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Atmospheric reentry
high speed & potential 

energy converted into heat

Space vehicles need heat 
shields (TPS)

Turbulent heat rates several 
times higher than in the 

laminar regime

Safety margins are necessary 
for the design of the TPS

Quantify the margins for a 
less conservative design

MSL CFD in reentry conditionsMars Exploration Rover (MER)

MSL Mach 10, α = 16-deg 
Data and Comparisons from AEDC Tunnel 9

Steven P. Schneider. Hypersonic laminar-
turbulent transition on circular cones and 

scramjet forebodies., 2004.



Transition prediction – The State of the Art
• Experiments : empirical criteria and correlation (Shuttle, Van Driest)

– Good : successfully used (Apollo, Shuttle);
– Bad : expensive, limited in time and no real operating conditions (Re, Ma);

• CFD : Transition models ( Menter, Goldberg, R-γ )
– Good : fast , design;
– Bad : simplified physics, very sensitive to free stream conditions (Re, Ma, Tu); 
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Transition prediction – What we propose
• Introduce Uncertainty Quantification (UQ) in deterministic simulations for 

transition prediction to : 
– Take into account the physical variability of the system to simulate
– Transition is a stochastic process 
– Improve and verify transition tools currently used in design
– A stochastic model for transition prediction does not yet exist

Three pillars for predictive engineering simulations

Computations

Models Experiments

Is the
computational 

method 
implemented 

correctly?

Are we 
solving 

the right 
equations?

End-to-end study 
of the reliability of

scientific predictions



• Linear Stability Theory and transition prediction
• Uncertainty Quantification and numerical simulations

• Assumptions for the deterministic simulations
• Description of the method

• The forward problem
• The inverse problem
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Linear Stability Theory and transition prediction
• Small disturbances:  baseline + disturbances;
• Linearization of Navier-Stokes equations + parallel flow approximation;

• Wave like disturbances;

• Space amplification theory 

Degrez G., “Two dimensional boundary layer”, 2012

baseline disturbances

parallel flow

Propagation in space (complex)

Propagation in time (real)



Linear Stability Theory and transition prediction
• Orr-Sommerfeld equations;

• B.C. : disturbances vanish at the wall and in the far field;

• Eigenvalue problem;

Degrez G., “Two dimensional boundary layer”, 
Course Notes, 2012

Amplification rates contour lines  for Blasius
velocity profile plotted in the R- α plane

Neutral Stability curve : ci = 0 
boundary between damped 
and amplified disturbances
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Linear Stability Theory and transition prediction
• eN transition prediction method;

• Transition : N-factor = Nexp

• N = N(wind tunnel, free stream parameters) 
• N-factor = 4-5 (WT) , 13-14 (Flight);

Fei Li et al., 
“Hypersonic Transition Analysis for HIFiRE Experiments”, 2012.

N factors computed on the HIFire I reentry vehicle 
Mach number = 5.28, H = 21km



Uncertainty quantification and numerical simulations
• Goal : study how physical variability of systems affects Quantity of Interest 
• UQ : End-to-end study of the reliability of scientific predictions;

Iaccarino G. et al.,
“Numerical methods for uncertainty propagation in high speed flows,” 

V European Conference on Computational Fluid Dynamics,
2011
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Assumptions for the deterministic simulations
• Wave-like disturbances

• 2D waves ( β vanishes );
• Spatial amplification theory : ω real , α complex, wave propagation speed c = ω/αr , 

amplification rate in space  -αi ;
• Transition prediction with the eN method : VKI-H3 N-factor = 5 (Mach 6 WT);

amplitude

wave numbers

frequency



Description of the method
1. Linear Stability Analysis 

Masutti D., Natural and  induced transition on a 
7 degree half-cone at Mach 6, 2012.

Base 
solution

• Free stream conditions
• B.L. profiles (CFD, SS)

LST

• F ϵ [400 - 800] kHz
• VESTA (Pinna 2012)

N-factor



Description of the method
2. Definition of the uncertainties

Example of pdf of the input parameter for the UQ analysis

μF

σF

Frequency

• Input uncertainty
• Normal pdf (μF , σF)

Propagation

• Monte Carlo
• Method of transformation QoI

• Output pdf



Description of the method
3. Output

Frequency

• Input uncertainty
• Normal pdf (μF , σF)

Propagation

QoI

• Output pdf

• Method of 
transformation

pdfF

pdfN

N-factor

Transfer
Function

Slope of the 
transfer 
function



Description of the method
4. Probability of transition

pdfN

N-factor

pT

- pT , probability of transition                                             
- Ncrit , critical N-factor at the transition  onset
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Study of natural transition on a 7° half-cone model
• Transition detected by surface measurements of the heat flux;
• Different Reynolds number conditions;

Masutti D., Natural and induced transition on a 7 
degree half-cone at Mach 6, 2012.
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The forward problem
• Goal : computation of the probability of transition caused by assumed freestream

perturbation spectrum (Frequency distribution);
• Assumption : transition caused by perturbations  in the BL upstream of the transition 

location;
• Transfer function : Linear Stability analysis to compute N=N(F);

N-factor -Frequency  relation
with VESTA

Experimental transition onset
N = 5
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The forward problem
• UQ approach : free stream perturbations as pdf of the Frequency with normal 

distributions ;

• Computation of the probability of transition and comparison with experiments;

UQ analysis (-) and 
experimental results (□) 
for different conditions
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INVERSE PROBLEM
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Variance of the FrequencyMean of the Frequency

The inverse problem
• VKI-H3 Low-Re: MCMC to obtain the posterior pdf of the mean and the variance of 

the frequency distribution (Geweke’s test for convergence)
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The inverse problem
• Intermittency distribution : VKI-Low Reynolds

Comparison of the experimental data with 
the probability of transition from MCMC.

Uncertain measurements

MCMC results

• Good agreement with 
experimental intermittency;

• Some misalignments in the  late 
transition zone (turbulent spots, 
non linear effects) 
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Conclusions
• Goal : combination of deterministic and probabilistic tools for transition prediction 

in high speed flow; 
• Method : forward problem (intermittency distribution for given conditions) and 

inverse problem (frequency distribution for given measurements);
• Added value 

• Forward problem –intermittency distributions resembling experimental data 
with fast and reliable computations (LST + eN method);

• Inverse problem – inferring perturbation spectrum for given conditions;

Future works
• RANS model for transition prediction : using the forward model to build a look-up 

table to obtain intermittency distributions at different conditions (Stanford SU2 code);
• New stochastic transition prediction method;
• Comparison with experimental data : assessment of the assumptions for the inverse 

problem (frequency distributions) and comparison with experimental data;
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The inverse problem
• D input parameters s = ( s1 , s2 , … sD ) through the computational model f(s) to give K 

outputs m = ( g1 (f(s1 , r)), g2 (f(s2 , r)), … gk (f(sk , r)) ) with r auxiliary parameters s = ( r1, 
r2, … rN ) ; 

• The forward problem : solving m with given s and r;
• The inverse problem : inferring s given the measurements of m for given r;
• Parameters : input s = ( s1 , s2 ) = ( µF , σF ) , auxiliary r (conditions for the test cases), 

output m = ( γ1 , γ2 …, γk ) at x1 , x2 …, xk ;
• The strategy : given set of noisy measurements m = m + η = ( γ1 , γ2 …, γk ) to seek for 

the input parameters s = ( µF , σF ) using the computational model f(s) ; 
• The Bayesian inversion : 

- p(s|m) = posterior pdf (probability of the input given the measurements)
- p(m|s) = likelihood pdf (probability of the measurements given the input)
- p(s) = prior pdf (information on the input parameters)



Statistical inverse analysis and stochastic 
modelling of transition – part 2

The MCMC algorithm
Proposed step
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INVERSE PROBLEM

Posterior Density
Probability of the inputs given the 

measurements
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The inverse problem
• MCMC algorithm : Markov Chain Monte Carlo to obtain the posterior pdf

Starting point
μ0 , σ0

Samples within the burn-in
period

Samples for the final
distributions

Final distribution
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