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INTRODUCTION

Fractality and multifractality have been studied in various areas of sci-
ence. These ideas have found a new field of application in quantum
mechanics. Multifractal wave functions characterize systems interme-
diate between quantum chaos and integrability, and also show up at the
Anderson metal-insulator transition [|]. Experimental progress opens
the way to direct observation of multifractality. It is therefore impor-
tant to have a detailed analysis of the multifractal properties of wave
packets in order to characterize and interpret experimental results.

THE MODEL (RUIJSENAARS-SCHNEIDER)

We consider a periodically kicked system with period I" and Hamilto-
nian H(p,q) = p* + V(q) 3, 8(t — nT), with potential V (q) = v{q}
where {¢} denotes the fractional part of ¢, and (p, ¢) are the conjugated
momentum and position variables. In order to allow for long spreading
times for a wave packet, we fix / and let the classical phase space grow
with N ("open" phase space). The quantization of this system gives the
unitary evolution operator (0 < P, P < N — 1)
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with &p —mTP2. In the following, we shall replace the kinetic
phase ® p by random phases in order to get averaged quantities while
keeping the same physics.

ANALYTICAL RESULTS
We consider the evolution of a wave packet initially localized on one
single momentum state, \Ilgg) = 0pp,. lterations of the map make
the wave packet spread out. When 7 is close to an integer; namely,
v = k + ¢, with k being an integer, analytical calculations show that the
average wave packet over random phases ® p is given by [2]
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This formula implies that close to integer values of -, the wave packet
displays a single peak moving at speed k.

NUMERICAL COMPUTATION OF THE MULTIFRACTAL
EXPONENTS OF QUANTUM WAVE PACKETS

Different methods can be used in order to extract multifractal ex-
ponents. With the method of moments, multifractal exponents D,
(¢ € R) of wave functions living in a N-dimensional Hilbert space are
computed from the scaling of their moments P, = Y, |¥p|?¢ with
N through (P,) o« N=Pa(a=1) However, this method is not suited
for wave packets as it assumes scale invariance of the system. Another
method (box-counting method) relies on the scaling with the box size
Npox of the moments
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In the case of wave packets, an average is made over the positions of the
box centers to eliminate a threshold effect linked to the relative position
of the wave packets and the boxes. Besides, as long as the wave packet
remains localized, the multifractal exponents are extracted from scales
smaller than the typical wave packet size.

We recall that the exponents D, are positive and decrease for ¢ > 0
from Dy 1; at a fixed ¢ > 0, the smaller D, is, the stronger the
multifractality is. For an ergodic wave function one has D, = 1 Vgq.
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MULTIFRACTAL EXPONENTS FOR WAVE PACKETS
AND EIGENVECTORS
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Studies of eigenvectors of the Ruijsenaars-Schneider map have shown
that their multifractality is the strongest close to ~ 0 (localized
eigenvectors) and decreases when v gets close to nonzero integers
(delocalized eigenvectors) [3].

Our results show that the multifractality of wave packets evolves with
v in the same way as for eigenvectors. Our interpretation is that the
initial wave packet has significant components on more eigenvectors
when these are delocalized (less multifractal), which in turn leads to
an overall decrease of the multifractality as time evolution mixes these
eigenfunctions.
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CONCLUSIONS \

We identified the box counting method as the most efficient method to
measure the multifractality of wave packets. In our periodically kicked
system, the multifractality of wave packets was shown to typically de-
crease with time until it reaches an asymptotic limit. This asymptotic
multifractality is different from the one of eigenvectors more commonly
studied, but is related to it. The rate at which the asymptotic limit is

reached can also be related to the multifractality of eigenvectors.




