris courrier.

<table>
<thead>
<tr>
<th>Année</th>
<th>Nombre de tonnes de fret</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>317.000</td>
</tr>
<tr>
<td>1992</td>
<td>314.000</td>
</tr>
<tr>
<td>1993</td>
<td>306.000</td>
</tr>
<tr>
<td>1994</td>
<td>381.000</td>
</tr>
<tr>
<td>1995</td>
<td>427.000</td>
</tr>
<tr>
<td>1996</td>
<td>451.000</td>
</tr>
<tr>
<td>1997</td>
<td>519.000</td>
</tr>
<tr>
<td>1998</td>
<td>586.000</td>
</tr>
<tr>
<td>1999</td>
<td>656.123</td>
</tr>
</tbody>
</table>

Source : BIAC-COO/data management group

On trouvera à l'annexe V une étude statistique de l'évolution du trafic des 26 aéroports recensés dans le cadre du projet COFAR (Common Options For Airport Regions) auquel le Ministère de la Région wallonne participe dans le cadre du programme Interreg 2C. Elle montre à quel point l'évolution récente du trafic aéroportuaire de la zone FLAP a été favorable aux aéroports belges, situés au cœur du dispositif européen, à Zaventem certes, mais plus encore aux aéroports wallons ainsi qu'il ressort de l'analyse structure-résidus finale.
I.1.3 L’ACCESSIBILITÉ TERRESTRE

Situé à proximité des autoroutes E19 Bruxelles-Antwerpen et E40 Bruxelles-Liège, l’aéroport de Bruxelles-National est directement branché au ring R0 qui donne accès à la capitale et à l’ensemble des directions autoroutières qui y sont reliées. Cette connexion, optimale aux heures creuses, pose néanmoins problème du fait de la congestion croissante de cette partie du réseau routier pendant la journée. De plus, les pics de congestion routière correspondent également aux heures de pointe de fonctionnement du hub (première vague du matin et vague de fin d’après-midi).

Brussels Airport possède depuis 1958 une gare ferroviaire pour passagers initialement située sous le terminal C actuel. Cette gare en cul-de-sac fut remplacée en 1998 par une autre, située sous le terminal B et perpendiculaire à la précédente, de façon à pouvoir être ultérieurement transformée en gare de passage. Elle offre un service régulier important dans la seule direction de Bruxelles. La branche ferroviaire de Zaventem actuellement en service ne dessert en effet le réseau qu’en ce sens. Ce service est dénommé « Brussels Airport Express », avec 3 à 4 navettes par heure vers Bruxelles Nord, Central et Midi, et dont certaines continuent vers la province au-delà de Bruxelles-Midi.

Cette nouvelle configuration ferroviaire permettrait en outre de faire passer quelques trains à grande vitesse par jour par la gare de l’aéroport. Il est cependant peu probable qu’elle permette de transformer la nouvelle gare aéroportuaire, qui ne compte que trois voies, en centre de gravité national du réseau ferroviaire à grande vitesse. Cette tendance voit pourtant le jour dans certains aéroports européens dans le cadre d’un feederings de hubs aériens par le train à grande vitesse, d’une substitution d’une partie du trafic aérien vers le train à grande vitesse et d’une nouvelle intermodalité air/fer concernant le fret aérien, laquelle pourrait très difficilement être assurée à Zaventem, contrairement à Bierset.
I. 2 LOCALISATION ÉVENTUELLE À L’EST DE LOUVAIN

Plusieurs sites ont été reconnus à l’Est de Bruxelles dans une étude du CERAU36 qui, à l’époque, se plaçait dans la perspective d’un aéroport bicommunautaire situé à cheval sur la frontière linguistique, sans prendre en compte la contrainte technique de la proximité d’une ligne grande vitesse. L’ajout de cette dernière nous a conduit à rejeter les sites 1 (Beauvechain ; 2.500 ha), 2 (Mélin ; 1.700 ha) et 4 (Berloz ; 1.500 ha) qui étaient alors proposés et présentent par ailleurs divers points négatifs (carte 5).

Figure 31 : Aéroports et aérodromes en Wallonie

<table>
<thead>
<tr>
<th>Aérodromes (civils et militaires)</th>
<th>Type de vols</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Beauvechain : EBBE</td>
<td>militaire</td>
</tr>
<tr>
<td>2. Bertrix/Jehoville : EBBX</td>
<td>réserve militaire</td>
</tr>
<tr>
<td>3. Butgenbach/Elsenborn : EBLB</td>
<td>militaire</td>
</tr>
<tr>
<td>4. Charleroi/Brussels South : EBCI</td>
<td>aviation civile et privée (nat. et int.)</td>
</tr>
<tr>
<td>5. Chièvres : EBCV</td>
<td>militaire</td>
</tr>
<tr>
<td>6. Florennes : EBFS</td>
<td>militaire</td>
</tr>
<tr>
<td>7. Froidchapelle</td>
<td>aviation privée nationale</td>
</tr>
<tr>
<td>8. Ivoi</td>
<td>aviation privée</td>
</tr>
<tr>
<td>9. Liège : EBLG</td>
<td>aviation civile, privée (nat. et int.) et militaire</td>
</tr>
<tr>
<td>10. Namur/Spa : EBNM</td>
<td>aviation privée nationale</td>
</tr>
<tr>
<td>11. Saint-Ghislain : EBSG</td>
<td>aviation privée (nat. et int.)</td>
</tr>
<tr>
<td>12. Saint-Hubert/Saint-Hubert : EBSH</td>
<td>aviation privée (nat. et int.)</td>
</tr>
<tr>
<td>13. Saint-Hubert : EBSU</td>
<td>réserve militaire</td>
</tr>
<tr>
<td>14. Sotet</td>
<td>aviation privée nationale</td>
</tr>
<tr>
<td>15. Spa/La Sauvenière : EBSP</td>
<td>aviation privée (nat. et int.)</td>
</tr>
<tr>
<td>16. Theux/Verviers : EBTX</td>
<td>aviation privée nationale</td>
</tr>
<tr>
<td>17. Tournech/Maubray : EBTY</td>
<td>aviation privée (nat. et int.)</td>
</tr>
</tbody>
</table>

Les sites 3 (Piétrain ; 1.800 ha) (carte 5 bis et 5 ter) et 5 (Bettincourt ; 3.500 ha) peuvent par contre être commodément desservis par le TGV, mais présentent aussi des inconvénients qui ne sont cependant pas rédhibitoires. Comme un sixième site encore plus proche de Liège identifié par nos soins (Momalle ; 2.000 ha), ils ne nous semblent cependant constituer qu’un second choix par rapport à une localisation au Sud-Ouest de Bruxelles pour les deux raisons majeures suivantes ; celles-ci sont d’ordre macrogéographique, mais s’y ajoutent diverses considérations plus microgéographiques dont l’orientation le plus souvent moins favorable des pistes :

- meilleur équilibre spatial d’ensemble des deux éventuelles plates-formes par rapport à Bruxelles, car elles se sitieraient de part et d’autre de l’agglomération, plutôt que sur un même axe d’un côté de celle-ci (l’inconvénient d’un allongement des temps de transfert d’une plate-forme à l’autre ne serait que secondaire, dans la mesure où elles seraient spécialisées sur des créneaux différents et où, en tout état de cause, la Sabena n’opérerait que de l’une d’entre elles) ;
- pas de double emploi vis-à-vis de Bierset, alors que les activités de Gosselies (dont il ne faudrait peut-être alors plus allonger la piste) pourraient être reportées sur le site de Chièvres évoqué au point suivant ; ceci du moins en partie, car cette plate-forme régionale devrait être maintenue pour, à tout le moins, la desserte des entreprises aéronautiques voisines ; elle pourra par ailleurs continuer à jouer un rôle significatif pour les vols d’entraînement et d’affaires.

Chapitre II : POUR L’IMPLANTATION D’UN PÔLE DE MULTIMODALITÉ À CHIÈVRES (Cartes 6, 6 bis et 6 ter)

Le site de Chièvres a été étudié, dès 1993, par l’Ecole Nationale des Ponts et Chaussées pour le compte de l’Agence de Développement et d’Urbanisme de la Métropole Lilloise qui cherchait à promouvoir un aéroport international commun à la Belgique et au Nord de la France, en valorisant sa position sur l’axe TGV Bruxelles-Lille qui permettrait d’assurer aisément des navettes vers les deux métropoles (dans le premier cas via Hal et donc la ligne 96 vers l’axe Midi-Central-Nord-Schaerbeek, mais aussi directement vers le quartier Léopold et Schuman via la ligne 26). Il a été également étudié par le CERAU, qui y a identifié un potentiel de 2.900 ha de terrains, contre 3.600 ha dans le rapport français précité. Dans l’un et l’autre cas, les auteurs s’accordent sur la nécessité d’exproprier les habitants du village-

Les 2.900 ha potentiellement aménageables à des fins aéroportuaires se situent au Sud de la

table d’Ath, plus précisément au Sud-Est de la localité de Chièvres et au Sud de celles de

Bruges et de Cambon-Casteau. Alors que le CERAU suggérerait d’établir une halte TGV sur la nouvelle ligne à grande vitesse, entre Arbre et Chièvres, notre option est de réaliser une déviation de cette dernière au Sud de Chièvres, de façon à desservir directement l’aéroport. Il nous semble en effet essentiel d’éviter une rupture de charge comme celle envisagée au moyen d’un hypothétique « people mover » entre Zaventem et l’éventuelle

Les différentes gares TGV ne sont pas exclusives entre elles et seraient parfaitement complémentaires dans la mesure où il est évident que les TGV ne s’arrêteraient pas à chacune d’entre elles, mais seulement à une ou au maximum à deux (en l’occurrence Chièvres et Schaerbeek ou Zaventem) en fonction de leurs missions. Bien

évidemment, seuls ceux s’arrêtant effectivement à Chièvres emprunteraient la déviation précitée, ainsi que les « airport express » qui reliaient le nouvel aéroport à Bruxelles côté

Est et, à une moindre fréquence, à Lille côté Ouest.

II.1 LA CONFIGURATION GÉNÉRALE DES INSTALLATIONS

L’idée de base, déjà avancée en 1993 par les consultants français, est de construire deux pistes de 4.000 m orientées d’Est en Ouest permettant, vu leur espacement, des

atterrissages et décollages simultanés et de placer les installations terminales passagers entre celles-ci, selon une disposition linéaire. Au cœur du dispositif, prendrait place le pôle d’intermodalité air/fer qui permettrait des correspondances bien plus commodes que dans la

totalité des sites concurrents, parce que la configuration des lieux serait planifiée ext-ante

plutôt que surimposée avec plus ou moins de bonheur comme c’est le cas partout ailleurs.

La construction des tunnels ferroviaires sous l’aéroport et celle de la gare sous l’aérogare

passagers devraient donc impérativement s’effectuer en même temps que celle des

37 ENPC, Proposition de création d’un aéroport international commun aux deux métropoles de Lille et Bruxelles, décembre 1993.
39 ENPC, Proposition de création d’un aéroport international commun aux deux métropoles de Lille et Bruxelles, décembre 1993.
installations aéroportuaires proprement dites. De même pour l’aérologle fret qu’il faudra aussi disposer par dessus la déviation de la ligne à grande vitesse, à priori à l’Ouest du terminal passagers. Si, dans une seconde phase, celui-ci devait être agrandi, la seconde aérologle viendrait prendre place au Sud de la plus méridionale des deux pistes et une spécialisation s’imposerait entre les deux terminaux, le second étant par exemple affecté au trafic des charters et aux opérations de hubbing.

Dans l’optique de l’extension à 3.600 ha envisagée en 1993 par les consultants français, la réalisation d’une troisième piste parallèle est même prévue tout au Sud du dispositif, au Sud donc de cette éventuelle seconde aérologle. Une telle troisième piste pourrait longtemps s’avérer superflue dans la mesure où chacune des deux premières pourrait auparavant être dédoublée dans une configuration en doublets (pour lesquels il faudrait d’emblée faire les réservations et prévoir le système de taxiways) analogue à celle d’Atlanta et de Roissy, avec deux fois deux pistes pratiquement accolées (les plus longues pour les décollages et les plus courtes pour les atterrissages, les uns et les autres s’effectuant en alternance).

Un tel système permet d’augmenter fortement la capacité sans emprises supplémentaires, mais nous recommandons cependant de faire d’emblée les réservations d’espace nécessaires pour un éventuel troisième doublet méridional. En effet, celui-ci pourrait s’avérer nécessaire pour un développement important du trafic des petits porteurs qui, dans les itinéraires d’atterrissage et de décollage, ne se mélangent pas bien avec les plus gros porteurs (en raison de leurs vitesses différentes et des vortex que ces derniers suscitent). Ce problème est tellement réel qu’à Paris, ADP songe à ouvrir à nouveau Le Bourget au trafic commercial et à y accueillir des petits porteurs qui dégageraient ainsi les circuits aériens de Roissy.

II.2 L’ACCESSIBILITÉ FERROVIAIRE ET ROUTIÈRE DU SITE

Comme indiqué plus haut, les TGV et les « airport express » (vers la jonction Nord-Midi, mais aussi directement vers les gares de Bruxelles Luxembourg et Schuman via la ligne 26) emprunteraient une déviation de la ligne à grande vitesse pour desservir la future gare TGV sous le premier terminal passagers. D’autres relations rapides « Airport sprinters » de type TVE (trains à vitesse élevée formés de voitures I10 tractées ou poussées par les nouvelles locomotives électriques de type 13 équipées de la signalisation en cabine pour emprunter les lignes nouvelles à 200 km/h) pourraient s’y ajouter, soit vers et depuis Anvers, soit vers et depuis Louvain et Liège (dans ce cas aussi sur ligne nouvelle, comme c’est déjà prévu pour les IC Liège-Ostende). Il conviendrait donc de prévoir non moins de six voies pour cette partie de la gare : deux pour les TGV, deux pour les navettes « airport express » et deux pour les TVE précités, de façon à ne pas se trouver à long terme dans une situation de dramatique sous-capacité comme cela sera bientôt le cas avec la gare de Zaventem où n’ont été prévues que trois voies.

Pour leur part, les trains régionaux classiques desserviraient l’aéroport en empruntant une déviation de la ligne 92 Ath-Jurbise construite à l’Ouest de celle-ci selon un tracé Nord-Sud grossièrement perpendiculaire aux pistes et donc à la déviation de la ligne à grande vitesse s’inscrivant d’Est en Ouest entre les deux premières d’entre elles. Le croisement, à des niveaux différents, de ces deux axes matérialisera en quelque sorte le cœur de la première aérologle passagers. Cette gare régionale devrait comporter quatre voies à quai, également bidirectionnelles, pour pouvoir traiter dans de bonnes conditions les trafics suivants : le RER bruxellois, dont une branche serait prolongée d’Enghien à Ath et à l’aéroport ; une desserte intercity de la Wallonie via les lignes 92 (Mons), 118 (Charleroi), 130 (Namur) et 125 (Liège) ; une desserte symétrique des deux Flandres via les lignes 93-90 et 123-122 (Gand) et 50a
(Bruges et Ostende/Knokke) ; une desserte de l’Ouest du pays via les lignes 94 (Tournai) et 94-75 (Courtrai).

Même si, comme c’est le cas par exemple à Roissy, Francfort, Amsterdam et Zaventem, la politique de mobilité vise à susciter, pour les passagers comme pour le personnel, un usage accru du chemin de fer, l’accessibilité autoroutière et routière de la plate-forme de Chièvres devrait évidemment être aussi de bonne qualité. À cet effet, il conviendrait d’améliorer l’A8 en direction de Bruxelles (passage à trois voies et mise à niveau autoroutier à hauteur de Hal) et de réaliser une bretelle entre celle-ci et l’aéroport, selon un axe Ghislenghien-Attré (plutôt que selon le difficile tracé proposé par le CERAU à l’Ouest d’Ath). Par ailleurs, des liaisons de type « route express » sont à prévoir vers l’A7 au niveau de Mons et en direction de Gand via Grammont et Zottegem.

Une importante clientèle motorisée issue du Sud de l’agglomération bruxelloise, y compris une partie importante des Brabants wallon et flamand, ainsi que des environs de Namur, de Charleroi, de Mons et Gand aurait ainsi non seulement accès à un grand aéroport international, mais à un véritable pôle d’intermodalité. Celui-ci aurait pour fonction secondaire d’être une gare TGV de type « parkway », c’est-à-dire bien accessible par la route pour les populations périurbaines, comme il s’en multiplie en périphérie des villes nord-américaines et, plus récemment, européennes (cf les exemples de Roissy, Marne-la-Vallée et Lyon Satolas qui fonctionnent aussi comme des gares TGV périphériques en Île-de-France et Rhône-Alpes). Antoing serait ainsi une plate-forme juxtaposant, d’une part, trois niveaux de bimodalité (air/fer et air/route dans sa stricte dimension aéroportuaire, mais aussi route/fer), et, d’autre part, deux fonctions de hubbing intramodal (air/air, mais aussi fer/fer par correspondance des TGV et du réseau régional dûment reconfiguré). Le tout nous paraît offrir un potentiel incomparable à moyen- et long termes, très supérieur à celui des solutions plus ou moins boîteuses avancées pour développer plus avant Zaventem et qui sont assurément moins bonnes en termes de développement durable.

II.3 VERS UN SYSTÈME BIPOLAIRE

Si le pari de Chièvres était tenté, on assisterait à la mise en place d’un système aéroportuaire analogique, par exemple, à celui géré par les Aéroports de Paris, avec d’une part une plate-forme historique (ici Zaventem, là Orly) saturée, enclavée, soumise à de fortes contraintes et à l’intermodalité imparfaite, et d’autre part une plate-forme moderne (ici Chièvres, là Roissy) largement dimensionnée, au fort potentiel de croissance, soumise à moins de contraintes et véritablement trimodale, qui absorberait progressivement la croissance d’ensemble du trafic.

Dans notre esprit, il ne s’agit pas nécessairement d’offrir un nouvel outil à la Sabena, dont il n’est pas sûr qu’elle serait intéressée par une relocation totale depuis Zaventem et encore moins par un partage de ses opérations entre Zaventem et Chièvres. Divers autres schémas peuvent être envisagés, avec un fort développement du fret (y compris une relocation de DHL), une spécialisation pour les charters et l’essor d’opérateurs réguliers basés, qu’ils soient nationaux (comme CityBird et Virgin Express dont les opérations pourraient prendre une importante extension) ou étrangers attirés par une formule d’attribution neutre des slots, ne conduisant pas à la construction d’une « forteresse » au profit d’un opérateur dominant. Une localisation proche de Lille fait qu’on pourrait compter sur une importante clientèle française et le fait que l’aéroport aille en quelque sorte, de par sa position le long de la ligne à grande vitesse, à la rencontre de Londres et de Paris nous semble un critère de choix essentiel par rapport aux sites orientaux mentionnés au point précédent.
Chapitre I : LA PROBLÉMATIQUE DES VERTIPORTS

Dans l’état actuel de la technologie et de son évolution prévisible, les hélicoptères ne sont pas adaptés au transport aérien commercial, sauf dans des cas très particuliers. Les problèmes sont à la fois économiques (le coût au passager-km ou à la tonne-kilomètre est très élevé en raison de la complexité des machines et de leur capacité limitée) et environnementaux. Le bruit émis, lors des opérations de décollage ou d’atterrissage comme en vol, est élevé et ces appareils sont bannis en de nombreux lieux. C’est ainsi qu’aucun hélicoptère, même d’affaires, n’est admis à l’aéroport des docks de Londres (London City Airport) qui accueille par contre divers modèles de turbopropulseurs et de jets.

Il nous paraît cependant utile de faire des réservations en rapport avec l’essor éventuel, à l’horizon 2010, d’une formule hybride encore non dénommée en langue française, mi-hélicoptère, mi-avion, qui pourrait révolutionner le domaine des relations aériennes à courte distance. Succinctement, plusieurs constructeurs travaillent à des appareils qui, grâce à des moteurs et à des ailes basculant à 90°, décolleraient et atteriraient comme des hélicoptères, mais plus silencieusement que ces derniers, et se déplacereraient en vol comme des avions. Aux termes anglais de flyingtortors ou vertiplanes, désignant ces appareils en gestation, correspond le nom de vertiports, par contre transposable tel quel en français, pour désigner les plates-formes susceptibles de les accueillir et qui peuvent déjà être des héliports.

I.1 BREF APERÇU TECHNIQUE

De tels appareils volent déjà en version militaire, avec le V-22 Osprey développé par Boeing et Bell pour le Corps US des Marines. Sa capacité est de 24 hommes de troupe ou de neuf tonnes d’équipement, ce qui en fait déjà une machine de belle taille. Une version civile pourrait rapidement être proposée, qui bénéficierait sans doute d’un prix attractif dans la mesure où les frais de développement extrêmement élevés de cette nouvelle technologie auront été supportés par l’armée.

D’une manière tout à fait indépendante, Bell et Agusta sont occupés à construire le BA-609 qui devrait faire son premier vol avant la fin 2000 et être certifié en 2002. Il s’agit d’un appareil de faible taille (6 à 9 places) conçu pour l’aviation d’affaires et dont plusieurs dizaines d’exemplaires ont été commandés, alors que le constructeur estime le marché de telles machines à un millier entre 2010 et 2030, hors versions militaires (par exemple comme appareils d’entraînement pour le V-22).

Dans l’un et l’autre cas, les moteurs sont placés au bout d’une aile fixe et sont les seuls éléments basculants. Plus élaborée encore est la formule récemment proposée par Agusta et Westland pour leur Erica, dont les ailes basculeraient et donc les moteurs avec elles. L’intérêt de cette solution serait qu’en basculant légèrement celles-ci, plutôt qu’en les plaçant temporairement à la verticale, l’appareil pourrait décoller et atterrir sur des pistes courtes.
PARTIE III – LA PROBLÉMATIQUE DES VERTIPORTS

comme les avions de type STOL (short take off and landing). Ce point est capital, car il permettrait une charge marchande supérieure à un appareil qui aurait par ailleurs deux fois la taille du BA-609 précité et emporterait jusqu’à 20 passagers.

Un consortium européen mené par Eurocopter et dans lequel la Belgique intervient pour 0,9% propose de son côté une machine d’une taille similaire (19 passagers), l’Eurotillt, mais à aile fixe et moteurs pivotants. La vitesse et l’altitude de croisière s’établiraient respectivement à 500 km/h et 7.500 m, avec un rayon d’action de l’ordre de 1.500 km. Ces deux projets concurrents sont présentement étudiés de près par les services de recherche de la Commission Européenne (programme 2Together de la DG XII, pour « 2nd Generation of European Tilting Highly Efficient Rotorcraft », par opposition aux programmes américains évoqués plus haut qui relèvent déjà de la première génération).

1.2 UN LARGE ÉVENTAIL DE RELATIONS POTENTIELLES

Sous réserve d’arriver techniquement à maturité et de donner naissance à des appareils économiquement rentables et d’un point de vue environnementale acceptables, ces projets pourraient amener une révolution dans le domaine du transport aérien commercial à courte distance et donc des plates-formes aériennes. Ceci en fonction des relations que de telles machines assureraient et qui sont fondamentalement de deux types :
- de point à point, là où il n’y aurait pas la concurrence des trains à grande vitesse ;
- de spoke à hub, pour alimenter les grandes plates-formes de correspondance américaines et européennes.

Dans le second cas, non seulement un plus grand nombre de spokes pourraient être desservis, puisque des pistes ne seraient pas nécessaires, mais, de plus, la pression sur les hubs pourrait être allégée puisque une partie au moins du trafic d’apport par petits porteurs pourrait s’y effectuer en mode vertical, à l’écart des pistes qui auraient ainsi une capacité accrue pour les vols à moyenne et longue distances.

Dans le premier cas, c’est surtout la possibilité d’opérer de centre à centre - ou plutôt de proche périphérie à proche périphérie – qui est la plus séduisante. Sur l’axe Paris-Londres, un pont aérien assuré, à destination de la clientèle d’affaires, par des appareils de la troisième génération (50 sièges) entre les aéroports du Bourget et de London City serait certainement compétitif par rapport au vols conventionnels via l’un ou l’autre hub. Certaines localités desservies pourraient même ne pas disposer actuellement de plates-formes aériennes et un réseau de vertiports viendra donc compléter le dispositif des aéroports classiques, dont le maillage présente encore des lacunes.

1.3 DES VERTIPORTS EN WALLONIE ?

Dans un premier temps, la question de l’adéquation des plates-formes de Bierset et de Gosselies doit être posée. Le manque d’espace fait qu’il ne paraît pas envisageable d’y réaliser une aire distincte pour les décollages et atterrissages en mode vertical qui soit suffisamment éloignée des pistes actuelles. Il faudrait alors faire poser les appareils sur lesdites pistes au droit des aérogares, avec des circuits aériens qui les amèneraient vers l’aéroport perpendiculairement à celles-ci, pour interférer le moins possible avec les mouvements aériens conventionnels.

Si on pose l'hypothèse que les vertiports sont des sortes d'aéroports de proximité, trois parties densément peuplées de la Wallonie et où à fort développement économique semblent correspondre à des trous du maillage évoqués au paragraphe précédent :

- la région montoise tout d’abord, dont les ambitions de redéploiement économique pourraient être supportées par un vertiport situé, par exemple, au Nord-Ouest de la ville où des terrains industriels sont inoccupés ;
- la région namuroise ensuite, où l'aéroport de Temploux pourrait sans doute convenir sous réserve de régler les conflits de circulation aérienne avec Gosselies ;
- le bipôle Wavre-Louvain-La-Neuve enfin, où l’espace situé immédiatement au Sud du parc scientifique néo-louvainiste paraît tout indiqué et où il serait sage de geler dès que possible l’emprise nécessaire à un vertiport.

Dans tous les cas, vu la modicité relative du potentiel de trafic, aucun branchement ferroviaire spécifique n’est à prévoir, le mode routier étant le vecteur exclusif de déplacement de la clientèle visée, qui est essentiellement de proximité. Seuls des branchements routiers, directs ou indirects, aux autoroutes et voies rapides proches seraient à envisager.

La carte ci-dessous expose les différents sites existants à aménager ou carrément à créer pour l’accueil de vertiplanes.

Carte 7 : Plates-formes existantes et potentielles pour l’accueil de vertiplanes.
CONCLUSION GÉNÉRALE

Le développement des activités de l’aéroport de Charleroi-Bruxelles Sud semble relativement cantonné au transport de passagers. En effet, au niveau de la disponibilité d’accueil de nouvelles entreprises susceptibles d’accroître la demande de transport fret, les 9 parcs industriels proches ont actuellement atteint un niveau de remplissage assez élevé. De plus, peu d’activités presentes actuellement sur ces sites ont malheureusement recours au transport aérien. Il est donc important de réserver l’espace encore disponible, bien que déjà très réduit, à des entreprises ayant un recours effectif aux infrastructures aéroportuaires, contrairement à ce qui a été permis jusqu’à maintenant.

De plus, les caractéristiques locales de l’aéroport de Charleroi, notamment la longueur de piste et l’interdiction des vols de nuit, et la tendance du marché aérien amènent à orienter celui-ci principalement vers le transport passagers et plus particulièrement vers deux principales niches de marché. Le premier marché est celui des compagnies régulières, plus particulièrement celui des low-cost, et des charters. Le deuxième cheval de bataille potentiel de l’aéroport de Charleroi est l’aviation d’affaires, déjà présente sur le site. L’aéroport de Charleroi est, en effet, une bonne alternative à Bruxelles car la saturation progressive de l’aéroport de Zaventem et la lenteur des opérations au sol sont des inconvénients pouvant profiter à l’aéroport de Charleroi.

L’analyse, dans le cadre parallèle du projet COFAR, de la situation du transport aérien en Europe et des capacités aéroportuaires existantes ainsi que des extensions en cours ou prévues à ce niveau nous a convaincu de l’imminence d’une sous-capacité importante à assez brève échéance au cœur du dispositif européen. La saturation de Bruxelles-National se dessine donc à moyen terme, puisque les possibilités d’extension y sont inexistantes. Les développements envisagés dans le domaine des passagers à Gosselies permettraient de capter une partie de la croissance attendue aux niveaux belge et européen, mais ne seraient qu’une réponse très partielle à l’augmentation de la demande globale. Le fait qu’ils puissent être mis en œuvre rapidement plaide cependant pour leur engagement, dans une optique de phasage avec la création d’un deuxième aéroport national en Région wallonne. Le site de Chievres est celui rassemblant le plus de conditions favorables à l’implantation d’un tel aéroport, tout en rendant possible la réalisation d’un pôle de multimodalité efficace, alliant l’air, le rail et la route. La mise en place au sein de l’administration d’une cellule d’étude et de suivi est recommandée.

Toujours dans une optique de long terme, il conviendrait également de prévoir des réservations en rapport avec l’essor éventuel, à l’horizon 2010, d’une formule hybride encore non dénommée en langue française, mi-hélicoptère, mi-avion, pouvant décoller et atterrir sur des courtes distances, sous réserve, bien entendu, d’arriver techniquement à maturité et de donner naissance à des appareils économiquement rentables et d’un point de vue environnementale acceptables. Ces projets pourraient, en effet, amener une révolution dans le domaine du transport aérien commercial à courte distance et donc des plates-formes aériennes régionales.

Finalement, il est indispensable que toutes les adaptations futures du système aéroportuaire wallon soient étudiées dans une optique, comme nous l’avons dit, de long terme, optique intégrant inévitablement l’aspect « environnement », c’est-à-dire en prenant la peine de développer une politique environnementale solide.
Annexe 1

Les développements, leurs coûts d’investissement et l’estimation de leurs retombées économiques selon l’étude TRACTEBEL, avril 1999

1. Les développements

Ils consistent essentiellement en l’allongement de la piste et la construction d’une nouvelle aérogare Nord.

L’aérogare projetée serait située au nord, du côté de l’aéropole, avec une liaison ferroviaire sur la ligne Ottignies-Fleurus, avec l’idée de mettre des compagnies de bus privées en ligne.

Le développement au nord se justifie pour répondre aux conformités CAT III et d’implantation des parkings avions nécessaires, à la minimisation des expropriations et éloignement des activités des zones d’habitat, à la disponibilité immédiate des terrains et l’optimisation des possibilités d’extension après 2020, à la synergie des infrastructures d’accès vers l’Aéropole.

2. Evaluation du coût des investissements de la solution Nord-site proposée : plan à 20 ans, 2 000 000 de passagers

<table>
<thead>
<tr>
<th>Descriptions</th>
<th>Coût total En mios de Bef</th>
<th>Dont coût à 10 ans En mios de Bef</th>
<th>Dont coût à 20 ans En mios de Bef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expropriations</td>
<td>183</td>
<td>170</td>
<td>13</td>
</tr>
<tr>
<td>Nouvelle aérogare</td>
<td>1245</td>
<td>730</td>
<td>515</td>
</tr>
<tr>
<td>Desserte et accès privé à l’aéroport</td>
<td>242</td>
<td>134</td>
<td>107</td>
</tr>
<tr>
<td>Accès public routier</td>
<td>197</td>
<td>197</td>
<td>0</td>
</tr>
<tr>
<td>Système de piste</td>
<td>620</td>
<td>360</td>
<td>260</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4080</td>
<td>3064</td>
<td>1015</td>
</tr>
</tbody>
</table>

La nouvelle aérogare serait concernée par 71 % des vols. L’aviation d’affaires et l’aviation générale resteraient localisées au sud.

3. Estimation des retombées économiques directes de ces investissements

Les retombées économiques directes d’un aéroport sont constituées des recettes d’exploitation générées par l’activité de transport de passagers et de fret. Les postes suivants ont été identifiés comme pouvant apporter une contribution significative aux résultats futurs de l’aéroport :

4. Ventes de produits et services
CONCLUSION GÉNÉRALE

4.1 Commerces
4.2 HORECA
4.3 Carburant
4.4 Transport de surface (passagers)
4.5 Maintenance avions
4.6 Catering
4.7 Parkings
4.8 Handling
4.9 Autres retombées
- Transport terrestre de fret
- Services : nettoyage, entretien domaine
- Compagnies aériennes, agences de voyage, tour opérateurs
5. Recettes liées au trafic aérien
5.1 Taxes d’atterrissage
5.2 Taxes de stationnement
5.3 Taxes d’embarquement (passagers)
6. Recettes domaniales

Tableau de l’évaluation des retombées économiques calculées dans l’étude TRACTEBEL

<table>
<thead>
<tr>
<th></th>
<th>1997</th>
<th>2005</th>
<th>2010</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commerces</td>
<td>25.3</td>
<td>118.4</td>
<td>173</td>
<td>310</td>
</tr>
<tr>
<td>Horeca</td>
<td>8</td>
<td>33.6</td>
<td>49.2</td>
<td>88.1</td>
</tr>
<tr>
<td>Carburant</td>
<td>35</td>
<td>143.5</td>
<td>209.7</td>
<td>375.5</td>
</tr>
<tr>
<td>Transport de surfaces passagers</td>
<td>14.5</td>
<td>59.2</td>
<td>86.6</td>
<td>155.1</td>
</tr>
<tr>
<td>Maintenance avions</td>
<td>0</td>
<td>14.5</td>
<td>21.2</td>
<td>38.0</td>
</tr>
<tr>
<td>Catering</td>
<td>1.6</td>
<td>55.7</td>
<td>104.9</td>
<td>175.6</td>
</tr>
<tr>
<td>Parkings</td>
<td>0</td>
<td>96.5</td>
<td>174.5</td>
<td>174.5</td>
</tr>
<tr>
<td>Handling</td>
<td>30.2</td>
<td>154.5</td>
<td>231.3</td>
<td>462.7</td>
</tr>
<tr>
<td>Autres retombées économic</td>
<td>11.3</td>
<td>46.5</td>
<td>68.4</td>
<td>122.6</td>
</tr>
<tr>
<td>Total ventes produits/services</td>
<td>125.9</td>
<td>722.4</td>
<td>1118.8</td>
<td>1902.1</td>
</tr>
<tr>
<td>Taxes d’atterrissage</td>
<td>20.1</td>
<td>52.2</td>
<td>69.3</td>
<td>106.5</td>
</tr>
<tr>
<td>Taxes de stationnement</td>
<td>1.0</td>
<td>3.1</td>
<td>4.2</td>
<td>7.1</td>
</tr>
<tr>
<td>Taxes d’embarquement (passagers)</td>
<td>14.0</td>
<td>100.8</td>
<td>171.8</td>
<td>307.8</td>
</tr>
<tr>
<td>Total recettes liées au trafic aérien</td>
<td>35.1</td>
<td>156.1</td>
<td>245.3</td>
<td>421.4</td>
</tr>
<tr>
<td>Location de bâtiments</td>
<td>20.9</td>
<td>50.2</td>
<td>68.6</td>
<td>68.6</td>
</tr>
<tr>
<td>Total des recettes domaniales</td>
<td>20.9</td>
<td>50.2</td>
<td>68.6</td>
<td>68.6</td>
</tr>
<tr>
<td>Total général</td>
<td>181.9</td>
<td>928.7</td>
<td>1432.7</td>
<td>2392.1</td>
</tr>
</tbody>
</table>

![Graphique des ventes de produits et services](image.jpg)

![Graphique des recettes liées au trafic](image.jpg)
7. Evaluation des emplois liés aux activités aéroportuaires ou à l’attractivité du site qui résulteront du développement de l’aéroport

En octobre 1998, le nombre d’emplois directement liés à l’exploitation de l’aéroport s’élève à 233 unités. Ces emplois proviennent d’organismes tels BSCA, le MET, la gendarmerie, les douanes, l’Horeca, les écoles de pilotage, des entreprises présentes sur le site tels New ITS, Air Algérie ….

7.1 Evaluation des emplois directement liés aux activités aéroportuaires

<table>
<thead>
<tr>
<th>Passagers (vols réguliers et charters) par an dont</th>
<th>1997</th>
<th>2005</th>
<th>2010</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passagers (vols réguliers et charters) par an dont</td>
<td>178 000</td>
<td>726 000</td>
<td>1 061 000</td>
<td>1 901 000</td>
</tr>
<tr>
<td>Emploi directs</td>
<td>178</td>
<td>726</td>
<td>1061</td>
<td>1901</td>
</tr>
<tr>
<td>Emplois indirects et induits</td>
<td>178</td>
<td>726</td>
<td>1061</td>
<td>1901</td>
</tr>
<tr>
<td>Total des emplois directement liés aux activités aéroportuaires</td>
<td>356</td>
<td>1452</td>
<td>2122</td>
<td>3802</td>
</tr>
</tbody>
</table>

7.2 Emplois dus au développement de l’attractivité du site aéroportuaire

<table>
<thead>
<tr>
<th>Passagers (vols réguliers et charters) par an</th>
<th>1997</th>
<th>2005</th>
<th>2010</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passagers (vols réguliers et charters) par an</td>
<td>178 000</td>
<td>726 000</td>
<td>1 061 000</td>
<td>1 901 000</td>
</tr>
<tr>
<td>Total des emplois « catalyseurs »</td>
<td>320</td>
<td>1 307</td>
<td>1 910</td>
<td>3 422</td>
</tr>
</tbody>
</table>

7.3 Emplois dus aux travaux d’investissements

En considérant le ratio d’un emploi-an pour 2,5 mios de Bef d’investissements, on obtient :

<table>
<thead>
<tr>
<th>Postes</th>
<th>Inv. Total en mios de Bef</th>
<th>2010 phase 1 : 1 mois de passagers</th>
<th>2020 phase 2 : 2 mios de passagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solde d’expropriations</td>
<td>183</td>
<td>170</td>
<td>13</td>
</tr>
<tr>
<td>Nouvelle aérogare</td>
<td>1245</td>
<td>730</td>
<td>515</td>
</tr>
<tr>
<td>Parkings véhicules, accès privé à l’aéroport</td>
<td>242</td>
<td>134</td>
<td>107</td>
</tr>
</tbody>
</table>

40 Etude TRACTEBEL, avril 1999.
41 Etude TRACTEBEL, avril 1999.

Accès public routier	197	197	0
Système de piste	1593	1473	120
Autres	620	360	260
Total	**4080**	**3064**	**1015**
Nbre total d’emplois-an	1632	1226	406
Nbre d’emplois-an par an en considérant deux périodes de travaux de 3 ans	409	135	

En considérant le ratio ACI, on obtient 2 000 emplois-an à répartir sur la période de travaux.

Tableau de synthèse des emplois générés par le projet d’allongement de piste:

<table>
<thead>
<tr>
<th>1 Emplois directement liés aux activités aéroportuaires sur le site</th>
<th>Emplois en 2010 : 1 mois de passagers</th>
<th>Emplois en 2020 : 2 mois de passagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emplois directs</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Emplois indirects et induits liés aux services nécessaires aux activités aéroportuaires et aux personnes employées</td>
<td>1000</td>
<td>2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Emplois dus à l’attractivité d’un site aéroportuaire</th>
<th>Emplois en 2010 : 1 mois de passagers</th>
<th>Emplois en 2020 : 2 mois de passagers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emplois directs</td>
<td>3500</td>
<td>3500</td>
</tr>
<tr>
<td>(sites d’accueil saturés)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emplois indirects</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Emplois induits</td>
<td>105</td>
<td>105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Emplois liés aux chantiers</th>
<th>Emplois temporaires sur la durée des travaux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>409</td>
</tr>
</tbody>
</table>

Total des emplois générés par le projet: 6364 | 7775

Annexe 2

Budgets engagés en matière d’investissement à Charleroi-Bruxelles Sud de 1991 à 1998

<table>
<thead>
<tr>
<th></th>
<th>Budget Régional</th>
<th>Cofinancement FEDER</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citernes carburant avion</td>
<td>19.1</td>
<td>6.3</td>
<td>25.4</td>
</tr>
<tr>
<td>Arsenal pompiers</td>
<td>10.7</td>
<td>3.6</td>
<td>14.3</td>
</tr>
<tr>
<td>Hangar S14</td>
<td>5.2</td>
<td>1.7</td>
<td>6.9</td>
</tr>
<tr>
<td>5 hangars av.générale</td>
<td>17.5</td>
<td>5.8</td>
<td>23.3</td>
</tr>
<tr>
<td>Aménagements aérogare et business center</td>
<td>36.5</td>
<td>12.2</td>
<td>48.7</td>
</tr>
<tr>
<td>Hangar matériel et bureau compagnies</td>
<td>42.7</td>
<td>14.2</td>
<td>56.9</td>
</tr>
<tr>
<td>Expropriations</td>
<td>4.7</td>
<td>0</td>
<td>4.7</td>
</tr>
<tr>
<td>Honoraires d’études et divers</td>
<td>36.3</td>
<td>1.6</td>
<td>37.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>172.7</td>
<td>45.4</td>
<td>218.1</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking avions et zone bagagiste</td>
<td>29.5</td>
<td>9.8</td>
<td>39.3</td>
</tr>
<tr>
<td>Expropriations</td>
<td>24.0</td>
<td>8.0</td>
<td>32.0</td>
</tr>
<tr>
<td>5 hangars av. générale, décompte</td>
<td>8.2</td>
<td>0</td>
<td>8.2</td>
</tr>
<tr>
<td>Parc météo et balisage</td>
<td>14.3</td>
<td>4.8</td>
<td>19.1</td>
</tr>
<tr>
<td>Réfection de la piste</td>
<td>95.4</td>
<td>31.8</td>
<td>127.2</td>
</tr>
<tr>
<td>Parking voitures</td>
<td>120.9</td>
<td>40.3</td>
<td>161.2</td>
</tr>
<tr>
<td>Bureaux compagnie, 2ème phase</td>
<td>41.3</td>
<td>13.8</td>
<td>55.1</td>
</tr>
<tr>
<td>Honoraires d’études et divers</td>
<td>27.0</td>
<td>7.1</td>
<td>34.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>360.6</td>
<td>115.6</td>
<td>476.2</td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking avions</td>
<td>102.3</td>
<td>34.1</td>
<td>136.4</td>
</tr>
<tr>
<td>Raccordement dalle</td>
<td>29.5</td>
<td>9.8</td>
<td>39.3</td>
</tr>
<tr>
<td>5 hangars av.générale, décompte</td>
<td>9.1</td>
<td>0.5</td>
<td>9.6</td>
</tr>
<tr>
<td>Aménagement aérogare et business center, décompte</td>
<td>16.3</td>
<td>0</td>
<td>16.3</td>
</tr>
<tr>
<td>Expropriations</td>
<td>40</td>
<td>0</td>
<td>40.0</td>
</tr>
<tr>
<td>Aérogare mise en conformité</td>
<td>15.4</td>
<td>5.1</td>
<td>20.5</td>
</tr>
<tr>
<td>Parkings avions et zone bagagiste, décompte</td>
<td>2.0</td>
<td>0.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Divers et honoraires d’études</td>
<td>21.1</td>
<td>5.2</td>
<td>26.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>235.7</td>
<td>55.3</td>
<td>291.0</td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Réfection de la piste</td>
<td>18.0</td>
<td>0</td>
<td>18.0</td>
</tr>
<tr>
<td>Parking avions, décompte</td>
<td>6.0</td>
<td>0</td>
<td>6.0</td>
</tr>
<tr>
<td>Aménagement aérogare et business center, décompte</td>
<td>2.7</td>
<td>0</td>
<td>2.7</td>
</tr>
<tr>
<td>Expropriations</td>
<td>131.4</td>
<td>0</td>
<td>131.4</td>
</tr>
<tr>
<td>Hangar matériel et bureaux compagnies, décomptes</td>
<td>9.5</td>
<td>0</td>
<td>9.5</td>
</tr>
<tr>
<td>Parc météo et balisage, décomptes</td>
<td>3.6</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>Raccordement dalle, décomptes</td>
<td>5.8</td>
<td>0</td>
<td>5.8</td>
</tr>
<tr>
<td>Réfection taxi sud et balisage, lot 1</td>
<td>92.3</td>
<td>61.6</td>
<td>153.9</td>
</tr>
<tr>
<td>Réfection taxi sud et balisage,</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion Générale

Investissements réalisés sur fonds propres par B.S.C.A. :

<table>
<thead>
<tr>
<th></th>
<th>Fonds propres B.S.C.A.</th>
<th>Cofinancement FEDER</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rénovation des toitures SABCA</td>
<td>60.0</td>
<td>0.0</td>
<td>60.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60.0</td>
<td>0.0</td>
<td>60.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Budget Régional</th>
<th>Cofinancement FEDER</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accès nord - lot 1</td>
<td>71.6</td>
<td>47.7</td>
<td>119.3</td>
</tr>
<tr>
<td>- lot 2</td>
<td>67.8</td>
<td>-</td>
<td>67.8</td>
</tr>
<tr>
<td>Etudes</td>
<td>0.6</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Expropriations</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Démolition de maisons expropriées</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Clôture nord</td>
<td>4.6</td>
<td>-</td>
<td>4.6</td>
</tr>
<tr>
<td>Alimentation circuit HT</td>
<td>8.6</td>
<td>5.7</td>
<td>14.3</td>
</tr>
<tr>
<td>Découpages divers</td>
<td>56.1</td>
<td>-</td>
<td>56.1</td>
</tr>
<tr>
<td>Rénovation des bâtiments de la SABCA</td>
<td>100.8</td>
<td>-</td>
<td>100.8</td>
</tr>
<tr>
<td>Contrôle d’accès</td>
<td>21.0</td>
<td>-</td>
<td>21.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>348.5</td>
<td>53.8</td>
<td>402.3</td>
</tr>
</tbody>
</table>

1997			
Chemin d’accès VOR	1.3	-	1.3
Démolition d’immeubles	2.8	-	2.8
Etude d’incidences	3.8	-	3.8
Rénovation SABCA	85.9	-	85.9
Signalétique du parking – étude	2.2	-	2.2
Distribution électrique	23.5	-	23.5
Plantations	1.5	-	1.5
Découpages, révisions et divers	40.1	-	40.1
Achèvement du taxi sud	31.5	-	31.5
Honoraires	11.8	-	11.8
Extension de l’aérologie	31.6	-	31.6
Étude de développement	14.0	-	14.0
TOTAL	250.0		250.0

| | | | |
| **1998** | | | |
CONCLUSION GÉNÉRALE

<table>
<thead>
<tr>
<th></th>
<th>gauche</th>
<th>-</th>
<th>droite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divers</td>
<td>14.46</td>
<td>-</td>
<td>14.46</td>
</tr>
<tr>
<td>Expropriations</td>
<td>0.605</td>
<td>-</td>
<td>0.605</td>
</tr>
<tr>
<td>Honoraires d’étude et services :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Igretec</td>
<td>6.095</td>
<td>-</td>
<td>6.095</td>
</tr>
<tr>
<td>- Security Management Consulting</td>
<td>1.427</td>
<td>-</td>
<td>1.427</td>
</tr>
<tr>
<td>- Cicade</td>
<td>4.833</td>
<td>-</td>
<td>4.833</td>
</tr>
<tr>
<td>- Seco</td>
<td>0.445</td>
<td>-</td>
<td>0.445</td>
</tr>
<tr>
<td>- B.A. Van Cleemput</td>
<td>1.7</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>Travaux :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Evacuation en décharge des déchets + travaux de remise en état</td>
<td>5.258</td>
<td>-</td>
<td>5.258</td>
</tr>
<tr>
<td>- Parachèvement et équipement des locaux de l’extension</td>
<td>97.290</td>
<td>-</td>
<td>97.290</td>
</tr>
<tr>
<td>- Réfection du taxi sud et balisage lot 1</td>
<td>0.447</td>
<td>-</td>
<td>0.447</td>
</tr>
<tr>
<td>- Terrassement / talutage / drainage de l’antenne</td>
<td>9.009</td>
<td>-</td>
<td>9.009</td>
</tr>
<tr>
<td>- Parking avions lot 2</td>
<td>1.028</td>
<td>-</td>
<td>1.028</td>
</tr>
<tr>
<td>- Parking avions amen. Zone nord lot 1</td>
<td>0.108</td>
<td>-</td>
<td>0.108</td>
</tr>
<tr>
<td>- Contrôle d’accès et télésurveillance</td>
<td>4.002</td>
<td>-</td>
<td>4.002</td>
</tr>
<tr>
<td>- Fourniture et mise en œuvre de plantations</td>
<td>0.342</td>
<td>-</td>
<td>0.342</td>
</tr>
<tr>
<td>- Mise en conformité tour et locaux D324</td>
<td>0.688</td>
<td>-</td>
<td>0.688</td>
</tr>
<tr>
<td>- Réfection du réseau HT lot 2</td>
<td>4.592</td>
<td>-</td>
<td>4.592</td>
</tr>
<tr>
<td>- Réfection taxing et balisage L2</td>
<td>4.754</td>
<td>-</td>
<td>4.754</td>
</tr>
<tr>
<td>Concession SABCA :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- réfection des dalles de parking</td>
<td>3.995</td>
<td>-</td>
<td>3.995</td>
</tr>
<tr>
<td>- lot 1 : remplacement des carrelages</td>
<td>26.297</td>
<td>-</td>
<td>26.297</td>
</tr>
<tr>
<td>- lot 2 : remplacement des sols industriels</td>
<td>54.573</td>
<td>-</td>
<td>54.573</td>
</tr>
<tr>
<td>- lot 3 : mise en œuvre d’une couche antikérosène</td>
<td>4.223</td>
<td>-</td>
<td>4.223</td>
</tr>
<tr>
<td>- rénovation toitures sheds hall 1</td>
<td>1.977</td>
<td>-</td>
<td>1.977</td>
</tr>
<tr>
<td>TOTAL</td>
<td>248.158</td>
<td>-</td>
<td>248.158</td>
</tr>
</tbody>
</table>

![Proportion investissements Régionaux et Européens à Charleroi-Bruxelles sud](image)

CPDT – Thème 7.2 – Rapport Final – LEPUR/GUIDE – Optimisation des grandes infrastructures — 69
Annexe 3

Impacts économiques d’un site aéroportuaire et des investissements qui y sont réalisés

LES DIFFÉRENTS ÉLÉMENTS À PRENDRE EN COMPTE SUSCEPTIBLES DE GÉNÉRER UN IMPACT ÉCONOMIQUE *(Source : The economic impact Study Kit, pg 19, ACI, 1993)*

SUR L’AÉROPORT :
- **Service de l’aéroport : compagnies aériennes**
 - Opérations aéroportuaires
 - Compagnies aériennes pour passagers et taxi aérien
 - Aviation générale
 - Service ATC
 - Police/immigration
 - Douanes
 - Catering
 - Approvisionnement en carburant
 - Manutention
 - Nettoyage et autres activités de support
 - Magasins
 - Bars/restaurants
 - Hôtels
 - Centres de conférence

- **Service de l’aéroport : fret**
 - Compagnies de fret
 - Manutention du fret
 - Centres cargo
 - Expéditeurs de fret
 - ATC (partage de)
 - Douanes (partage de)

HORS DE L’AÉROPORT

- **SERVICES AUXILIAIRES HORS AÉROPORT**

 Transport de passagers
 - Location de voitures
 - Services Limo
 - Taxis
 - Bus

 Transport de fret
 - Expéditeurs de fret
 - Entreprises de transport par camion

- **Construction et consulting**
 - Entreprises de construction
 - Entreprises de consultation :
 - D’engineering
 - Architecturale
 - De traitement des données
CONCLUSION GÉNÉRALE

- De planification

• Achats
 - Aliments et boissons
 - Biens destinés à la vente ou à la consommation
 - Équipements de bureaux
 - Équipements informatiques
 - Hardware
 - Software
 - Équipements techniques
 - Équipements de roulement

Les impacts dont il faut tenir compte

• Impacts sur le commerce / industrie
 - Maximiser la rentabilité du « just in time »
 - Minimiser les stocks
 - Accès au marché mondial
 - Effet d’attrait sur les nouvelles entreprises
 - Centres de commerce/conférence

• Impact sur le tourisme local
 - Hôtels hors de la zone aéroportuaire

• Effets sur la dépense locale
 - Impact sur les services publics
 - Impact sur les affaires
 - Impact sur la valeur de la vie sociale

• Aspects qualitatifs non quantifiables
 - Nuisances
 - Autres aspects positifs
 - Aspects négatifs possibles sur d’autres secteurs économiques
 - Gains de temps pour les hommes d’affaires
 - Accès aisé pour l’ensemble des destinations touristiques mondiales
Carte vertiport

Légende:
- Autoroute
- Ligne ferroviaire
- Plate-forme existante à aménager
1 Charleroi-Gosselies
2 Liège-Bierset
3 Namur-Temploux
- Vertiport à créer
4 Mons
5 Wavre-Louvain-La-Neuve
1. Études - Monographies

ACI EUROPE, septembre 1998; "Emploi et prospérité en Europe: une étude de l'ACI Europe sur l'impact économique et social des aéroports"; Airports Council International - European Region, Bruxelles.

ACI EUROPE, novembre 1992; "Les Aéroports: partenaires dans des activités économiques essentielles (Comment réaliser une étude d'impact économique?)"; Airports Council International - European Region.

ACI - The Economic Impact Study Kit - 1993.

Acte de colloque ; 1998 ; " Study on the location of logistic nodes"; Neptune supporting co-operation, workshop organised by university of Trieste and Neptune ; 29 may 1998.

AMKREUTZ AIRPORT CONSULT, 1998; "Overloopluchthaven en luchtvracht: een verkenning"; Amsterdam, Amkrechtz Airport International 98014.

CONCLUSION GÉNÉRALE

AVIATION INFORMATION & RESEARCH, INTERNATIONAL AIR TRANSPORT ASSOCIATION; juin 1997; "Brussels South Charleroi Airport: study of the likely future long term traffic development of Charleroi Airport"; IATA.

BRUSSELS AIRPORT, 1997; "BRUstats 1997"; Brussels, Brussels Airport International.

CONSEIL ECONOMIQUE ET SOCIAL DE LA RÉGION WALLONNE (CESRW), mai 1999, Liège, Plan aéronautique wallon: les propositions des partenaires sociaux wallons pour développer le secteur aéronautique.

DELPierre, S., BRECHET, R.(dir.), octobre 1993; "Les Facteurs de localisation comparés des entreprises franciliennes et provinciales"; Paris, Institut d'Aménagement et d'Urbanisme de la Région d'Ile-de-France, Division économie et développement local.

DEUTSCHE BAHN, Forschungs, Technologiezentrum München ; 14/10/1998 ; "Rapport DEUFRAKO" ; Traduction Française par la SNCF ; annexe 0 ;Paris.

CONCLUSION GÉNÉRALE

ENPC, Proposition de création d'un aéroport international commun aux deux métropoles de Lille et Bruxelles, décembre 1993.

IATA (International Air Transport Association), 1997; "Brussels South Charleroi Airport : study of the likely future long term traffic development of Charleroi Airport" ; IATA Aviation Information & Research ; rapport final.

IATA, 1999, International Air Transport Association, rapport sur le fret aérien.

IGRETEC, 1999, Parcs industriels de Charleroi.

ITALFERR (Italie) et al.; 1998; "HISPEEDMIX Project : the booklet of customers’ specification for high speed market segments ; projet co-financé par la Commission
Européenne sous le programme de transport RTD du programme de travail IV ; Document n°2 ; Statut R ; Rome ; 8/06/98.

ITALFERR (Italie) et al. ; 1998 ; "HISPEEDMIX Project : operating time bands, number of trains per segment and time tables for point to point and hub operations for the high speed market segment on the european high speed rail network" ; projet co-financé par la Commission Européenne sous le programme de transport RTD du programme de travail IV ; Document n°3 ; Statut R ; Rome ; 1/04/99.

JANE'S TRANSPORT, ed. 1998 ; "Global Airport Expansion Programme" ; Jane's, GBR.

JOUVAUD M. ; 1994 ; "Les Facteurs de localisation des services aux entreprises: une analyse empirique" ; Aix-en-Provence, Centre d'Economie Régionale, Faculté d'économie appliquée, Notes de recherche n° 163, 1994/6.

KRAMER J.H.T., 1990 ; "Luchthavens en hun uitstraling, een onderzoek naar de economische en ruimtelijke uitstralingseffecten van luchthavens" ("Airport and their Environment, a research into the economic and spatial impact of airports") ; NLD, Amsterdam, Koninglijk Nederland Aardrijkskundig Genootschap, 1990, Nederlandse Geografische Studies, 116.

LEPUR (ULg) – GUIDE (ULB), septembre 1999, Etude de la meilleure valorisation possible de l’aéroport de Liège-Bierset, pour le Ministère de la Région wallonne, dans le cadre de la CPDT(Conférence Permanente du Développement Territorial).

LEPUR (ULg) – GUIDE (ULB), mars 2000, Rapport préliminaire sur la situation et les perspectives de développement aéroportuaires en Wallonie, pour le Ministère de la Région wallonne, dans le cadre de la CPDT(Conférence Permanente du Développement Territorial).

CONCLUSION GÉNÉRALE

REITEL F., 1975, "La Navigation aérienne en Europe occidentale: esquisse d'un bilan"; Université de Metz, Département de Géographie, Centre d'études géographiques de Metz, 1975; (réédition de Mosella, tome IV, n°4, oct-déc 1974).

RUGGIERO V., 1984, "Il trasporto aero commerciale europeo: manuali e problemi di geografia"; Napoli, Edizioni Scientifiche Italiane.

SCHMITZ A., SERVAIS G., Université de Liège, septembre 1993, “ Etude de marché sur les potentialités de l’aéroport de Liège-Bierset en matière de trafic charter en saison d’été” ; étude réalisée sous la direction du Professeur B. Thiry à la demande de Mr. A. Pahaut, Vice-Président de la SABENA.

SITA, 1999 , "Projet AFTEI (Air Freight Transport and European Intermodality)" : market study ; contribution to the de liverable 3 ; 29/03/99.

SLEUWAEGEN, L., KESTENS, P. et al., septembre 1995; Leuven, "Brussels Airport Zaventem: un pôle de croissance stratégique".

CONCLUSION GÉNÉRALE

TRACTEBEL, janvier 1999, Projet d'allongement de la piste de l'aéroport de Charleroi-Bruxelles Sud, Etude d'incidences sur l'environnement.

TRACTEBEL, avril 1999, Etude stratégique de développement de l'aéroport de Charleroi, Deuxième rapport partiel de troisième phase, Retombées économiques.

TRACTEBEL, janvier 2000, Etude stratégique de développement de l'aéroport de Charleroi, Rapport de troisième phase, planification détaillée.

TRANSConsult, septembre 1989, Le développement de l'aéroport de Charleroi-Gosselies.

2. Péripodiques - Articles

AIRPORT SUPPORT ed.;1994; "Germany's Biggest Load"; in Airport Support, oct 1994, p 19.; (The ground is being cleared for two of Europe's most vital cargo projects at Frankfurt Apt.).

AMBROGI S., 1992, "Cargo Villages - Facts or Fiction?"; in Airport Support, aug 1992, pp. 18-19.; (Cargo village concept is more than an idle dream, some airports are convinced of the advantages and are going ahead with their own versions).

BIRCH D., octobre 1994, "Where the sun never sets"; in Airport Support, p. 18.; (As the first all cargo express carrier, Federal Express operates a vast support network of systems and equipment.).

CPDT – Thème 7.2 – Rapport Final – LEPUR/GUIDE – Optimisation des grandes infrastructures — 78

BOQUET Y., 1998, "Alliance airport (Texas): logistique d’entreprise et développement métropolitain"
; in Acta Geographica, n°113, 1998/I.

BROCARD M, LESUEUR C, 1998, FRA, "Les principaux aéroports français et européens"

BUXANT P., 1988, BEL, "L'Aménagement aéroportuaire du Royaume-Uni, quelques dimensions économiques"

CARALP M.F., 1989, FRA, "Le Réseau aérien européen: aéroports et flux de trafic"
; in Revue géographique de l'Est - Transport et nouvelles dimensions internationales - Perspectives européennes, vol 29, n° 3-4, pp. 259-272.

CATTAN N., 1990, FRA, "Une Image du réseau des métropoles européennes par le trafic aérien"

CAVARD, J.C., 1988; FRA, "L'Aéroport Roissy Charles de Gaulle: une nouvelle donne pour l'espace régional"
; in Cahiers du GS 20 - CNRS, "Les nouveaux dynamismes régionaux - les activités du tertiaire supérieur (3e partie)", n°3, pp. 27-41.

CHARRIER J., 1981; "Le Triptyque aéroportuaire lyonnais: une analyse géographique des installations, du trafic, des horizons aériens et de l'aire de desserte terrestre de l'aéroport de Lyon-Satolas"

CHARRIER J., novembre 1986; "La Lufthansa: un géant du fret aérien"
; in Transports, n° 319.

CHARRIER J., avril-mai 1987; "Bruxelles, le nouveau Memphis du vieux continent: courrier express, le nec plus ultra du fret aérien"
; in Transports, n° 324, pp. 37-44.

DEZERT B., décembre 1989; "Les Parcs technologiques: nouveaux espaces industriels et périurbanisation"
; in Acta Geographica, n° 80.

DEZERT B; 1991; Paris, "Transports et télécommunications dans les métropoles européennes";

DIETLMEIR J., août 1991; "Integrated Automation in Air Freight Handling"
; in Airport Support, pp. 25-27.
CONCLUSION GÉNÉRALE

ENDRES G., juin 1995; "New Airport Thinking"; in Jane's Airport Review, p. 16.

KASARDA, John D., juin 1996; "Airport-Related Industrial Development"; in Urban Land, pp.54-5.

CONCLUSION GÉNÉRALE

NJIO, F., jan-feb 1992, "Mainport Ambitions Motivate Expansion"; in Jane's Airport Review, pp. 11-15.; (Amsterdam's efforts to become Europe's top international hub airport)

PAYLOR Anne, mars 1995, GBR, "Does Asia have a Cargo Capacity Problem?"; in Airports International, pp. 18-20

PUTZGER I., octobre 1996; "Cargo: the private practice"; in Airports International, pp. 23-26.; (The growing trend at North American airports is for private developers to come in and take over the management of cargo facilities from the airport authorities)

RADDA A., août 1991, "KLM Cargo Targets Productivity"; in Airport Support, pp. 21-23.; (KLM is looking to strengthen its position as a cargo carrier through improved productivity and quality of service).

CONCLUSION GÉNÉRALE

S L A C K B.; 1990, USA, "Intermodal Transportation in North America and the Development of Inland Load Centers"; in Professional Geographer, vol 42, n°1, pp. 72-83.

W A N G W., 1996; "La Hollande, région distributive, région encombrée. (Holland, International Distributor or Jammed Region.)"; in Revue d'économie régionale et urbaine, 0(1), pp. 7-27.

3. Cours, Mémoires et Thèses

CONCLUSION GÉNÉRALE

GILLINGWATER D., 1998; "Airport and the Environment: the context"; Loughborough University, Department of Aeronautical and Automotive Engineering and Transport Studies, (Part of Airport Planning & Management Courses)

LEPERS G. 1997; "Etude de l'opinion de la population riveraine de l'aéroport de Bierset"; Mémoire de Licence en Administration des Affaires, Université de Liège.

VAN ROOST, 1998 , " Logistique et transport multimodal incluant le transport maritime"; notes de cours ; Faculté des Sciences Appliquées ; Université de Liège.

VOS B., 1996; "L'Importance des aéroports régionaux en Europe: étude de cas"; Mémoire, ULG.