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ABSTRACT 

The σ-transformation is a widely used coordinate change that maps the actual depth-varying sea onto a 

computational domain, the depth of which is constant. The advantages of this technique are numerous. It permits 

an efficient use of computer resources, a simple treatment of the surface and bottom boundary conditions, and an 

accurate representation of the bathymetry. However, if the range of the depth is too large, or when the depth 

varies too rapidly, as in the shelf break region, it may be shown that the σ-transformation leads to severe 

numerical errors. In the application of GHER's three-dimensional model to the Western Mediterranean, the 

occurrence of those numerical errors is avoided by the introduction of a two-fold σ-coordinate system in the deep 

sea. 

 

Introduction 

One of the first tasks in the preparation of a marine model is to list the length scales of the phenomena that are 

expected to be represented. It is necessary to distinguish between horizontal scales (Lh
(1)

,..., Lh
(i),..., Lh

(I)
) and 

vertical scales (Lv
(1)

,..., Lv
(j),..., Lv

(J)
), the former being, in most cases, much longer than the latter, i.e., the aspect 

ratio of marine processes is generally very small. 

In the hope that the model will prove to be accurate, the mesh sizes are chosen small compared with the 

corresponding length scales. Accordingly, one has 

 
and 

 
with 

 

In the above formulas, ∆xh and ∆xv denote the horizontal and the vertical space increments, respectively. In 

general, Lh and Lv must be considered functions of time and position. 

Accuracy requirement (4) is readily taken into account when one uses a coordinate system of which the 

coordinate surfaces, delimiting the grid boxes, are horizontal or vertical, i.e., non oblique. When this condition is 

not satisfied, implementing eqn. (4) becomes a delicate matter, for model coordinates then intertwine vertical and 

horizontal directions, to which correspond length scales whose ratio is very small. Consequently, terrain-

following coordinates, such as the σ-coordinate, may not be utilized without precautions. This has been known 

for a long time in meteorology (Gary, 1973; Janjic, 1977; Mesinger, 1982, Arakawa and Suarez, 1983), and was 

recently discussed in the scope of oceanic modelling by Haney (1991). So far, the attention mostly focused on 

the representation of the pressure gradient force. 

In the present note, we show that limitations to the use of the σ-coordinate pertain not only to the pressure 

gradient force but also to most of the terms of the governing equations of marine models. In addition, it is seen 

that, in the region of the shelf break, a two-fold σ-coordinate system helps preserve the model's accuracy. This is 

exemplified with the application of the three-dimensional model of GHER to the Western Mediterranean. 

The σ-coordinate system and its advantages 

To take into account the effect of the bottom and the surface of the sea, many authors used a change of 

coordinates in which the surface and the bottom become coordinate surfaces (Freeman et al., 1972; Owen, 1980; 

Nihoul et al., 1986; Blumberg and Mellor, 1987; Davies, 1987; Deleersnijder, 1989; Spall and Robinson, 1990; 
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De Kok, 1991). All of the existing formulations of such a change of coordinates basically stem from Phillips 

(1957). The σ-transformation is probably the most simple of them. It reads: 

 
where "~" denotes new or "transformed" variables; t is the time; x1 and x2 stand for horizontal coordinates; x2 
represents the vertical coordinate, positive upwards; η and h are the sea surface elevation and the unperturbed 

water height, respectively, so that H = η + h represents the total water height; L is the—constant—sea depth in 

the σ-space. 

Along with eqn. (5), it is necessary to introduce a new vertical velocity defined as 

 
where ui (i = 1, 2, 3) denotes the velocity components along the xi-axis—in the real space. 

Several advantages of the σ-coordinate system are usually acknowledged. 

It permits an efficient use of computer resources. The impermeability of the sea surface and the sea bottom is 

easily accounted for by 

 

In addition, the model bathymetry available in the σ-system is probably much closer to the real bathymetry than 

the "staircase" resulting from the use of the cartesian "x3-coordinate" system which implies that the effect of the 

sea bottom is probably better represented. Finally, the Jacobian of the σ-transformation, H/L, is independent of 

the vertical coordinate. There is thus no need to locally evaluate this Jacobian, as is the case with more general 

terrain-following coordinates (Kasahara, 1974; Gal-Chen and Somerville, 1975; Dutton, 1976). Hence, the 

typical evolution equation for a quantity a in cartesian coordinates, 

 
leads, in σ-coordinate, to an equation which is not significantly more complex than the original one, 

 
where Qa is a source/sink term; λT

a
 is the turbulent diffusivity of a; and λAT

a = (L/H)
2λT

a. In eqn. (8), Da represents 

a horizontal diffusion term, the functional form of which generally involves the horizontal Laplacian of a. 
Whether or not DAa should be equal to Da is far from clear. As a matter of fact, the determination of the functional 

form of the "horizontal" diffusion in σ-coordinate is a very controversial matter (Pielke and Martin, 1981; Mellor 

and Blumberg, 1985; Deleersnijder and Wolanski, 1990). This is, however, not the subject of the present note. 

Hence, no detailed discussion of that problem will be done here. 

Limitations to the use of the σ-coordinate system 

When solving a differential equation by means of a finite difference method, it is customary to evaluate the 

truncation error to determine the precision of the scheme. For a derivative of m-th order with respect to an 

independent variable, y, one may write 
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where Nm,n denotes the numerical operator used to approximate ∂
ma/∂ym with n-th order accuracy. Accordingly, 

the relative truncation error e may be evaluated by an asymptotic expression stemming from the Taylor 

expansion used to define Nm,n (Roache, 1982), 

 
where ∆y is the mesh size associated with the discretization of the independent variable y. One generally has αm,n 
< 1. 

Truncation error in x3-coordinate 

When no coordinate change is used, i.e., when the equations of the model are of the form (8), one must evaluate 

the order of magnitude of space derivatives that are either purely horizontal or purely vertical. By virtue of eqn. 

(3), one has 

 
and 

 
where Ah and Av stand for the characteristic scales of variation of a in the horizontal plane and in the vertical 

plane, respectively. 

Introducing eqns. (1), (2), (12) and (13) into eqn. (11), one obtains the order of magnitude of the relative 

truncation error for horizontal derivatives, 

 
and for vertical derivatives, 

 

Thus, as expected, εh and εv are relevant measures of the truncation error of the numerical scheme used to solve 

an equation of the form (8). 

Truncation error in σ-coordinate 

When turning to the σ-coordinate system, it is tempting to repeat the above analysis, straightforwardly replacing 

xi by xAi (i = 1, 2, 3) and concluding that eqns. (12)-(13), and thus eqns. (14)-(15) are still valid. As will be shown, 

doing this would be a major mistake. 

In the remainder of this text, it will be assumed that | η | << h so that 

 
which is almost always true. 

For vertical derivatives, one uses the following scaling 

 
so that the relative truncation error reads 

 
which is equivalent to eqn. (15), because h∆σ~ ∆x3. 

Scaling derivatives in iso-σ surfaces as 
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is, in general, incorrect, because iso-σ surfaces are not horizontal. Hence, it is necessary to revert to an 

expression involving only horizontal and vertical derivatives so as to allow a proper scaling. Taking into account 

that 

 
and assuming that eqn. (16) holds true, one gets 

 
the order of magnitude of which is roughly given by 

 
It is appropriate to introduce the scale of variation of the depth as 

 

With the above definition, one may evaluate the magnitude of the relative error concerning derivatives in iso-σ 

surfaces: 

 

Thus, requiring εh << 1 is not sufficient to ensure accuracy. An additional condition on the bathymetry must be 

satisfied, i.e. 

 
or, equivalently, 

 

Since (Lv/h) 1, eqn. (26) means that the variations of the sea depth must be properly resolved by the 

computational grid. 

Practically, it is generally difficult to determine beforehand the value of Lv/h. For simplicity, it is proposed to 

only require 

 

Thus, the bathymetry length scale, Ld
, may be considered as any other length scale, and may be added to the list 

of horizontal length scales. Doing so, Lh, defined by eqn. (3), will account for depth variations and eqn. (27) will 

be part of eqn. (4). 

The pressure gradient term 

The evaluation of the relative truncation error holds for space derivatives of any variable, including the pressure. 

It is however desirable to work with a properly defined reduced pressure, as suggested in meteorology by Gary 
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(1973) and confirmed by Haney (1991) for marine applications. 

If all the terms of an equation have the same order of magnitude, looking at the relative truncation error is 

satisfactory. By contrast, when there are terms that are much larger than others one must examine their absolute 

truncation error. 

As is well known, the density of seawater, ρ, is at any instant and at any location, very close to a reference value 

ρ0, i.e. 

 

Since the aspect ratio is assumed to be small, the hydrostatic approximation holds (Pedlosky, 1979). One may 

decompose the pressure p as follows 

 
with 

 
and 

 
where g denotes the gravitational acceleration. When the integration constant of eqn. (30) is well chosen, 

because of eqn. (28), the reduced pressure p' is much smaller than p0, 

 

In the momentum equations in x3-coordinate, the pressure force reads 

 
and, because of the relative smallness of p', no particular numerical problem is to be expected from this 

formulation. 

In σ-coordinate, the horizontal pressure derivatives transform to 

 

The right-hand member of eqn. (34) represents the sum of two large contributions that roughly cancel, resulting 

in a much smaller term, ∂p'/∂xi. Numerically, even if the relative error on each of the two large terms of eqn. (34) 

is small, it is far from certain that the absolute errors will roughly cancel each other, possibly resulting in an 

important error on ∂p/∂xi (Gary, 1973; Janjic, 1977; Mesinger, 1982; Arakawa and Suarez, 1983; Haney, 1991). 

Taking advantage of eqn. (33), one may write, in the σ-space, the horizontal pressure derivatives as 

 
where all of the terms hopefully have similar magnitude. Thus, the latter form, though mathematically equivalent 

to eqn. (34), is, from a numerical point of view, better conditioned than eqn. (34) (Haney, 1991). 

In agreement with the present discussion, the GHER three-dimensional marine model uses q = p'/ρ0 and b = -g(ρ 
- ρ0)/ρ0 as state variables (Nihoul, 1984; Nihoul and Djenidi, 1987; Deleersnijder and Nihoul, 1988; Nihoul et al., 

1989; Beckers, 1991). 
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It must be stressed that, with the pressure gradient term, the problem is not just the truncation error discussed 

above. In the words of Haney (1991):" Rousseau and Pham (1971), Janjic (1977), and Mesinger (1982) have 

identified a problem of 'hydrostatic consistency' associated with the σ-coordinate system". The condition for 

hydrostatic consistency reads 

 
which may be more restrictive than eqn. (27), depending on the vertical grid spacing and on the way "<<" in eqn. 

(27) is interpreted. 

Discussion 

There is no need to distinguish between the truncation error of time derivatives in the physical space and in the 

σ-space. Indeed, those time derivatives are related to one another by 

 
so that, in general, 

 
because | η | << Lv. 

The above discussion rests on the underlying assumptions that Lv << Lh and that Lh corresponds to variations that 

are strictly horizontal. The former assumption may not be questioned. By contrast, the latter is rather arbitrary 

because it suggests that the most natural coordinates to be used to describe marine processes are the physical 

cartesian coordinates. By analogy with boundary layer theory, Mellor and Blumberg (1985) assumed that the 

most appropriate coordinates are, in fact, terrain-following coordinates having one family of coordinate surfaces 

perpendicular to the bottom. It may be argued that the σ-coordinate system is very close to such a coordinate 

system, because the bottom slope is usually very small (  10
-3

). As a result, the scaling eqn. (19) becomes valid 

and, when analyzing the error in the x3-coordinate system, one should revert to derivatives in the σ-space. In this 

case, it would be the x3-coordinate system that should be subject to an accuracy requirement concerning the 

bathymetric variations. 

What is the correct view? Near the bottom, for instance, the σ-coordinate system is clearly more appropriate than 

the cartesian one (Mellor and Blumberg, 1985; Deleersnijder and Wolanski, 1990). Away from the bottom 

boundary layer, it is not obvious that the iso-σ surfaces, which are not horizontal, correspond to preferential 

directions of variation of the dependent variables. Thus, assuming that Lh is associated with variations in 

horizontal planes is certainly safer than considering the iso-σ surfaces as the primary reference for the definition 

of Lh. Hence, condition (27) is justified. But this does not mean that the x3-coordinate system is, overall, better 

suited to the modelling of marine processes, at least because it provides a less accurate representation of bottom 

topography. 

If one considers the minimum of Ld over the computational domain, condition (27) prescribes an overall upper 

limit to the mesh size. But, eqn. (27) may also be used locally, serving as a guide line to variable mesh 

refinement. If, for some reason, it is not possible to define a grid that is fine enough to satisfy eqn. (27), another 

attitude must be adopted. In this case, the grid size is considered fixed and it is the bathymetry that must 

accomodate to the grid. In other words, the model bathymetry must be filtered to smear out the sharpest depth 

gradients—that are not properly resolved by the grid. Nevertheless, if the computational domain covers the shelf 

break, a region of large depth variations between shallow and deep waters, it is clear that no filtering of the 

bathymetry will be sufficient, unless the filtering procedure is so strong that the shelf break is completely 

smoothed out, which is definitely not appropriate. In this case, modifications to the standard σ-coordinate system 

must be considered. Those modifications should retain the advantages of the σ-coordinate while allowing a 

proper representation of the bathymetry in regions of large depth variations. 

The two-fold σ-coordinate system 

The GHER three-dimensional model is used to represent the general circulation in the Western Mediterranean 

(Beckers, 1988, 1991). The computational domain encompasses continental shelves of small extent (h  200 m), 

the shelf break region with steep bottom slopes (| h|  10
-2

), and the deep sea (h ≈ 3000 m) (Fig. 1). From the 

sea surface to the sea bottom, one usually distinguishes three water masses: light Atlantic water from the surface 

to ≈ 200 m, a very sharp pycnocline, intermediate Levantine water to ≈ 500 m, a moderate pycnocline, and dense 

deep water from ≈ 500 m to the bottom. The general circulation in the Mediterranean is generally considered to 
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be induced mainly by wind stress and spatially varying surface heating. 

 

Fig. 1. Bathymetric map of the Western Mediterranean where the path of a plane of section is shown (AB). 

 

 

Fig. 2. Sea depth (lower curve) and ratio of the mesh size to the bathymetry length scale (upper curve) in the 
section AB (see Fig. 1). The lack of resolution of the bathymetric variations in the shelf break region is clearly 
shown. 
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It is thus necessary that the model have high resolution in the top hundreds meters so as to ensure a proper 

representaion of air-sea exchanges, of the associated turbulent processes, and of the pycnocline between Atlantic 

and Levantine waters. Consequently, the vertical length scale Lv must be considered a function of x3 having its 

minimum value near the surface and the pycnocline. As ∆x3 ~ h∆σ, h∆σ should also have its minimum in the 

same regions. However, if the pycnocline is horizontal—in the real space —, it will cross iso-σ surfaces in the σ-

space, requiring thus h∆σ to be small everywhere. Since the range of the bathymetry is large (50 m  h  3500 

m), this would demand many vertical levels, which would be a waste of computer resources. 

On the other hand, in the region of the shelf break Ld is much smaller than at any other location in the domain. 

Thus, a rather small horizontal mesh size is, in principle, required in order to avoid the occurence of severe 

numerical errors, as indicated by eqns. (27) and (36). 

Applying the classical σ-coordinate system to the Western Mediterranean, where the range of the depth is large 

and where the minimum of the bathymetry length scale is small (Fig. 2), would require so fine vertical and 

horizontal grid sizes that the computer resources needed are unlikely to be afforded. 

The above restrictions may be, to some extent, circumvented. Beckers (1988, 1991) suggests introducing a two-

fold σ-coordinate system: the sea is divided into two sub-domains by a horizontal plane, the equation of which is 

x3 = -hlim. In each sub-domain, the σ-transformation is applied. Thus, in the upper sub-domain, one defines 

 
and, in the lower sub-domain, 

 

Spall and Robinson (1990) used a similar technique, but did not introduce the σ-coordinate in the upper sub-

domain. The vertical velocities are defined according to eqns (6) and (39), 

 
where "D" stands for "U" or "L". At the interface x3 = -hlim, the vertical fluxes of the state variables of the model 

arising from the two sub-domains are simply matched. For instance, the matching of the water fluxes requires 

 

In the practice, matching the relevant fluxes is easily accomplished since the numerical method is based on the 

finite volume technique (Peyret and Taylor, 1983). 

Of course, when h < hlim, no lower sub-domain is needed. Beckers (1988, 1991) took 

 
so that the shelves involve only the upper sub-domain. The vertical mesh sizes were non-uniformly distributed in 

order to increase the resolution near the surface. 

With the introduction of the two-fold σ-transformation, appropriate resolution in the top hundreds meters is 

guaranteed, without having recourse to a prohibitive number of grid points on the vertical. Furthermore, the steep 

slope of the shelf break region, where ∆xh/L
d is maximum (Fig. 2), is partly replaced by a vertical wall (Fig. 3) so 

that conditions (27) and (36) are to some extent satisfied. It must be emphasized that it is the introduction of the 

vertical walls that reduces ∆xh/L
d and not the two-fold σ-coordinate system per se. On the other hand, the vertical 

walls distort the bathymetry (Fig. 3) but it is deemed that this drawback is much less serious than the problems 

encountered when trying to represent steep slopes with the classical σ-coordinate system. 
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Fig. 3. Iso-σ- surfaces in the section AB (see Fig. 1) for the classical σ-system (a) and the two-fold σ-system (b). 

 

 

Conclusion 

The use of the σ-coordinate system, despite its many advantages, is subject to conditions ensuring the accuracy 

of the numerical derivatives. These conditions pertain to the variation of the sea depth and the main one states 

that a suitable bathymetry length scale must be introduced and plays the same role as any "classical" length scale 

in the determination of the mesh size of the model (27). 

When the computational domain covers regions of very large bathymetric variations, such as the shelf break 

zone, the σ-coordinate system should not be used. However, in the case of the Western Mediterranean, the 

introduction of the twofold σ-transformation hopefully provides the model with all of the advantages of the 

classical σ-transformation, while avoiding some of the accuracy problems associated with large bathymetric 

irregularities. The model results (Beckers, 1991) indicate that the proposed vertical discretization is valid. 
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