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Abstract

A probabilistic approach, based on Uncertainty Quantification, is combined to deterministic numerical simulations
relying on Linear Stability Theory and Reynolds Averaged Navier-Stokes. The objective is to improve the predic-
tion of natural transition in hypersonic flows. Results are compared to experimental data obtained in the VKI-H3
facility focusing on the transition onset location and on the extension of the transitional zone. Comparisons show
that the computed intermittency distribution is able to capture the experimental onset of transition well following
the experimental data within the transitional zone. Finally, a preliminary investigation on the distribution of the
perturbation spectrum upstream of the transition onset is also performed with satisfying results.

Keywords: Laminar to turbulent transition, hypersonic flows, Uncertainty Quantification, Linear Stability
Theory, Reynolds Averaged Navier-Stokes, intermittency factor, inverse problem, MCMC.

Nomenclature

Symbols
A0 initial amplitude of the disturbances
M Mach number
N amplification ratio
Ncrit critical N for transition onset
F dimensional frequency (kHz)
Re Reynolds number
S t Stanton number
pT probability of transition
v̂(y) amplitude of the perturbations
x streamwise coordinate (m)
y normal coordinate (m)
z spanwise coordinate (m)

Greek symbols
α streamwise wave number
β spanwise wave number
δµF MCMC increment for the mean
δσF MCMC increment for the variance
γ intermittency factor

µ mean
ω non-dimensional frequency
σ variance

Abbreviation
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulations
MCMC Markov chain Monte Carlo
QoI Quantity of Interest
RANS Reynolds Averaged Navier-Stokes
T PS Thermal Protection System
UQ Uncertainty Quantification
VKI von Karman Institute for Fluid Dynamics
cd f cumulative distribution function
pd f probability distribution function

1. Introduction

During reentry, space vehicles are subjected to an
extreme thermal environment due to the deceleration



at the impact with the atmosphere. They are therefore
equipped with heat shields which assure the structural
integrity. It is well known that heat fluxes in turbulent
flows are several times higher than in the laminar
regime, thus transition to turbulence plays a key role
in hypersonic reentry.
Highly conservative safety margins are currently used
in the design of heat shields to take into account
unexpected transition due to the variability of the
physical environment. The conservative approach
allows engineers to take into account variations of
the freestream parameters or of the surface geometry
but at the expense of a significant increase in their
weight. In fact, a change of the Mach number or
of the Reynolds number with respect to the design
conditions, as well as the presence of roughness or
misaligned tiles on the body, can promote transition
causing dramatic changes in the predicted heat
transfers and faster consumptions of the TPS.
In this research, uncertainties on free stream param-
eters and surface geometry are taken into account
in numerical simulations. The aim is to consider
the physical variability of the system to simulate
and to study the effect of the uncertainties on some
Quantity of Interest (QoI). In particular, we focus on
the transition location and on the heat loads occurring
during atmospheric reentry.
Since transition to turbulence is a stochastic process,
deterministic simulations and a probabilistic approach
are combined. The latter relies on tools of Uncer-
tainty Quantification (UQ) where flight conditions,
boundary conditions, or initial disturbances are
treated as random and modeled by probability distri-
bution functions (pd f ). The objective is to define the
probability distribution, and thus confidence levels,
on the heat loads and the transition point. Results are
then used to improve existing transitional models for
a more reliable, faster and less conservative design of
the heat shields.

1.1. Motivation of the work
Transition plays a key role in hypersonic reentry

affecting the design process of the vehicle. Heat
shields guarantee the success of the mission but a
conservative design sensibly reduces the space for the
payload and increases the weight [6]. An improved
understanding of the physics of transition will help
to reduce the safety margins and to limit the overall
costs of space missions.
Nowadays, we can observe a renewed interest in
transition driven by the design of powered hypersonic

vehicles as the DARPA FALCON HTV-2 or the ESA
IXV. These vehicles are designed to fly at the higher
levels of the atmosphere where a laminar or turbulent
flow radically affects their drag and required power.
Therefore, transition is one of the most important
driving factor in the design of reentry vehicles and
space planes, from the thermal protection system to
the engines.
Experiments and numerical simulations (CFD) are
both used to investigate the transition mechanism.
In experiments, the freestream parameters, as the
Mach and the Reynolds number, can not represent
the real flight conditions [1] due to the limitation
of the facility and to the physical variability of the
environment. In CFD, the real flight conditions can
be simulated but models are necessary to represent
the physics. These models simplify the more complex
mechanisms of transition which makes its prediction
less reliable [29].
Transition prediction is therefore characterized by a
level of uncertainty which forces engineers to adopt
highly conservative safety margins in the design of
TPS. A better knowledge of the physics will allow
to quantify and eventually reduce these uncertainties
leading to a less conservative design to the benefit of
safety and costs.

2. Introduction to the deterministic and proba-
bilistic tools

Transition prediction nowadays relies on experi-
ments and numerical simulations. Experimental pre-
diction is done through empirical criteria and correla-
tions (PANT, Shuttle [33]) which have been success-
fully used in the past. Numerical simulations offer
possibilities with different degrees of complexity and
costs. Methods for estimating transition in CFD can
be based on Linear Stability Theory (LST), Reynolds
Averaged Navier-Stokes (RANS) and Direct Numeri-
cal Simulations (DNS).
Since linear stability based methods are used for the
results hereafter, the fundamentals of the theory will
be briefly described. An introduction to the Uncer-
tainty Quantification approach applied to numerical
simulations is also given.

2.1. Linear Stability Theory and transition prediction

Most of the current knowledge on hypersonic
boundary layer transition is due to the extensive
work of Mack [22] and Arnal [2] supported by the
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experiments carried out by Stetson [41], Kendall [17]
and Schneider [36].
Mack and Arnal focused on modeling the per-
turbations inside the boundary layer as wave-like
disturbances according to the Linear Stability Theory.
As described by Schlicthing [35], perturbations are
added to the mean flow quantities into the transport
equations, which are linearized and combined into
the stability equation, called the “Orr-Sommerfeld
equation”. The solution of this equation gives the
parameters, typically the Reynolds numbers and
the wave speeds (α), for which the flow becomes
unstable. In general, the two-dimensional waves,
called the “Tollmien-Schlichting” waves start to grow
until their breakdown, which defines the “onset” of
transition. This phenomenon is defined as “modal”
instability since the perturbations grow exponentially
in space and time until transition occurs. When the
modal instability does not occur, transition may be
caused by the “transient growth” phenomenon where
the perturbations grow linearly and then they decay
exponentially in time or space. In this case, we speak
about “bypass transition” since the modal instability
is bypassed in favor of the transient growth which
causes transition. The transient growth mechanism
is influenced by surface parameters, such as the
surface roughness and the wall temperature, and by
freestream conditions, such as the turbulence level.
Compressibility effects can be also taken into account
in the LST by including additional parameters into
the “Orr-Sommerfeld equation”. The fundamentals of
the LST applied to hypersonic boundary layers were
given by the studies and computations of Mack [23],
[24]. Mack’s greatest contribution was the discovery
of multiple solutions of the stability equation in the
high-speed regime which were called higher modes
or Mack modes in his honor. A first mode instability is
physically related to the generalized inflection point
in the boundary layer profiles. It has been shown that
when this point exists, the profiles are intrinsically
unstable. An intuitive example is the breakdown
of the sea waves when they are approaching the
land. When the Mach number is higher, a second
type, second mode, of instability is physically due
to the pressure disturbances which are trapped in
the boundary layer between the wall and the sonic
line. The acoustic waves are continuously reflected,
bouncing between the surface and the sonic line until
their amplification is high enough to cause transition.
This second mode instability is also called “acoustic”
or “radiative” instability. In high speed boundary
layer, transition is generally due to the second mode

instability.
Mack also carried out several studies on the effect of
wall cooling on boundary layer stability. In contrast to
the early stability theory [20] which considered wall
cooling as a complete stabilizer of the boundary layer,
Mack found that the higher modes were destabilized
in presence of cold surfaces. Thus, a cold surface
is characterized by a lower transitional Reynolds
number than a hot surface.
Several experiments were carried out to investigate
boundary layer instability in high-speed boundary
layers. The existence of second mode instabilities
was proved by the experiments of Kendall [17] where
higher modes were found to be the dominant destabi-
lizing source. Further investigations were carried out
by the extensive work of Schneider [36] who focused
on hypersonic transition on conical geometries in
several wind tunnels. A detailed review, of flight
data and experiments carried out in the framework of
hypersonic transition can be found in [37].
Experiments are linked to LST through the eN

transition prediction method. It consists in linking
the experimental transition onset to the growth of the
perturbations through the N-factor [44]. This is an in-
dex measuring how much the initial perturbations are
amplified along the stream-wise direction. Generally,
the N-factor is around 8 ÷ 9 at transition onset for
low-speed flows while it is around 4÷ 5 in hypersonic
regime due to higher velocities. It also depends on
the facility where the test is carried out since it is
related to free stream level of noise. In fact, the
higher the noise is the lower is the threshold N-factor
where transition occurs. As a consequence, transition
is usually observed for N-factor around 12 ÷ 14 in
flight conditions, since the freestream turbulence is
really low. For example, Fig. 1 shows the computed
N-factor on the HIFire I reentry vehicle in flight con-
ditions given by [11] for different frequencies of the
perturbations. The onset of transition was observed
at x = 0.76 m on the surface model corresponding
to a N-factor equal to 13.5. Once the N-factor is
known for certain conditions and facilities, transition
prediction can be done by computing the growth
rate of the perturbations by LST. Thus transition
occurs where the computed N-factor is equal to the
threshold value. This is known as the eN transition
prediction method, whose practical application is
widespread due to its simplicity and reliability.
However, its simplicity is also a limitation since it
does not take into account effects such as the presence
of surface roughness. Moreover, the extension to
three-dimensional flows is not straightforward ( i.e.
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cross flow instabilities). In addition, it requires to
know the N-factor at the transition point in advance
through calibration and wind tunnel tests. Hence the
eN approach is considered a semi-empirical method.

Figure 1: N factors computed on the HIFire I reentry vehicle[11] :
M∞ = 5.28, H = 21km

2.2. Uncertainty Quantification and numerical simu-
lations

Iaccarino et al. [18] define Uncertainty Quantifi-
cation (UQ) as a probabilistic approach to determine
confidence levels on the results of numerical simu-
lations. A real physical system is characterized by
intrinsic uncertainties related to the input conditions.
UQ aims at studying how these uncertainties affect the
numerical results focusing on some Quantities of In-
terest (QoI). The typical process consists in character-
izing the input uncertainties, then propagating them
through the numerical simulation and, finally, defin-
ing the margins and error bars on the QoI. For ex-
ample, in the context of this work, uncertainties on
the freestream perturbations or freestream parameters,
such as the Mach number and the Reynolds number,
are investigated to quantify their effects on the transi-
tion onset and length.
UQ has been applied recently to estimate the effects
of different parameters on numerical simulations. For
instance Pecnik et al. [31] study the effects of input
uncertainties on transition prediction of transonic gas
turbine compressors where numerical results are com-
pared with experimental data obtained at the von Kar-
man Institute for Fluid Dynamics (VKI) for several
turbine guide vane test cases. A similar approach has
been used by Sankaran [34] for simulations of blood
flow in both healthy and diseased vascular models

where the effect of hemodynamic parameters includ-
ing velocities, time varying wall shear stress, pres-
sure drops, and energy losses is investigated. Here,
the input uncertainties are quantified and mapped to
the stochastic space using the stochastic collocation
technique. The idea of stochastic collocation methods
is that the points which the model is evaluated at are
chosen so that they are orthogonal with the probability
distributions on the inputs as a weighting function. A
detailed explanation of the method is given by Loeven
[21] who also presents a modified version to obtain
faster convergence on the results.
The parameters to investigate can be also part of the
model used for the numerical simulations. An exam-
ple can be the values of a parameter of a transition or
turbulence model such as the free stream turbulence
level or the eddy viscosity ratio. Studies on these type
of uncertainties is performed by Gorle [14] in RANS
simulations of turbulent mixing. In this study, uncer-
tainties are identified in the Reynolds stresses and in
the scalar fluxes. To correctly quantify these uncer-
tainties, perturbations are introduced in the values ob-
tained from the deterministic models with a range of
variations based on a comparison with LES data.
Applications of the UQ strategy to high-speed flows
are presented by Iaccarino [19] for two classical prob-
lems in unsteady compressible fluid dynamics: the
Riemann problem and the Woodward-Colella forward
step flow. These applications show the advantage of
using the probabilistic approach in problems with dis-
continuities such as shock waves. In Fig. 2, for the
Woodward and Colella forward facing step problem,
the mean and the variance of the divergence velocity
field are represented. It can be noticed how the po-
sition of the shock wave and its reflection radically
change when uncertainties on the freestream Mach
number are considered.

Figure 2: Woodward and Colella forward facing step problem.
Mean velocity divergence field corresponding to an uncertain input
Mach number [2.5 : 3.0]. Stochastic collocation based on M = 3
[19].

The propagation of uncertainties through the
computational model can be achieved by either
intrusive or non-intrusive techniques. A non-intrusive
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technique consists in several repetitions of the
original deterministic models. Examples are the
Monte Carlo method or the stochastic collocation
approaches where the computational model is treated
as a black-box and several simulations are performed.
On the other hand, an intrusive technique is based
on the modification of the original deterministic
model, as in the polynomial chaos approach, where a
polynomial expansion simplifies the original model.
Intrusive techniques suffer strongly from the curse
of dimensionality since they are slower to converge
when the number of parameters increase. In this
work, a non-intrusive approach based on stochastic
collocation is used.

3. Formulation of the method

This section explains how the deterministic
(Sec. 2.1) and the probabilistic tools (Sec. 2.2) are
used and combined in the present research.

3.1. Assumptions for the deterministic simulations
LST[35] assumes wave-like disturbances in the

mean flow which can be modeled as a function of spa-
tial coordinates x, y, z and of time t :

v(x, y, z, t) = v̂(y)ei(kαx+lβz−mωt),

α = 2π/λx β = 2π/λz
(1)

In Eq. 1, x is the streamwise direction, z the span-
wise direction and y the direction normal to the wall
while α and β are the streamwise and spanwise wave
numbers, respectively. v̂(y) is the complex distur-
bance amplitude while k, l,m are integers represent-
ing the different wave numbers along the streamwise,
spanwise direction and in time, respectively. The fre-
quency ω is related to the streamwise wave number
α by the phase speed c, c = ω/α, at which the dis-
turbances travel downstream. In general, α, β and ω
are complex. We consider here that transition is due
to second mode instabilities so that perturbations are
amplified along the stream wise direction x. In this
case, β vanishes since the direction of maximum am-
plification is aligned with the streamwise coordinate
x. As the spatial approach is used here, ω is real while
α is complex.
Transition is predicted with the eN − method which is
described by Arnal [2] (see Sec. 2.1). In the spatial ap-
proach is used, the N factor is obtained by integrating

the amplification rates αi along the streamwise direc-
tion :

N = log
A
Ao

=

∫ x

x0

−αidx (2)

In Eq. 2, A0 is the initial amplitude of the dis-
turbances at the location x0 where they start to be
amplified. According to the eN method, transition
occurs when the computed N factor equals the value
determined at the experimental transition location
for a specific wind tunnel. As explained by Arnal
[2], the N-factor depends on the facility where the
test is carried out. In general, for subsonic facilities,
the N factor for transition is around 8 ÷ 9 while it
is 4 ÷ 5 at higher Mach number as in hypersonic
regime. Examples of application of the method are
the experiments carried out by Horvath [16] in the
NASA Langley Mach 6 wind tunnel where transition
onset occurs when N = 3.8.

3.2. Description of the method

1. Linear stability analysis: freestream conditions
and geometrical parameters are defined for a test
case and then boundary layer profiles are ob-
tained from self-similar solution or CFD simu-
lations. Then, the stability analysis is carried
out by choosing a frequency for the perturba-
tion waves in a given range of variation. For
high-speed flows typical frequencies are within
400÷ 800 kHz. The linear amplification phase is
solved with the stability code VESTA developed
by Pinna [32] at the VKI. It has been shown by
Marxen [27] that LST is a good model for de-
scribing the linear amplification of the perturba-
tion waves through comparison with DNS data.
At the end of the stability analysis, the N-factor
is computed according to Eq. 2. Therefore, the
output of this first step is a series of curves de-
scribing how the perturbations with different fre-
quencies are amplified along the streamwise di-
rection. This output constitutes the transfer func-
tion which will be used in the probabilistic ap-
proach. An example is shown in Fig. 3 for one
of the experimental cases carried out by Masutti
[26] in the VKI-H3 facility.

2. Definition of the uncertainties: LST has been
carried out by considering the variation of the di-
mensional frequency (F) of the free stream per-
turbations. The UQ approach aims at defining
how the variation of this parameter affects the
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Figure 3: N factors computed on the VKI-H3 High Reynolds case
[26]: M∞ = 6, Frequency ∈ [400 : 50 : 800] kHz.

transition onset location. In order to do that, a
probability function (pd f ) with a normal distri-
bution is assumed to describe this source of un-
certainty. Generally, a normal distribution in-
cludes all the possible values of a parameters
from −∞ to +∞. In the current work, in order
to prevent non physical values, such as negative
frequencies, the probability distribution has been
truncated into a fixed range. Frequencies are then
selected in this range that includes the typical
values for second mode instability. An example
of the pd f for the input uncertainties is shown in
Fig. 4.

Figure 4: Example of pd f of the input parameter for the UQ analy-
sis

3. Propagation: LST analysis defines a transfer
function which links the input uncertainty (i.e.
the frequency F) to the output (i.e. the N-
factor) for the estimation of the transition on-
set in the simulations. Once the input pd f is
assumed, the output pd f is obtained by apply-

ing the method of transformation. This method
is valid as long as the input − output relation
is unique, that is when the transfer function is
monotonic. An illustration of the method is rep-
resented in Fig. 5 for generic input, f (x), and
transfer function y(x). In our case, the transfer
function N = N(F) is unique up to the maximum
N-factor for each curve which describes the rela-
tion between the input frequency F and the out-
put N-factor. The method consists in obtaining
the output pd f by multiplying the input pd f and
the Jacobian, J(F,N) = dF/dN, of the transfer
function as reported in Eq. 3.

pd f (N) = J(F,N) × pd f (F) (3)

Figure 5: Example of the method of transformation

4. Output: the probability distribution of the
N−factor for each station of the computational
domain is the output of the analysis. Since
the work aims at modeling the transition re-
gion, results are presented in terms of the prob-
ability of having transition at a fixed location.
This probability is computed by integrating, at a
fixed streamwise coordinate, along N up to Ncrit,
which is the N value corresponding to the transi-
tion onset experimentally observed. The integra-
tion is reported in Eq. 4.

pT = 1 −
∫ Ncrit

0
pd f (N̄)dN̄ = γ. (4)

The probability of transition starts from 0 where
the flow is most likely to be laminar. Then it
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gradually rises to 1 where the flow is most likely
to be fully turbulent. This probability can be in-
terpreted as the intermittency factor γ, which has
been defined by Narasihma [30] as the time ra-
tio between turbulent and laminar flow at a fixed
location. A summary of the procedure described
above is reported in Fig. 6(a), while in fig. 6(b)
an example of the output probability of transition
is shown.

(a)

(b)

Figure 6: (a) Summary of the procedure to obtain the probability of
transition, (b) Example of probability of transition.

4. The VKI-H3 test case

The assumptions described in Sec. 3.1 have been
applied to different test cases with the approach de-
scribed in Sec. 3.2. Here, a test case for natural tran-
sition on a 7◦ half cone model in the VKI-H3 facility
is presented. The test conditions are summarized in
Tab. 1 for different Reynolds numbers. Experiments

were carried out by Masutti [26] and results are repre-
sented in Fig. 7. Transition is detected by surface mea-
surements of the heat flux which is then expressed as
the non dimensional Stanton number (S t). This num-
ber quantifies the amount of heat transfered to the wall
of the model. From experimental data, it can be seen
that the transition onset location moves upstream as
the Reynolds number increases.
The analysis is divided in two parts. The first is
focused on studying how the uncertainties on the
freestream perturbations propagate to the numerical
results and on the comparison between the numerical
results and the experimental data. In the second part,
an inverse analysis is carried out to investigate the dis-
tribution of the freestream perturbations which is most
likely to cause transition for one of the cases. The first
analysis is also defined as the forward problem and it
follows the steps described in Sec. 3.2. The second
part is called the the inverse problem and it will be
described in the following sections.

Test case M∞ T∞ [K] Re∞ [1/m] Tw [K]
Low Reynolds 6.0 60 18.0 × 106 294

Medium Reynolds 6.0 60 22.8 × 106 294
High Reynolds 6.0 60 27.1 × 106 294

Table 1: Test case and freestream conditions

Figure 7: Experimental results obtained in VKI-H3 facility (condi-
tions are given in Tab. 1). Modified Stanton number (top curves)
and pressure variations (bottom curves) against the streamwise co-
ordinates

.

4.1. The forward problem
We assume that laminar-turbulent transition is

caused by perturbations in the boundary layer up-
stream of the transition location. The aim of the for-
ward problem is to obtain the probability of transition
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caused by an assumed free stream perturbation spec-
trum.
For the conditions indicated in Tab. 1, a linear sta-
bility analysis has been carried out and the N-factor
has been obtained. Then, a pd f has been assumed
for the frequencies which characterize the freestream
perturbations. We assume that the pd f is normally
distributed around its mean µF with a variance σF in
a given range of frequencies. The value of the mean
and the variance are indicated in Tab. 2 for the dif-
ferent Reynolds numbers. The values have been ob-
tained by choosing the mean of frequency distribution
such that the amplification ratio reaches the thresh-
old value at the experimental transition onset. It has
been found that, in the VKI-H3 facility, the limiting
N-factor is equal to 5. In Fig. 8 the isolines of the
N-factor are computed for the High Reynolds condi-
tions in which transition is observed at ≈ 0.13 m (see
Fig. 7). A mean frequency of 480 kHz with a variance
of 25 kHz allows to have a satisfying agreement with
the experimental data.

Test case µ f [kHz] σF [kHz] Range [kHz]
Low Reynolds 330 10 200 ÷ 800

Medium Reynolds 410 20 200 ÷ 800
High Reynolds 480 25 200 ÷ 800

Table 2: Parameters for the input pd f

Figure 8: N-factor isolines against Frequency and streamwise coor-
dinate for the High Reynolds condition computed with LST

Experimental data are available in term of Stan-
ton number S t(x) (Fig. 7) along the cone model. In
order to compare them with our results, the S t has
been normalized to obtain the experimental intermit-
tency factor γ within the transition region. Since the

transition onset xonset and the transition offset xo f f set

are known, the experimental intermittency can be ob-
tained through Eq. 5.

γ(x) =
S t(x) − S tx=xonset

S tx=xo f f set − S tx=xonset

(5)

The normal distribution with the parameters given
in Tab. 2 allows to compute the probability of transi-
tion and, thus, the intermittency curves for the differ-
ent test conditions. Results are represented in Fig. 9
and compared to the experimental data. The transition
onset location and the shape of the intermittency fac-
tor within the transition region agree very well with
the experimental data. For all cases, a characteristic
shape is obtained similar to the classical error func-
tion. The good agreement with the experimental data
demonstrates the validity of the approach and, in par-
ticular, confirms the validity of the eN transition pre-
diction for high-speed flows.

Figure 9: Intermittency as a function of the streamwise location :
comparison between UQ analysis (-) and experimental results (�)
for the conditions given in Tab. 1.

4.2. The inverse problem

The forward problem described above can be
regarded as a computational model f (s) that
takes D input parameters s = (s1, ..., sD) and
produces a K-vector of derived outputs m =

(g1( f (s), r), ..., gK( f (s), r)) with auxiliary parameters
r = (r1, ..., rN). Solving for m given s is called the
forward problem, while inferring s given the measure-
ments of m is denoted as the inverse problem.
For the test case, the two input parameters are the
mean and the variance of the perturbation spectrum of
the frequency, so s1 = µF and s2 = σF . The auxiliary
parameters r correspond to the conditions indicated
in Tab. 1. We consider as outputs the probability of
transition γ at selected locations x1, ..., xK and hence
m = (γ1, ..., γK).
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Due to measurement uncertainties, the input quantity
s can only be characterized by its statistics, namely the
probability p(s). In other words, the mean and vari-
ance of the perturbation distribution are themselves
probabilistic. The solution of the forward problem
hence yields a probability p(m). In the inverse prob-
lem, the measurements of m are noisy and the input to
the statistical inverse problem is m+η, where η quanti-
fies this noise. In the inverse problem, we start with a
given set of noisy measurements m+η and seek the in-
put parameters s using our computational model f (s).
The inverse problem is solved by applying the
Bayesian inversion. Instead of calculating s, we com-
pute a probability of s given m, p(s|m), which is the
so-called posterior density. Bayes theorem states that
the conditional probability of the parameters s given
the measurements m is equal to the product of the
probability of the measurements m given the param-
eters s, times the ratio between the probabilities of the
parameters s and the measurements m:

p(s|m) =
p(m|s) × p(s)

p(m)
∝ p(m|s) × p(s) (6)

In Eq. 6, p(s) is the prior probability density which
is related to the information on the input parameters
and p(m|s) is the likelihood probability which relates
the measurements to the input parameters. Finally,
p(m) is a normalizing constant that ensures that the
product of the likelihood and the prior is a probability
density function, which integrates to one.
Several methods are available to infer the posterior
probability density. Two such methods are the
Markov Chain Monte Carlo (MCMC) method or the
Kalman filtering method [42]. The former includes
algorithms for sampling from probability distributions
based on building a Markov chain that has the desired
distribution as its equilibrium distribution. The state
of the chain after a large number of steps is then used
as a sample of the desired distribution. The quality
of the sample improves as a function of the number
of steps. For the current application, this method has
been implemented and used to compute the posterior
probability density p(s|m) with a Metropolis-Hastings
algorithm [15]. For simplicity, we assume a Gaussian
distribution for the prior probability density p(s). The
effect of this assumption will be assessed in future
works.
In our specific context, the inverse problem consists
in obtaining the distribution of the frequency which
gives the intermittency closest to the experimental
data. The parameter to be inferred are the mean µF

and the variance σF of the frequency pd f at the
transition onset.
This approach has been applied to the VKI-H3
experimental data for the low-Reynolds number case
(Re = 18 × 106). The inverse problem has been
solved by using the Markov-Chain Monte Carlo
method where the forward problem is solved several
times by varying the input parameters in a given
range. Starting from an initial distribution defined
by µ0 and σ0, successive realizations are obtained
with different combinations of the parameters and
selected increments (δµF , δσF ) for the mean and
the variance, respectively. The method guarantees
the convergence to the exact solution after a certain
number of steps. An illustration of the sampling space
is shown in Fig.10 with the starting point (µF0, σF0)
and the burn in period. The converged mean and
variance are evaluated on the remaining samples as
represented in Fig.11 and Fig.12. The final values are
reported in Tab.3 and compared to the probability dis-
tribution previously assumed for the forward problem.

Figure 10: Sampling space : starting point (red), burn in period
(black) and useful samples (blue)

Low Reynolds µ f [kHz] σF [kHz] Range [kHz]
Forward problem 330 10 200 ÷ 800
Inverse problem 333 11 200 ÷ 800

Table 3: Comparison of the probability density func-
tions for the forward and the inverse problem in the
low Reynolds number case

The posterior probability density is represented in
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Figure 11: Probability density function for the mean of the fre-
quency (µF ) for the low Reynolds case

Figure 12: Probability density function for the variance of the fre-
quency (σF ) for the low Reynolds case

Fig.13 where it can be seen that the computed inter-
mittency agrees well with the experimental data in
the first part of the transition region that is between
0 < P < 0.5. On the other hand, the agreement is
not as good in the second half of the transition region.
This is due to the noise η which characterizes the ex-
perimental data. The error bars represent the uncer-
tainty of the measurements, what we called the noise
η, which linearly grows in the transitional zone. In
fact, when the noise vanishes the agreement is almost
perfect as shown for the forward problem (see Fig. 9).
For the current case n = 5000 samples are used for the
MCMC approach which is enough to guarantee the
convergence. For the estimation of the steady state,
the Geweke′s [13] test has been used. This consists
in splitting the samples in three parts. The first 20%
of them represent the ”burn-in” period which groups
the number of samples necessary to assess the ran-

dom walk of the MCMC method towards the exact
solution. This first percentage is not considered in the
final solution. The reamaining samples correspond to
the 60% and the 20% of the total. The Geweke′s test
says that convergence is achieved if the mean of both
distributions is approximately the same. In our case,
with n = 5000 samples the variation on the mean µF

is 0.1% while the variation on the variance σF is 3%
between the last two groups of samples.

Figure 13: Intermittency as a function of the streamwise location.
Comparison of the experimental data with respect to the probability
of transition obtained from MCMC.

5. Conclusions

Deterministic tools and a probabilistic approach has
been combined to predict laminar to turbulent transi-
tion in high speed flows. The method has been applied
to experimental data available at the VKI for laminar
transition studies on a cone model. Applications have
been presented in terms of the forward problem and of
the inverse problem.
In the forward problem, we assumed a distribution
for the input uncertainties and, using the eN transi-
tion prediction method, we retrieved the probability
of transition or intermittency curve γ. The comparison
with experimental data at different Reynolds number
has demonstrated the validity of the approach for high
speed flows. It should therefore be possible to use the
intermittency distributions in order to improve exist-
ing transitional models. In fact, in the present case,
only the Reynolds number was varied between the dif-
ferent cases but other parameters can vary as well, for
example the Mach number. A database of intermit-
tency distribution can be built for different conditions
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and used to predict transition in numerical simula-
tions. The idea is to use the database validated through
comparison with experiments to extrapolate the tran-
sition onset in different conditions. In particular, the
integration of this approach into existing transitional
model for RANS simulations, will be studied in fu-
ture works.
On the other hand, the inverse problem allows to in-
fer disturbance spectra at a location upstream of the
transition onset using measured intermittency curves.
In the forward problem, intermittency curves are com-
puted for a given disturbance spectrum by using LST.
The inverse method applies a statistical analysis based
on the MCMC method and it has been illustrated using
one of the experimentally measured data in the VKI-
H3 facility.
For the test case, good agreement was found between
the given noisy intermittency curve and the curve re-
sulting from inferred spectra. This suggests that the
forward model is able to represent the intermittency
curve sufficiently well.
These data will be processed and then used in future
works for a better comparison with the results of the
inverse analysis. Results could be also improved by
using a higher-fidelity forward model since LST lacks
in capturing the later stage of the transition process.
Moreover, the present method relies on a number of
assumptions, including the shape of the pd f for the
frequency, as well as the kind and number of parame-
ters that are inferred. The effect of these assumptions
should carefully be assessed in future works.
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