ZERO DRIFT IN MEAN ANOMALY OF THE SATELLITE OF 1996 FG3 AND ITS IMPLICATION FOR THE BYORP THEORY. P. Scheirich ${ }^{1}$, P. Pravec ${ }^{1}$, S. Mottola ${ }^{2}$, M. Mommert ${ }^{2}$, K. Hornoch ${ }^{1}$, P. Kušnirák ${ }^{1}$, J. Pittichová 3, S.A. Jacobson ${ }^{4}$, D. Pray ${ }^{5}$, D. Polishook ${ }^{6}$, Yu.N. Krugly ${ }^{7}$, I. Slyusarev ${ }^{7}$, J. Pollock ${ }^{8}$, E. Jehin ${ }^{9}$, J. Manfroid ${ }^{9}$, M. Gillon ${ }^{9}$, A. Galád ${ }^{1,10}$, J. Licandro ${ }^{11}$, V. Alí-Lagoa ${ }^{11}$, J. Brinsfield ${ }^{12}$, R.Ya. Inasaridze ${ }^{13}$, I.E. Molotov ${ }^{14}$, ${ }^{1}$ Astronomical Institute AS CR, Ondřejov, Czech Republic, petr.scheirich@centrum.cz, ${ }^{2}$ DLR Institute of Planetary Research, Berlin, Germany, ${ }^{3}$ Institute for Astronomy, University of Hawaii, Honolulu, USA, ${ }^{4}$ Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, USA, ${ }^{5}$ Sugarloaf Mountain Observatory, Massachusetts, USA, ${ }^{6}$ Wise Observatory, Israel and Massachusetts Institute of Technology, Cambridge USA, ${ }^{7}$ Institute of Astronomy of Kharkiv National University, Sumska Str. 35, Kharkiv 61022, Ukraine, ${ }^{8}$ Physics and Astronomy Department, Appalachian State University, Boone, NC 28608, U.S.A., ${ }^{9}$ Institut d'Astrophysique et de Géophysique, Sart-Tilman, B-4000 Liège, Belgium, ${ }^{10}$ Modra Observatory, Department of Astronomy, Physics of the Earth, and Meteorology, FMFI UK, Bratislava SK-84248, Slovakia, ${ }^{11}$ Instituto de Astrofísica de Canarias, c/vía Láctea s/n, 38200 La Laguna, Tenerife, Spain, ${ }^{12}$ Via Capote Observatory, Thousand Oaks, CA, U.S.A., ${ }^{13}$ Kharadze Abastumani Astrophysical Observatory, Ilia State University, K.Cholokoshvili Av. 3/5, Tbilisi 0162, Georgia, ${ }^{14}$ Keldysh Institute of Applied Mathematics, RAS, Miusskaya sq. 4, Moscow 125047, Russia.

Introduction: We present an analysis of photometric observations of binary Near-Earth asteroid (175706) $1996 \mathrm{FG}_{3}$, taken from 1996 to 2012. The analysis gave a single solution for a quadratic drift of the mean anomaly of the satellite, $\left(0.00_{-0.10}^{+0.18}\right) \mathrm{deg} / \mathrm{yr}^{2}$.

A quadratic drift of mean anomaly of satellites of binary asteroids was predicted by [1],[2] as a result of the binary YORP (BYORP) effect of asymmetric emission of thermal radiation. The mean anomaly of changing orbit expanded to the $2^{\text {nd }}$ degree in time is expressed as

$$
\begin{gathered}
M=n\left(t-t_{0}\right)+\Delta M_{d}\left(t-t_{0}\right)^{2}, \\
\Delta M_{d}=\frac{1}{2} \dot{n},
\end{gathered}
$$

where n is the mean motion, t_{0} is the time when $M_{0}=0$ and t is the current time. Pravec and Scheirich [3] adapted results of [1] and predicted the quadratic drift ΔM_{d} for several binary Near-Earth asteroids with values ranging from -0.24 to $-3.27 \mathrm{deg} / \mathrm{yr}^{2}$. A value predicted for $1996 \mathrm{FG}_{3}$ was $-0.89 \mathrm{deg} / \mathrm{yr}^{2}$.

Recently, Jacobson and Scheeres in [4] presented a theory of BYORP where mutual tides between the two components are included for the first time. A counterbalance of the two effects results in a long-term stable solution for synchronous binary asteroids with zero drift in mean anomaly.

Observed Data: The data used in our analysis were obtained during five apparitions: from 1996-0409 to 1996-04-21, from 1998-12-03 to 1999-01-09, from 2009-04-12 to 2009-04-17, from 2010-12-14 to 2011-02-09, and from 2011-11-23 to 2012-01-24.

The data were reduced using the standard technique described in [5]; a rotational lightcurve produced by the primary was removed in the reduction.

Numerical Model: A numerical model used for deriving basic parameters of sizes and shapes of the two components, as well as of their mutual orbit, was described in [6]. The shapes of the components are represented as ellipsoids, orbiting each other on a Keplerian orbit, except for that we included a quadratic drift in mean anomaly ΔM_{d}, which is fitted as independent parameter. The key to the ΔM_{d} determination are times of mutual events (i.e., occultations and eclipses) in the lightcurve.

Results: We found a unique solution with the quadratic drift in mean anomaly ΔM_{d} of ($0.00^{+0.18}{ }_{-0.10}$) $\mathrm{deg} / \mathrm{yr}^{2}$ (3- σ error bar). A solution for the pole of the mutual orbit in ecliptic coordinates is shown in Fig. 1.

Fig. 1: Admissible (3- σ) area of pole of the mutual orbit of $1996 \mathrm{FG}_{3}$ in ecliptic coordinates.

References: [1] McMahon J. and Scheeres D. (2010) Celestial Mechanics and Dynamical Astronomy, 106, 261-300. [2] McMahon J. and Scheeres D. (2010) Icarus, 209, 494-509. [3] Pravec P. and Scheirich P. (2010) 42nd DPS, Oct. 2010, Pasadena, CA. [4] Jacobson S.A. and Scheeres D. (2011) ApJ Letters, 736, L19. [5] Pravec P. et al (2006) Icarus, 181, 63-93. [6] Scheirich P. and Pravec P. (2009) Icarus, 200, 531-547.

