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Abstract— The paper provides an introductory discussion
about two fundamental models of oscillator synchronization:
the (continuous-time) diffusive model, that dominates the math-
ematical literature on synchronization, and the (hybrid) kick
model, that accounts for most popular examples of synchroniza-
tion, but for which only few theoretical results exist. The paper
stresses fundamental differences between the two models, such
as the different contraction measures underlying the analysis,
as well as important analogies that can be drawn in the limit
of weak coupling.

I. INTRODUCTION

Synchronization is a pervasive concept in science and
engineering. Currently, it is perhaps the most widely studied
dynamical concept across systems biology [24], [26], [83],
neuroscience [32], [35], chemistry [39], physics [34], [62],
astronomy [6], and engineering [53], [73]. Because synchro-
nization involves interconnection at its core, the relevance of
systems theory to model, understand, and control synchro-
nization is obvious and was recognized early, e.g. [52].

Two fundamental mathematical models of synchronization
have emerged across the literature: the diffusive model
and the kick model (a nickname throughout the paper for
pulse-coupled synchronization model). The diffusive model
analyzes synchronization as the result of diffusive coupling:
the interconnection has the input–output interpretation of
a static diffusive passive map. Owing to the fundamental
homogenization nature of diffusion, diffusive interconnec-
tions tend to reduce differences between the time-course
of interconnected variables, thereby favoring synchronized
behavior if they are strong enough. In contrast, the kick
model analyzes synchronization as the result of mutual
rhythmic locking by short and weak pulses, akin to the
physical phenomenon of resonance. The impulsive nature of
the coupling combined with the continuous-time flow of the
model between the pulses results in a hybrid model, see [54]
for a rigorous description of the kick model as a hybrid
model.

The diffusive model is largely dominant in the mathemat-
ical literature of synchronization. Synchronization between
trajectories of state-space models is analyzed as an incre-
mental stability property [43] (i.e. the trajectories converge
to one another rather than being attracted toward some
equilibrium position). The leading concepts of Lyapunov
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analysis [3], dissipativity analysis [4], [29], [65], [70], [71],
and—to a growing extent—contraction analysis [59], [60],
[64], [68], [69], [80], provide natural system theoretic tools
to study synchronization. The literature of synchronization
(closely related to consensus theory and coordination theory)
is growing and the topic has attracted many systems and
control researchers in the recent years.

The kick model is largely dominant in natural manifes-
tations of synchronization. Popular examples include syn-
chronization of metronomes [84], clocks [5], [33], heart
beats [61], flashing fireflies [11], neurons [23], earth-
quakes [56], and in fact most if not all spiking oscillators.
In addition, kick synchronization is a source of inspira-
tion for engineering applications (e.g. synchronization in
wireless sensor networks [31], unsupervised classification
problems [63]). Despite the widespread occurrence of the
phenomenon, the mathematical literature on kick synchro-
nization is rather sparse compared to the literature on diffu-
sive synchronization.

Primarily motivated by the recent thesis [44], the present
paper aims at comparing and contrasting the diffusive model
and the kick model for the synchronization of periodic
oscillators. We stress both the differences and the analogies
between the two models, with a particular emphasis on
their global stability properties. The discussion is tutorial in
nature and focuses on simple examples, such as the coupling
of van der Pol oscillators, which provides an insightful
illustration of diffusive synchronization in the weakly non-
linear oscillation regime and of kick synchronization in the
relaxation oscillation regime. The diffusive model is studied
in continuous-time models while the kick model, hybrid
in nature, is typically studied in discrete time. Ultimately,
synchronization is always proven by showing that a certain
distance between trajectories contracts over time, but the
contraction measure is distinctively different in diffusive and
kick models.

While the diffusive and kick models of oscillator syn-
chronization are fundamentally different, they also exhibit
a remarkable analogy in the limit of weak coupling. This
is because arbitrary oscillator models all reduce to one-
dimensional phase models when the interconnection is suffi-
ciently weak to maintain system trajectories in the neigh-
borhood of the limit cycle oscillations of the uncoupled
oscillators. Rooted in the seminal contributions of Win-
free [82] and Kuramoto [38], phase models of interconnected
oscillators have a universal structure entirely characterized
by their coupling function, which is strongly related to
the phase response curve of the oscillators (i.e. a function
which corresponds to the phase sensitivity of the uncoupled
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Fig. 1. The paper is organized according to the coupling models.
Sections III and IV focus on (possibly strong) diffusive and kick synchro-
nization, respectively. Section V deals with the phase models encountered
in the limit of weak coupling.

oscillators to an external perturbation). As a result, the
fundamental difference between diffusive synchronization
and kick synchronization is entirely coded in the shape of
the coupling function, a phase map defined on the nonlinear
unit circle. It is typically harmonic in the weak coupling
limit of diffusive synchronization and typically monotone
(and hence discontinuous) in the weak coupling limit of kick
synchronization. Again, the synchronization mechanisms and
the contraction measure are distinctively different even in the
weak coupling limit, despite the shared model structure.

The paper structure is illustrated in Figure 1. Section II
reviews state-space models of oscillators and their phase re-
duction. The next sections present global stability results for
the different synchronization models. Section III focuses on
(possibly strong) diffusive synchronization while Section IV
focuses (possibly strong) kick synchronization. Section V
deals with the phase models encountered in the limit of weak
coupling. Section VI provides concluding remarks.

II. OPEN OSCILLATOR MODELS

This section provides a short introduction to oscillators
viewed as open dynamical systems, that is, as dynamical
systems that interact with their environment [67]. We first
recall basic definitions about stable periodic orbits in n-
dimensional state-space models (see [21], [28] for details).
We then introduce (finite and infinitesimal) phase response
curves as fundamental mathematical information required for
the reduction. We finally show how to reduce n-dimensional
state-space models into one-dimensional phase models de-
pending on the nature of the input.

Fig. 2. The asymptotic phase map Θ : B(γ) → S1 assigns to each point q
in the basin B(γ) a single scalar phase θ on the unit circle S1, such that
limt→+∞ ‖Φ(t,q, 0)−Φ(t,p, 0)‖

2
= 0 where p = xγ(θ/ω). The set

of all points q characterized by the same phase θ is the isochron Iθ .

A. State-space models

We consider open dynamical systems described by non-
linear time-invariant state-space models

ẋ = F(x) +G(x)u, x ∈ R
n, u ∈ R, (1a)

y = H(x), y ∈ R, (1b)

where the vector fields F and G, and the measurement
map H support all usual smoothness conditions that are
necessary for existence and uniqueness of solutions. We write
Φ(t,x0, u) for the solution of the initial value problem (1a)
with x(0) = x0.

An oscillator is an open dynamical system whose zero-
input steady-state behavior is periodic rather than constant.
Formally, we assume that the zero-input system ẋ = F(x)
admits a (locally hyperbolic) stable periodic orbit γ with pe-
riod T (and angular frequency ω = 2π/T ). Picking an initial
condition x

γ
0 on the periodic orbit γ, this latter is described

by the (nonconstant) periodic trajectory Φ(t,xγ
0 , 0) = xγ(t),

such that xγ(t) = xγ(t + T ). The basin of attraction of γ
is the maximal open set B(γ) from which the periodic orbit
attracts.

Since the periodic orbit γ is homeomorphic to the unit
circle S1, it is naturally parametrized by a single scalar phase.
Any point p ∈ γ is associated with a phase θ ∈ S

1, such
that

p = xγ(θ/ω)

(where x
γ
0 is by convention associated with the phase θ = 0).

For hyperbolic periodic orbits, the notion of phase is
extended to any point q in the basin of attraction B(γ)
through the concept of asymptotic phase. The asymptotic
phase map Θ : B(γ) → S

1 assigns to each point q in the
basin B(γ) its asymptotic phase θ ∈ S

1, such that

lim
t→+∞

‖Φ(t,q, 0)−Φ(t,xγ(θ/ω), 0)‖2 = 0. (2)

This mapping is constructed such that the image of x
γ
0 is

equal to 0 and such that the progression along any orbit
in B(γ) (in absence of perturbation) produces a constant
increase in θ, that is, d

dtΘ(Φ(t,x0, 0)) = ω.
An isochron is a level set of the asymptotic phase map Θ,

that is, the set of all points in the basin of attraction of γ
characterized by a same asymptotic phase.
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Quasi-harmonic limit Relaxation limit

Fig. 3. The van der Pol oscillator exhibits two different oscillation regimes:
the quasi-harmonic (µ ≪ 1) and the relaxation (µ ≫ 1) oscillation regimes.
Quasi-harmonic and relaxation regimes are displayed in (x, ẋ) and (x, z)
state-spaces, respectively (with the transformation z = x− x3/3− ẋ/µ).

The van der Pol oscillator: an illustrative model

In this paper, we illustrate most concepts on the van der
Pol oscillator

ẍ− µ(1− x2)ẋ+ x = ǫū, x ∈ R, (3)

where the parameter µ > 0 measures the nonlinearity of
the oscillator and the constant ǫ ≥ 0 measures the input
strength (with |ū| ≤ 1 for all times). Historically, this
equation modeled a simple electrical circuit with nonlinear
resistance and was used by van der Pol to study oscillations
in vacuum tube circuits [77]. It played a seminal role in the
development of nonlinear oscillation theory. One reason of
this success is its ability (with only one parameter) to exhibit
two very different regimes of oscillations (Figure 3). For
weak nonlinearities (µ ≪ 1), the oscillator displays quasi-
harmonic oscillations. For strong nonlinearities (µ ≫ 1), it
displays relaxation oscillations.

Quasi-harmonic limit: To study the van der Pol oscillator
in the quasi-harmonic limit, it is convenient to rewrite (3) in
polar coordinates (x, ẋ) = (r sin(φ), r cos(φ)) as

ṙ = µg(r sin(φ), r cos(φ)) cos(φ) + ǫ cos(φ)ū (4a)

φ̇ = 1− µ

r
g(r sin(φ), r cos(φ)) sin(φ)− ǫ

r
sin(φ)ū (4b)

where we denote g(x, ẋ) = (1− x2)ẋ to simplify notations.
For small values of µ and ǫ (µ, ǫ≪ 1), standard averaging

theory guarantees that r stays in a O(µ, ǫ)-neighborhood
of r∗ = 2 (see [36] for details). Substituting r by r̃ =
2 + O(µ, ǫ) into (4b) and keeping first-order terms in the
equation yield

φ̇ ≈ 1− µ

2
g(r̃ sin(φ), r̃ cos(φ)) sin(φ)− ǫ

2
sin(φ)ū. (5)

The approximately equal sign (≈) means that (5) neglects
higher order terms in (µ, ǫ). This one-dimensional equation
describes the dynamics of the angular coordinate φ ∈ S

1.
Note that this (geometrical) angular coordinate is different
from the (temporal) asymptotic phase defined in (2).

Since the angular coordinate dynamics (5) are one-
dimensional, the asymptotic phase map appears as a bijective
change of variable θ = Θ(φ) given by

Θ(φ) : φ 7→ ω

∫ φ

0

1

1− µ
2 g(r̃ sin(ξ), r̃ cos(ξ)) sin(ξ)

dξ.

Quasi-harmonic limit Relaxation limit

Fig. 4. The shape of the infinitesimal phase response curve (for the
van der Pol oscillator) is very different in both regimes. Typically, it is
harmonic in the weakly nonlinear oscillation regime and monotone (and
hence discontinuous) in the relaxation regime.

This change of variable rescales the state-space and the
(temporal) phase dynamics are given by

θ̇ ≈ ω + ǫ
−ω sin(φ)

r̃ − µg(r̃ sin(φ), r̃ cos(φ)) sin(φ)
︸ ︷︷ ︸

=:ZQH(θ)

ū (6)

where φ = Θ−1(θ). The phase dynamics (6) are the addition
of two terms: the first term represents the autonomous angu-
lar frequency and the second term represents the influence of
the input on the dynamics. The function ZQH(·) captures the
sensitivity of the oscillator phase dynamics to the input. It
is known as the (input) infinitesimal phase response curve.
(This notion will be defined properly in the next section.)
For values of µ tending to 0, the asymptotic phase map Θ
tends to the identity, the angular frequency ω tends to 1, and
the (input) infinitesimal phase response curve ZQH(θ) tends
to − 1

2 sin(θ) (Figure 4).

Relaxation limit (and integrate-and-fire oscillators): To
study the van der Pol oscillator in the relaxation limit, it is
convenient to rewrite (3) in Liénard’s coordinates (x, z) as

1

µ2
x′ = x− x3/3− z (7a)

z′ = x− ǫū (7b)

where we use the transformation z = x − x3/3 − ẋ/µ and
where (·)′ denotes the derivative with respect to s = t/µ.

For large values of µ (1/µ2 ≪ 1), standard singular
perturbation theory reduces the dynamics (7) to (see [36]
for details)

x′ =
x

1− x2
− ǫ

1

1− x2
ū (8)

on the critical manifold defined by z = x − x3/3 and to
instantaneous ‘jumps’ at the folds in the critical manifold.
Exploiting the central symmetry of the drift vector field
(invariance under point reflection through the origin), we
reduce the dynamics to the one-dimensional dynamics on the
left branch of the critical manifold: the state x monotonically
increases on [−2,−1] according to (8) and is reset to the
lower threshold x = −2 when reaching the upper threshold
x = −1.
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Again, since the state dynamics are one-dimensional, there
is a bijective change of variable θ = Θ(x) given by

Θ(x) : x 7→ ω

∫ x

x

1− ξ2

ξ
dξ . (9)

This change of variable rescales in such a way that the
lower threshold x = −2 is mapped to θ = 0 and the upper
threshold x = −1 to θ = 2π. The (temporal) phase dynamics
are then given by

θ′ = ω + ǫ
(

−ω
x

)

︸ ︷︷ ︸

=:ZR(θ)

ū (10)

where x = Θ−1(θ). Here again, the phase dynamics (10)
are given by the addition of two terms: the autonomous
angular frequency and the coupling term. In this case, the
phase sensitivity function (or infinitesimal phase response
curve) ZR(·) is monotone on [0, 2π) (Figure 4).

In the relaxation limit, the van der Pol oscillator is
equivalent to an integrate-and-fire model. More generally, the
integrate-and-fire dynamics are expressed as one-dimensional
state dynamics between two threshold values (see [1], [37]):
a scalar state variable x monotonically increases between two
thresholds x and x, according to the dynamics

ẋ = F (x), with F (x) > 0,

for all x ∈ [x, x]. Upon reaching the upper threshold x,
the state is instantaneously reset to the lower threshold x.
Roughly speaking, the oscillator integrates between the two
thresholds and fires when reaching the upper threshold.

The most popular integrate-and-fire oscillator is the leaky
integrate-and-fire (LIF) oscillator, characterized by the mono-
tone vector field F (x) = S + Rx > 0, ∀x ∈ [x, x] = [0, 1].
An important generalization of the LIF oscillator—in the
sense that the dynamics are not monotone anymore—is the
quadratic integrate-and-fire (QIF) oscillator, defined by the
vector field F (x) = S + x2, with S > 0 [19].

Similarly to (9), the asymptotic phase map Θ that cor-
responds to the integrate-and-fire dynamics is the bijective
change of variable given by

Θ(x) : x 7→ ω

∫ x

x

1

F (ξ)
dξ ,

with the lower threshold x (resp. the upper threshold x) being
mapped to θ = 0 (resp. θ = 2π).

It is worth mentioning that, in the relaxation limit, the
van der Pol oscillator model closely resemble the popular
model of FitzHugh-Nagumo [22], [51], a two-dimensional
qualitative reduction of Hodgkin-Huxley model of neuronal
action potentials [30]. Integrate-and-fire models are broadly
used in neurodynamics [1], [37].

B. Phase response curves

For many oscillators, the structure of the asymptotic phase
map and therefore the topology of isochrons are very com-
plex. This often makes their analytical computation impossi-
ble and even their numerical computation intractable (at least

very expensive for high dimensional oscillator models), an
issue that prevents from building an exact one-dimensional
phase model valid in the whole basin of attraction. However,
in many situations, a complete knowledge of the isochrons
is not required to study the oscillator dynamics. Instead, it
is sufficient to consider the phase response curve, as it has
naturally appeared in (6) and (10) through the reduction of
the van der Pol dynamics.

Starting with the pioneering work of Winfree [82], [83],
the phase response curve of an oscillator has proven a useful
input–output tool to study oscillator dynamics. It indicates
how the timing of inputs affects the timing (steady-state
phase shift) of oscillators. Phase response curves are directly
related to isochrons but capture only partial information
about them.

Definition 1: The finite Phase Response Curve (PRC)

corresponding to a Dirac delta input u(·) = ǫδ(·) is the map
Zǫ : S

1 → (−π, π] defined as

Zǫ(θ) = Θ(xγ(θ/ω) + ǫG(xγ(θ/ω)))
︸ ︷︷ ︸

after the impulsion

− Θ(xγ(θ/ω))
︸ ︷︷ ︸

before the impulsion

.

It associates with each point on periodic orbit (parametrized
by its phase θ) the phase shift induced by the input. y

In many situations, the PRC can be determined experimen-
tally. Moreover, it can be obtained numerically by computing
the perturbed and unperturbed trajectories of the nonlinear
state-space model and by comparing the asymptotic phase
difference between each pair of trajectories.

A mathematically more abstract—yet very useful—tool is
the infinitesimal phase response curve, which appears in (6)
and (10). It records essentially the same information as the
finite phase response curve but for infinitesimally small Dirac
delta input (ǫ≪ 1).

Definition 2: The (input) infinitesimal Phase Response

Curve (iPRC) is the map Z : S
1 → R defined as the

directional derivative

Z(θ) = DΘ(xγ(θ/ω))[G(xγ(θ/ω))]

where

DΘ(x)[η] = lim
ǫ→0

Θ(x+ ǫη)−Θ(x)

ǫ
.

The directional derivative can be computed as the inner
product

DΘ(x)[G(x)] = 〈∇xΘ(x),G(x)〉

where ∇xΘ(x) is the gradient of Θ at x and is known as
the state infinitesimal phase response curve. y

Remark 1: For small values of ǫ (ǫ≪ 1), the finite phase
response curve is well approximated by the infinitesimal
phase response curve, that is Zǫ(·) ≈ ǫZ(·). y

Remark 2 (Integrate-and-fire oscillators): For integrate-
and-fire oscillators, the iPRC has the exact analytical ex-
pression (see [10], [35])

Z(θ) =
ω

F (xγ(θ/ω))
. (11)
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Fig. 5. For integrate-and-fire oscillators, the finite PRC Zǫ is directly
derived from the iPRC Z.

Moreover, the finite PRC is directly obtained from the iPRC
due to the unidimensional nature of the state-space. Namely,
it follows from Figure 5 that

Zǫ(θ) =

∫ xγ(θ/ω)+ǫ

xγ(θ/ω)

Z(Θ(ξ)) dξ .

For LIF oscillators, the iPRC and the finite PRC are mono-
tone, as for the relaxation van der Pol model (Figure 4). y

C. Reduced phase models

We review two popular phase models, which are obtained
through phase reduction methods in the case of weak input
and impulsive input, respectively [10], [32], [35], [39], [42].

1) Weak input: In the weak perturbation limit, that is, for
small input

u(t) = ǫū(t), ǫ≪ 1, |ū(t)| ≤ 1 for all t,

any solution Φ(t,x0, u) of the oscillator model which starts
in the neighborhood of the hyperbolic stable periodic orbit γ
stays in its neighborhood. The n-dimensional state-space
model can then be approximated by a one-dimensional
continuous-time phase model

θ̇ = ω + ǫZ(θ)ū(t) (12)

where the phase variable θ evolves on the unit circle S
1. The

phase model is fully characterized by the angular frequency
ω > 0 and by the iPRC Z : S1 → R.

2) Impulsive input (kick): In the impulsive perturbation
limit, the input corresponds to delta-like kicks of amplitude ǫ
(not necessarily small), that is,

u(t) = ǫ

∞∑

k=0

δ(t− tk) .

Any solution Φ(t,x0, u) of the oscillator model which starts
from the periodic orbit γ leaves the periodic orbit under the
effect of a kick and converges back to the periodic orbit.
If the periodic orbit is sufficiently strongly attractive, the
trajectory will be back in the neighborhood of the periodic
orbit before the next kick takes place. The n-dimensional
state-space model can then be approximated by a one-
dimensional hybrid phase model, with

NL NL

Fig. 6. The interconnection of two van der Pol oscillators with a resistor
causes a current flow proportional to the voltage difference (y2 −y1). This
interconnection is known as diffusive coupling, a name which comes from
the diffusive nature of the resistor.

1) the (constant-time) flow rule

θ̇ = ω, for all t 6= tk, (13a)

2) and the (discrete-time) jump rule (i.e. the kick)

θ+ = θ + Zǫ(θ), for all t = tk, (13b)

where the phase variable θ evolves on the unit circle S
1. The

phase model is fully characterized by the angular frequency
ω > 0 and by the PRC Zǫ : S

1 → (−π, π].
III. DIFFUSIVE SYNCHRONIZATION

A. Connecting two van der Pol oscillators with a resistor

Diffusive synchronization is a model of physical intercon-
nection through a diffusive medium. As a simple illustration
of diffusive synchronization, we consider two van der Pol
oscillators interconnected with a resistor (Figure 6)

ẋi = −wi + µ(xi − x3i /3) + ui (14a)

ẇi = xi (14b)

yi = xi (14c)

where xi and wi denote the voltage across the capacitor and
the current through the inductor, respectively.

The interconnection with a resistor induces a current
flow proportional to the voltage difference (y2 − y1) and
inversely proportional to the resistance R. The smaller the
resistance R, the higher the coupling strength K = 1/R.
Using the vector notation u = (u1, u2)

T and y = (y1, y2)
T ,

the interconnection is expressed as

u = −Ly
with the coupling matrix given by

L = K

[
1 −1

−1 1

]

. (15)

This type of coupling is known as diffusive coupling, owing
to the nature of the resistor.

In this context, synchronization is a convergence property
for the difference between the solutions of different systems.
Suppose that we have a network of N oscillators. The
oscillators are said to output synchronize if

lim
t→+∞

‖yi(t)− yj(t)‖ = 0, ∀i, j = 1, . . . , N

where ‖·‖ denotes the Euclidean norm of the enclosed signal.
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In the following, we show under which conditions the
synchronization is guaranteed using: incremental stability
theory, incremental passivity theory, and contraction theory.

1) Incremental stability theory: Convergence properties
for the difference between solutions of a closed system
are characterized by notions of incremental stability [3].
Considering the error variable e = (ex, ew)

T = x1 − x2,
the error system is written as follows

ė =

[
−2K + µ− ψ(ex) −1

1 0

]

e

where the function ψ(·) is defined as

ψ(ex) =
µ

3

x31 − x32
x1 − x2

≥ 0.

This function is nonnegative due to the monotonicity of the
nonlinearity φ(x) = x3. Indeed, the monotonicity property
implies that

[φ(s1)− φ(s2)](s1 − s2) = ∆φ(s)∆s ≥ ψ(∆s)∆s ≥ 0

for all ∆s = s1 − s2.
Considering the Lyapunov function V = 1

2 (e
2
x + e2y), we

obtain

V̇ = [−2K + µ− ψ(ex)
︸ ︷︷ ︸

≥0

]e2x ≤ (−2K + µ)e2x.

Then by the Lyapunov stability theorem and the invariance
principle [36, Theorem 4.1 and 4.4], we conclude to the
synchronization of both oscillators for 2K > µ.

2) Incremental passivity theory: For open systems, the
notion corresponding to incremental stability is incremental
dissipativity [71]. Denoting the incremental variables by
δx = (δxx, δxw)

T = x1 − x2, δu = u1 − u2, and
δy = y1−y2, a system is incrementally passive if it satisfies
a dissipative inequality

˙δS ≤ w(δu, δy)

for an incremental scalar storage function δS(δx) ≥ 0 with
a supply rate w(δu, δy).

The incremental system of (14) is written as follows

˙δx =

[
−2K + 1 −1

1 0

]

δx+

[
−ψ(δxx)

0

]

δu

δy =
[
1 0

]
δx

Considering the incremental storage δS(δx) = 1
2 (δx

2
x +

δx2w) ≥ 0, we have

˙δS ≤ µδy2 − δyψ(δy) + δuδy.

Substituting δu = −2Kδy in the previous equation yields

˙δS ≤ (µ− 2K)δy2 − δyψ(δy) ,

which implies asymptotic convergence of δy to zero (that is,
output synchronization) when 2K > µ.

3) Contraction theory: Nonlinear contraction theory gives
a simple yet general method to study synchronization [80].
If the dynamics equations verify

ẋ1 − h(x1, t) = ẋ2 − h(x2, t)

where the function h is contracting, then x1 and x2 will
converge to each other exponentially.

Considering the following vector field

h(x, t) =

[
−w + µ(x− x3/3)− 2Kx

x

]

,

the Jacobian matrix is given by

J =

[
(µ− 2K)− µx2 −1

1 0

]

and is negative semidefinite for 2K > µ. This implies that
h is contracting and that both oscillators synchronize when
2K > µ.

B. Large networks

Most collective phenomena among oscillators in nature
arise in large networks of oscillators. The notion of diffusive
coupling and the tools described in the previous section can
be extended to a network of N oscillators.

Each oscillator dynamics is written, for i = 1, . . . , N , as

ẋi = F(xi) +G(xi)ui, (17a)

yi = H(xi). (17b)

The general diffusive interconnection is then given by

ui =
∑

j∈Ni

Kji(yj − yi), i = 1, . . . , N (18)

where Kji is a positive constant and Ni ⊆ N is the subset of
oscillators transmitting their outputs to the ith oscillator. (The
set N = {1, . . . , N} denotes all oscillators in the network.)
Using the vector notations u = (u1, . . . , uN )T and y =
(y1, . . . , yN )T , the interconnection is expressed as u = −Ly
with the coupling matrix L defined as the Laplacian of the
network graph

Lij =







∑

j∈Ni\{i}
Kji if i = j,

−Kji if j ∈ Ni\{i},
0 otherwise.

The diffusive coupling u = −Ly is a passive operator.
Neglecting the symmetry neutral mode L1 = 0, the excess
of passivity of the operator is given by the smallest nonzero
eigenvalue of the symmetric part of L, which is the parameter
2K in (15).

Synchronization is guaranteed in a network of input–
output oscillators (17) if the excess of passivity in the
coupling (2K in the example (15)) compensates for the
shortage of incremental passivity of the model (17) (µ in
van der Pol example). A precise statement of this result is
found in [71] under the assumption of a balanced graph,
i.e. when L + LT ≥ 0. The balancing assumption has been
elegantly removed in the recent paper [13].
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Fig. 7. A. Impulsive coupling with integrate-and-fire oscillators: an
oscillator reaching the upper threshold x = x triggers an instantaneous
increment ǫ to the state of the other oscillators. B. Impulsive coupling with
phase oscillators: an oscillators reaching θ = 2π triggers an instantaneous
increment Zǫ(θ) to the phase of the other oscillators.

A limitation of diffusive coupling model is that the
incremental stability analysis often suggests the necessity
of a strong enough coupling. This is in contrast to many
synchronization problems in which coupling strengths are
weak.

IV. KICK SYNCHRONIZATION

A. Connecting two van der Pol oscillators with impulses

A mathematical model of kick synchronization of (iden-
tical) oscillators connected through impulsive coupling was
first proposed by Peskin, in the particular case of integrate-
and-fire oscillators [61]. When the oscillators fire, they send
out a kick that causes an instantaneous increment ǫ to the
state of all other oscillators of the network (Figure 7A).

As a first illustration of Peskin’s impulsive coupling,
consider two van der Pol oscillators in the relaxation
limit µ≫ 1. In good approximation, the oscillators are
characterized by the integrate-and-fire dynamics (8), with
x ∈ [−2,−1]. In addition, suppose that an oscillator which
fires (i.e. which reaches x = −1) at time tk sends out a
kick u(t) = ǫδ(t − tk) which increases the state x of the
other oscillator by a value ǫ/(x2 − 1), according to (8).
Through a well-chosen change of variable, this increment
can be made constant for any state value, so that the model
is equivalent to Peskin model. Numerical simulations show
that the two oscillators achieve synchronization: after a short
transient period, they fire in unison (Figure 8). When a
negative increment ǫ < 0 is considered, the oscillators
asymptotically converge to a phase-locked configuration:
they fire at a constant rate and they are characterized by
the same instantaneous state values (i.e. x = −2 for the
firing oscillator and x ≈ −1.7 for the other oscillator) at
each firing time tk (Figure 9).

In this paper, we use the more general (but equivalent)
definition of Peskin’s impulsive coupling in terms of phase,
a definition which is motivated by the developments of
Sections II-B and II-C (Figure 7B). Similarly to (13), each
phase oscillator obeys
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Fig. 8. Synchronization of van der Pol oscillators with kick coupling
(ǫ > 0). A. The instantaneous state values of an oscillator at the successive
firings of the other oscillator approach either the lower threshold (x = −2)
or the upper threshold (x = −1). (The blue and red symbols represent the
instantaneous state values of the oscillators at the successive firing times.)
B. After a short transient, the oscillators fire in unison. (The blue and red
lines represent the firing times tk of oscillator 1 and 2, respectively.)
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Fig. 9. Phase-locking of van der Pol oscillators with kick coupling (ǫ < 0).
A. The instantaneous state values of an oscillator at the successive firings of
the other oscillator asymptotically converge to a constant value x ≈ −1.7.
(The blue and red symbols represent the instantaneous state values of the
oscillators at the successive firing times.) B. The asymptotic firing pattern
of the oscillators is periodic. (The blue and red lines represent the firing
times tk of oscillator 1 and 2, respectively.)

1) the (constant-time) flow rule

θ̇i = ω, if ∀j 6= i : θj 6= 2π,
(19a)

2) and the (discrete-time) jump rule (i.e. the kick)

θ+i = min{θi + Zǫ(θi), 2π}, if ∃j 6= i : θj = 2π,
(19b)

(Note that the coupling is all-to-all, i.e. Ni = N \ {i}.) The
threshold imposed in (19b) corresponds to the absorption
phenomenon. If the kick is strong enough, an oscillator may
aggregate with the oscillator that triggered the kick. The two
oscillators have subsequently the same phase and create a
cluster which behaves as a single oscillator. (We therefore
make no distinction between a single oscillator and a cluster.)

Remark 3: The jump rule (19b) corresponds to an exci-
tatory coupling, that is Zǫ(θ) > 0 ∀θ ∈ (0, 2π). For the
sake of simplicity, we adopt this assumption in the sequel.
The extension of the results to non-excitatory couplings is
straightforward. y
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B. Large networks and firing maps

The mathematical analysis of kick synchronization differs
from diffusive synchronization in that it can be achieved
through the analysis of a discrete-time model. Since the
network is uncoupled between two kicks, all the information
is retained by considering the network state at the discrete
kick times only. For instance, if the configuration of two
coupled oscillators right after a kick is (θ, 2π), then their
configuration right after the next kick is given by (2π, h(θ)),
with

h(θ) = 2π − θ + Zǫ(2π − θ) .

The discrete-time map θ+ = h(θ) expresses the phase
differences between the two oscillators at the successive kick
times. It was originally introduced in [49] as the so-called
firing map.

For the study of large networks, we first assume that
the order of the oscillators is not modified under the effect
of (19b), that is we assume that θ1+Zǫ(θ1) < θ2+Zǫ(θ2) if
θ1 < θ2. This assumption, which is always satisfied for one-
dimensional oscillators such as integrate-and-fire oscillators,
is summarized as follows:

Assumption 1 (Order preserving assumption): The finite
PRC satisfies the condition Z ′

ǫ(θ) > −1 ∀θ ∈ (0, 2π). y

Provided that Assumption 1 holds, the snapshot config-
urations of a network of N oscillators are given by the
successive iterations of a (N − 1)-dimensional firing map,
which appears as a straightforward generalization of the
scalar firing map:

H[(θ1, . . . , θN−1)] =







h(θN−1)
h(θN−1 − θ1)

...
h(θN−1 − θN−2)

. (20)

Note that the oscillators are not assigned constant indices
but are labeled at each kick according to the phase ordering
0 < θ1 < θ2 < · · · < θN−1 < θN = 2π.

An extensive study of kick synchronization in large net-
works is therefore restricted to the (global) stability anal-
ysis of the firing map (20). The strongest stability result
is obtained for oscillators characterized by a monotone
PRC Zǫ [46].

Theorem 1: Consider a finite PRC that satisfies (i) As-
sumption 1 and (ii) either Z ′′

ǫ (θ) > 0 ∀θ ∈ (0, 2π) or
Z ′′
ǫ (θ) < 0 ∀θ ∈ (0, 2π). Then, the (N − 1)-dimensional

firing map (20), with N > 1, has a contraction property
with respect to the 1-norm

‖(θ1, · · · , θN−1)‖ = |θ1|+
N−2∑

k=1

|θk−θk+1|+ |θN−1| . (21)

That is,

• the firing map is contracting with respect to (21) if
Z ′
ǫ(θ) < 0 ∀θ ∈ (0, 2π);

• the firing map is expanding with respect to (21) if
Z ′
ǫ(θ) > 0 ∀θ ∈ (0, 2π). y

Fig. 10. Two features of kick synchronization. A. The oscillators asymp-
totically converge to a unique phase-locked configuration. B. The oscillators
achieve full synchronization in finite time.

A straightforward corollary of Theorem 1 is that kick syn-
chronization has two important features: (i) isolated phase-

locked configuration and (ii) finite-time synchronization.
(i) Isolated phase-locked configuration: If the phase re-

sponse Zǫ is monotone decreasing, the network globally
converges toward the unique fixed point of the (N − 1)-
dimensional firing map, which corresponds to the unique

phase-locked configuration of N oscillators (Figure 10A).
This behavior was previously obtained in Figure 9 with
two van der Pol oscillators in the relaxation limit. Except
in the weak coupling limit, the phase-locked configuration
is not a splay state (that is, the phase differences between
the successive oscillators are not identical). In addition,
since a single oscillator may represent a cluster of (locally
synchronized) oscillators, this configuration also corresponds
to a phase-locked clustering configuration.

(ii) Finite-time synchronization: If the phase response Zǫ

is monotone increasing, Theorem 1 implies that the fixed
point is (globally) unstable. Then, successive absorptions
lead the network to full synchronization in finite time, that
is, all oscillators share the same phase (Figure 10B) (see
also [49]). This behavior was previously obtained in Figure 8
with two van der Pol oscillators in the relaxation limit.

The study of kick synchronization for general phase dy-
namics is still (very) limited. To our knowledge, there is so
far no global result for oscillators that are not characterized
by a monotone PRC. While some oscillators satisfy the
hypotheses of Theorem 1 (e.g. LIF oscillators, van der Pol
oscillators in the relaxation limit µ ≫ 1), other oscillators
are not characterized by a monotone PRC (e.g. QIF oscilla-
tors). In this latter case, even a local stability analysis may
become elusive—although Assumption 1 ensures that the
firing map has still a unique fixed point—and the networks
can display other (more complex) collective behaviors [45].
In addition, the general study of oscillators that do not
satisfy Assumption 1—for which a firing map cannot be
defined—remains an open problem. These few examples are
all relevant research perspectives.

Whereas few studies have investigated kick synchroniza-
tion for oscillators with general phase dynamics, several
extensions of the original impulsive coupling can be found
in literature (e.g. reduced interconnectivity [16]–[18], [25],
[58], [74], [76], delays [20], [75], non-instantaneous interac-
tions [2], [8], [79], [85], non-identical oscillators [7], [12],
[15], [66]).
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C. Infinite populations

Kick synchronization can also be studied in the continuous
limit of N → ∞ oscillators. In this case, a continuum of
oscillators is described by a phase density function ρ(θ, t)
normalized on S

1, or is equivalently described by a flux

J(θ, t) = ρ(θ, t) v(θ, t) ,

where v(θ, t) is the velocity of the oscillators. The evolution
of the oscillators obeys the continuity equation

∂

∂t
ρ(θ, t) = − ∂

∂θ
J(θ, t) , (22)

with the boundary condition J(0, t) = J(2π, t) ∀t.
When the population is infinite, the impulsive coupling is

continuous and proportional to the flux J(2π, t). We derive
the result as follows. In the case of finite populations, the
flow rule (19a) and the jump rule (19b) imply a velocity

v(θi, t) = ω + Zǫ(θi)
∑

j∈N\{i}

∞∑

k=0

δ(t− t
(j)
k ) , (23)

where t
(j)
k denote the times at which oscillator j reaches

the phase θ = 2π. Since the flux is given by J(2π, t) =

1/N
∑

j∈N

∑∞
k=0 δ(t − t

(j)
k ), it follows that, for a large

number of oscillators where N \ {i} ≈ N , one has

v(θi, t) ≈ ω + Zǫ(θi)NJ(2π, t) . (24)

In the limit of an infinite number of oscillators, the im-
pulsive coupling is an infinite sum of infinitesimal kicks
ǫ = K/N ≪ 1, where K is a positive constant. Then,
Remark 1 and (24) imply that

v(θ, t) = ω +K Z(θ) J(2π, t) (25)

and the coupling is proportional to the (continuous)
flux J(2π, t).

As a parallel to the results obtained for finite populations,
the continuity equation (22)–(25) has strong stability prop-
erties if the iPRC is monotone. Its global stability is shown
using the continuous analog of the 1-norm (21), which has
the interpretation of a total variation distance. The result is
summarized as follows [47]:

Theorem 2: Consider an iPRC that satisfies Z ′′(θ) > 0
∀θ ∈ (0, 2π) or Z ′′(θ) < 0 ∀θ ∈ (0, 2π). Then, an admissible
solution of (22)–(25)

• exponentially converges to the unique stationary solu-
tion (when it exists) if Z ′(θ) < 0 ∀θ ∈ (0, 2π);

• reaches synchronization (infinite flux) in finite time if
Z ′(θ) > 0 ∀θ ∈ (0, 2π). y

According to Theorem 2, kick synchronization in infinite
populations involves two collective behaviors, which are the
exact analogs of the behaviors observed for finite popu-
lations. If the iPRC is monotone decreasing, the network
converges to the unique stationary solution, which corre-
sponds to a constant flux J(θ) = J∗ (Figure 11A). This
is the analog of the phase-locked clustering configuration. If
the iPRC is monotone increasing, the flux tends to a Dirac
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Fig. 11. Two collective behaviors for kick synchronization in infinite popu-
lations. A. The continuum converges to the stationary solution characterized
by J(θ, t) = J∗. B. The continuum reaches synchronization in finite time.

function and the network achieves synchronization in finite

time (Figure 11B).
LIF oscillators and van der Pol oscillators in the relaxation

limit µ ≫ 1 are characterized by a monotone iPRC that
satisfies the hypotheses of Theorem 2. If the iPRC is not
monotone, there is so far no global stability result for the
continuity equation (22)–(25). However, local stability of the
stationary solution can be studied numerically (see e.g. [78]).

V. PHASE MODELS IN THE WEAK COUPLING LIMIT

The results presented in the previous sections emphasize
important differences between diffusive synchronization and
impulsive synchronization. Both the analysis techniques and
the contraction measures differ in a fundamental way. How-
ever, it is remarkable that both frameworks are unified in the
weak coupling limit. Indeed, using averaging techniques, Ku-
ramoto showed that the phase dynamics of weakly coupled
oscillators can always be reduced to the unique canonical
form

θ̇i = ω +
∑

j∈Ni

Γij(θi − θj) , (26)

where the Γij(·) are coupling functions closely related to the
iPRC [39]. As a consequence, the phase dynamics (26) are
a general paradigm that holds both for diffusively coupled
oscillators and impulsively coupled oscillators.

A. Weak diffusive coupling

In the case of a weak diffusive coupling, we show that the
phase dynamics (26) correspond to the averaged dynamics
of the oscillators. (We follow similar lines as in [39] (see
also [32])).

It follows from (12) and (18) that the oscillators are
characterized by the phase dynamics

θ̇i = ω + ǫZ(θi)
∑

j∈Ni

Kji(H̃j(θj)− H̃i(θi)) ,

with H̃i(θi) = Hi(x
γ(θi/ω)). The phases can be decom-

posed as θi = ωt+ ψi, where ψi are slow phase deviations
from the uniform natural oscillation ω t. Then, the phase
dynamics are rewritten as

ψ̇i = ǫZ(ωt+ ψi)
∑

j∈Ni

Kji(H̃j(ωt+ ψj)− H̃i(ωt+ ψi)) .

Note that Z is considered here as the 2π-periodic extension
of the iPRC on the real line, i.e. Z(x) ≡ Z(x mod 2π). Next,
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averaging the above dynamics over a period T = 2π/ω and
under fixed ψi and ψj , we obtain

ψ̇i =
∑

j∈Ni

ǫKji

T

∫ T

0

Z(ωt+ ψi)

×(H̃j(ωt+ ψj)− H̃i(ωt+ ψi)) dt

=
∑

j∈Ni

ǫKji

ω

∫ 2π

0

Z(ψi − ψj + s)

×(H̃j(s)− H̃i(ψi − ψj + s)) ds

where we have used the change of variable ωt + ψj = s.
With the coupling functions

Γij(·) =
ǫKji

ω

∫ 2π

0

Z(·+ s) (H̃j(s)− H̃i(·+ s)) ds , (27)

the last equation yields

ψ̇i =
∑

j∈Ni

Γij(ψi − ψj) , (28)

which is equivalent to (26).
Remark 4 (van der Pol oscillator): Mimicking the com-

putation steps to transform (3) to (6), we can write (14) in
polar coordinates (x,w) = (r sin(φ),−r cos(φ)) and apply
averaging theory to obtain the phase dynamics given by

θ̇ = ω + ǫ
ω cos(φ)

r̃ + µg(r̃ sin(φ)) cos(φ)
︸ ︷︷ ︸

=:Z(θ)

ū

with φ given by the appropriate bijective change of variable
Θ−1(θ), r̃ = 2 +O(µ, ǫ), and g(x) = (x− x3/3).

For values of µ tending to 0, the oscillator output is given
by H̃(θ) = 2 sin(θ) and the iPRC by Z(θ) = 1

2 cos(θ).
Applying (27) and using basic trigonometry, the coupling
function is given by Γij(θ) = −ǫKjiπ sin(θ). The diffusive
interconnection of quasi-harmonic van der Pol oscillators
leads thus naturally to the popular Kuramoto model char-
acterized by a sinusoidal coupling function. y

B. Weak impulsive coupling

Next, we derive the averaged phase dynamics (26) in the
case of a weak impulsive coupling (see also [41]). From (1)
and (23), one has

θ̇i = ω + ǫZ(θi)
∑

j∈Ni

Kji

∞∑

k=0

δ(t− t
(j)
k ) ,

where, in full generality, we have introduced the constants
Kji and a general interconnection topology Ni. As in
Section V-A, using the phase deviation ψi and averaging
the dynamics under a constant ψi yield

ψ̇i =
∑

j∈Ni

ǫKji

T

∫ T

0

Z(ωt+ ψi)

∞∑

k=0

δ(t− t
(j)
k ) dt

=
∑

j∈Ni

ǫKji

T
Z(ωt(j) + ψi)

=
∑

j∈Ni

ǫKji

T
Z(ψi − ψj) ,

where the last equality holds since ωt(j)+ψj = 2π and given
the periodicity of the iPRC. With the coupling functions

Γij(·) =
ǫKji

T
Z(·) , (29)

we recover (28), which corresponds to the general form (26).
In the case of a (weak) impulsive coupling, it is remarkable
that the coupling functions are proportional to the iPRC
itself.

C. Global stability results and collective behaviors

In the weak coupling limit, the collective behaviors of
diffusively coupled and impulsively coupled oscillators de-
pend on the (global) stability properties of the averaged
dynamics (26). When the oscillators are initialized within
a semicircle, a change of coordinate maps the dynamics
into R

N and the analysis of (26) is equivalent to a consensus
problem on a convex set (see e.g. [50]). In this case, a global
stability analysis can be performed using consensus the-
ory [50]. In this section, we rather discuss the global stability
properties of (26) on the whole (nonconvex) torus TN , but for
the particular all-to-all topology with identical connections
(i.e. Ni = N \ {i} and Kji = K ∀i, j).

1) Kuramoto model: The most popular model of the
form (26) is the Kuramoto model [40]. Characterized by
the coupling function Γ(θ) = −K/N sin(θ), which can
be considered as the first Fourier harmonic of a more
complex coupling function, the Kuramoto model appears as
the generic model for the averaged dynamics of (diffusively)
coupled oscillators.

The Kuramoto model is characterized by the following
collective behaviors (for almost every initial condition):

• If K < 0 (inhibitory coupling), the oscillators con-
verge toward an incoherent state characterized by
∑

k∈N eiθk = 0 (with i =
√
−1) (balanced state);

• If K > 0 (excitatory coupling), the oscillators achieve
full synchronization.

These global properties result from the fact that (26) is a
gradient system for Kuramoto model [32]. In the case of
shifted coupling functions Γ(θ) = sin(θ − δ), a general
Lyapunov function still enforces global convergence toward
synchronization or incoherent state [81].

2) Monotone coupling function: It follows from (29) that
a monotone coupling function is obtained in the case of
an impulsive coupling, for oscillators characterized by a
monotone iPRC (e.g. LIF oscillators, van der Pol oscillators
in the relaxation limit µ ≫ 1). (The coupling function is
monotone on (0, 2π) and characterized by a discontinuity
Γ(0−) 6= Γ(0+), since it satisfies the 2π-periodicity condi-
tion.) Then, as was shown in Section IV, the monotonicity
property of the oscillators induces a contraction property for
the averaged dynamics (26).

The contraction is shown in a rotating frame associated
with an oscillator, that is, for the equivalent dynamics

ϕ̇i = Γ(ϕi) +

N−1∑

j=1
j 6=i

Γ(ϕi − ϕj)−
N−1∑

j=1

Γ(−ϕj) (30)
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that are obtained by using the change of variable ϕi = θi+1−
θ1 in (26). Note that (30) is defined in the closure of the
cone C = {(ϕ1, · · · , ϕN−1) ∈ (0, 2π)N−1|ϕi < ϕi+1}. The
result, which is the analog of Theorem 1, is summarized in
the following theorem [48].

Theorem 3: Consider a monotone coupling function that
satisfies Γ′′(θ) > 0 ∀θ ∈ (0, 2π) or Γ′′(θ) < 0 ∀θ ∈ (0, 2π).
Then,

• the dynamics (30) are contracting in C with respect
to (21) if Γ′(θ) < 0 ∀θ ∈ (0, 2π);

• the dynamics (30) are expanding in C with respect
to (21) if Γ′(θ) > 0 ∀θ ∈ (0, 2π). y

A corollary of the contraction property of Theorem 3 is
that networks of oscillators coupled through a monotone
coupling function display two behaviors (for almost every
initial condition):

• If Γ is monotone decreasing, the oscillators converge to
the unique incoherent configuration ϕ∗

k = k 2π
N (splay

state);
• If Γ is monotone increasing, the oscillators achieve full

synchronization in finite time.

This global behavior is similar to the global behavior of
Kuramoto oscillators, but also characteristic of kick synchro-
nization. The synchronization takes place in finite time, and
the incoherent state is an isolated fixed point (splay state),
whereas it is a (N − 3)-dimensional manifold in Kuramoto
model. A consequence of this difference is that the asymp-
totic behavior of (26) is robust to small heterogeneity in
the natural frequencies ω in monotone firing oscillators [46]
whereas the asymptotic dynamics of Kuramoto model can
be highly complex even for small heterogeneities [72].

3) Other coupling function: As for pulse-coupled models,
there are only few global stability results for phase models
characterized by generic—non-sinusoidal, non-monotone—
coupling functions. When the coupling function is odd,
the phase oscillators correspond to a gradient system and
are characterized by global properties similar to Kuramoto
model [32]. For more general coupling functions, however, a
global stability analysis is usually elusive (e.g. weakly pulse-
coupled QIF oscillators [44]). In this case, a local stability
analysis can be performed and, in particular, there exists a
criterion for the local stability of the incoherent state [9],
[41]. In this context, local stability of clustering configura-
tions has been investigated in [27], [55], for instance, and the
design of the coupling function to achieve particular cluster
states is considered in [57]. Note also that several studies
have considered generic coupling functions in the case of
non-identical phase oscillators (e.g. [14]).

VI. CONCLUSION

Diffusive synchronization and kick synchronization are
two distinctively different models of synchronization, un-
derlying different physical synchronization mechanisms and
leading to different analysis tools. While most popular
manifestations of synchronization seem more akin to the
kick model than to the diffusive model, the literature on

kick synchronization is sparse, probably owing to the hybrid
nature of the kick model and to the mathematical difficulty
of analyzing nonlinear resonance. For instance, a number of
kick synchronization problems remain unsolved (e.g. non-
identical oscillators) and several research themes are still
unexplored (e.g. general—application oriented—dynamics).

By essence, both the diffusive model and the kick model
are crude idealizations of the complex synchronization phe-
nomena observed in nature. But it is fair to recognize that
the importance of the ‘kick’ deserves more consideration in
a mathematical literature dominated by the diffusive model.
This is for instance illustrated in the recent paper celebrating
the 300th anniversary of the first scientific investigation of
synchronization by Huygens [5]. In that sense, the present
paper is an invitation to the growing hybrid systems commu-
nity to contribute—as in the recent work [54]—to a deeper
understanding of a fundamental property of interconnected
nonlinear dynamical systems.
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