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Abstract—This paper proposes two methods to speed up
the demanding time-domain simulations of large power system
models. First, the sparse linear system to solve at each Newton
iteration is decomposed according to its bordered block diagonal
structure, in order to solve only those parts that need to be solved,
and update only sub-matrices of the Jacobian that need to be
updated. This brings computational savings without degradation
of accuracy. Next, the Jacobian structure is further exploited
to localize the system response, i.e. involve only the components
identified as active, with an acceptable and controllable decrease
in accuracy. The accuracy and computational savings are assessed
on a large-scale test system.

Index Terms—time simulation, large-scale systems, differential-
algebraic equations, Newton method, bordered block diagonal
matrices, Schur complement, localization

I. INTRODUCTION

DYNAMIC simulations are routinely used to check the
response of electric power systems to large disturbances

[1], [2]. In spite of the increase in computational power,
simulation of large-scale systems remains time consuming.
Indeed, they require solving a large set of nonlinear stiff
hybrid differential-algebraic equations. A large interconnected
system may involve hundreds of thousands of such equations
spanning very different time scales and undergoing many
discrete transitions.

Dynamic Security Assessment (DSA) is one application
impacted by this computational burden [3]. This is even more
true when, instead of the 10 to 20 seconds simulated for short-
term stability, the evolution is computed until a new steady
state is reached, which requires simulating long-term dynamics
over several minutes after the initiating event.

This computational burden justifies the fact that many
control centers routinely perform static security assessment,
typically AC (if not DC for some problems) power flows and
resort infrequently to DSA. However, the need for DSA is ex-
pected to go increasing. Indeed, operation of non-expandable
grids closer to their stability limits and unplanned generation
patterns stemming from renewable energy sources require
dynamic studies. Furthermore, under the pressure of electricity
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markets and with the support of active demand response, it is
likely that system security will be more and more guaranteed
by emergency controls responding to the disturbance. In this
context, security analysis requires checking the sequence of
events that take place after the initiating disturbance, a task
for which static calculation of the operating point in a guessed
final configuration is inappropriate.

While similar needs for faster computation were identified
and tackled in Electromagnetic Transient simulations (e.g. [4]),
this paper focuses on dynamic simulations under the phasor
approximation. Furthermore, since long-term simulations are
among the targeted applications, the focus is on implicit
simultaneous integration schemes for their numerical stability,
allowing to increase the time step size when fast dynamics are
less significant. This requires solving at each time step a very
large set of nonlinear equations stemming from the algebraic
equations and the algebraization of the differential equations.

Approaches to speed-up this computation can be roughly
classified into relaxation and direct methods [5]. In the latter
category, the Newton scheme is prominent owing to its good
convergence properties. The standard Newton scheme, referred
to as integrated, requires solving a large system of linear
equations based on a sparse Jacobian matrix [6].

This paper proposes two approaches to reduce the compu-
tational effort of the Newton iterations.

The first approach exploits the Bordered Block Diagonal
(BBD) structure of the Jacobian matrix, which stems from
the very structure of the power system dynamic model. It
allows solving the linear equations in a decomposed way, the
numerous small diagonal blocks and their Schur complement
[7] being processed separately. BBD structures are exploited in
other disciplines, such as VLSI circuit simulation for instance
[8]. Its application to power system dynamics can be traced
back to [9], [10]. A similar technique has been used in a
production grade software [11]. This paper goes further in
exploiting the BBD structure for the purpose of:

1) performing a number of Newton iterations that is au-
tomatically adjusted to each component. Solving all
nonlinear equations with the same accuracy (as in the
integrated scheme) requires less Newton iterations for
components with lower dynamic activity;

2) updating the network and component Jacobian sub-
matrices “asynchronously”. When equations change in
a component (when limits are hit, for instance) or con-
vergence becomes too slow, only the involved Jacobian
sub-matrices are updated. Thus, a whole Jacobian update
is avoided when local updates suffice.
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The corresponding scheme is referred as accelerated Newton.
Speed-up is obtained without any impact on accuracy; the
original equations are solved with the same accuracy as in
the integrated scheme.

The second approach, referred to as localized Newton
scheme, introduces some approximation. In fact, many solvers
are built on a compromise between speed and accuracy.
In stability studies, even the integrated scheme with small
time steps yields approximate responses with respect to the
more detailed but too demanding Electromagnetic Transient
simulation. A similar trade-off is accepted when resorting to
dynamic equivalents. The localized Newton scheme presented
in this paper exploits the fact that, in a large-scale system,
many components have little participation in the dynamic
response and hence can be replaced by a less demanding
simplified model. That replacement is controlled by a single
tolerance parameter. The computational effort is thus local-
ized on the components with significant response. The BBD
structure is further exploited to this purpose. Localization
concepts have been used in time-domain simulation in the
multi-rate method [12]. They have been also applied to static
security analysis [13]. Similar techniques have been used in
the simulation of VLSI circuits [14], where components little
affected by a disturbance are called latent.

This paper extends the earlier publication [15] in various
aspects: (i) general sensitivity formula to deal with any latent
component, (ii) improved convergence criteria, (iii) extended
results from a larger system and (iv) detailed profiling of exe-
cution for accurate speed-up assessment, including comparison
with the integrated scheme.

The remaining of the paper is organized as follows. The
model to be solved is briefly recalled in Section II, while
the integrated Newton scheme is revisited in Section III. Sec-
tions IV and V present the accelerated and localized Newton
schemes, respectively. The latter is illustrated in Section VI
while accuracy and computational effort of various algorithms
are assessed on a large-scale system (more than 140,000 states)
in Section VII. Conclusions are offered in Section VIII.

II. POWER SYSTEM MODEL IN COMPACT FORM

Under the quasi-sinusoidal (or phasor) approximation, the
network equations in rectangular coordinates take on the form:[

G −B
B G

] [
vx

vy

]
−

[
ix
iy

]
= 0 (1)

where ix and iy are the components of the complex currents
injected at the N buses, vx and vy the components of the
N complex bus voltages, G and B the conductance and
susceptance matrices, i.e. the real and imaginary parts of the
bus admittance matrix, respectively.

The continuous-time part of the power system model can
be written in compact form as:

0 = DV −C x (2)
Γ ẋ = ϕ(x,V) (3)

The state vector x contains the current components ix and iy ,
other algebraic variables and the differential states. Equation

injectors

j−th bus

i−th injector

network

. . . . . .

V = [Vx1 Vy1 . . . VxN VyN ]T

Vxj Vyj

Ixi Iyi

xi = [Ixi Iyi . . . ]T

M

Fig. 1. Power system model : network vs. injectors

(2) is a compact notation for (1) where V includes the voltage
components reordered so that the vxj variable relative to bus j
occupies position 2j−1 and vyj position 2j. D is the matrix in
the left-hand side of (1) reordered; it is sparse and structurally
symmetric. C is a matrix with zero’s and one’s whose purpose
is to extract the current components from x. Γ is a diagonal
matrix with (Γ)ℓℓ = 0 if the ℓ-th equation (3) is algebraic,
and (Γ)ℓℓ = 1 if it is differential.

For numerical solution, time is discretized and the differ-
ential equations in (3) are algebraized using an appropriate
method such as backward differentiation formulae, trapezoidal
method, etc. with time step h. The resulting set of algebraic
and algebraized equations can be written in compact form as:

0 = f(x,V) (4)

where the dependency on h has been omitted for simplicity.
Equations (2) and (4) make up the nonlinear system to be

solved at each time step by Newton method.

III. INTEGRATED NEWTON SCHEME

Equations (4) have a structure that reflects the physical
structure of the system, i.e. a set of n injectors interacting
through the network only, as sketched in Fig. 1. In this paper
the term injector designates any equipment connected to the
network, such as a synchronous machine with its controllers,
an induction motor, a dynamic or static load, a static var
compensator, etc. The generic model considered hereafter is
illustrated on an example in Appendix B, while the extension
to components connected to two buses, such as HVDC links,
TCSCs, etc. is considered in Appendix C.

The state vector x and the matrix C can be split into xi

and Ci, relative to the i-th injector. Without loss of generality,
it is assumed that the first two (out of ni) components of xi

are Ixi and Iyi, the rectangular components of the complex
current injected into the network, i.e.

xi = [Ixi Iyi . . .]
T .

Thus, assuming that the i-th injector is connected to the j-th
bus (j = 1, . . . , N), Ci takes on the form:

Ci = [e2j−1 e2j 0 . . .0 ] (5)

where e2j−1 denotes a unit vector of dimension 2N with the
unit component in position 2j − 1 and similarly for e2j .
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Equations (2) and (4) can be rewritten as:

0 = DV −
n∑

i=1

Cixi = g(x1, . . . ,xn,V) (6)

0 = fi(xi,V) i = 1, . . . , n (7)

where g is introduced for compact notation.
At a given time step the Newton method involves a sequence

of linear systems (k = 1, 2, . . .):

J


∆x1

∆x2

...
∆xn

∆V

 = −


f1(x

k−1
1 ,Vk−1)

f2(x
k−1
2 ,Vk−1)

...
fn(x

k−1
n ,Vk−1)

g(xk−1
1 , . . . ,xk−1

n ,Vk−1)

 (8)

where J is the Jacobian matrix:

J =


A1 B1

A2 B2

. . .
...

An Bn

−C1 −C2 . . . −Cn D

 (9)

and incrementing the variables according to:

xk
i = xk−1

i +∆xi i = 1, . . . , n

Vk = Vk−1 +∆V

In (9), Ai is the Jacobian of fi with respect to xi, Bi the
Jacobian of fi with respect to V and the empty entries are zero
sub-matrices. Because the i-th injector involves only the Vxj
and Vyj components of V, Bi is also a very sparse matrix
with two nonzero columns only. All phasors are referred to
axes rotating at the angular speed of the center-of-inertia, as
explained in Appendix A.

Convergence is checked on the right-hand side of (8), con-
taining the network and injector “mismatch” vectors. To ensure
that all equations are solved within the specified tolerance,
the infinite-norm (i.e. the largest component magnitude) of
each mismatch vector should fall below a tolerance. Thus, the
Newton iterations are stopped at iteration k if:

||g(xk
1 , . . . ,x

k
n,V

k)||∞ < ϵg (10)
||fi(xk

i ,V
k)||∞ < ϵf i = 1, . . . , n (11)

For the network equations, whose components are currents in
per unit on the system base, the choice of ϵg is rather easy.
For the injectors, on the other hand, it may be difficult to
choose an appropriate ϵf value in so far as the simulation
software hosts user defined models, for which the solver does
not know whether a mismatch is “negligible” or not. This issue
is solved by checking corrections ∆xi instead of mismatches
fi, according to (i = 1, . . . , n ; j = 1, . . . , ni):∣∣(∆xk

i )j
∣∣ < max(ϵa, ϵr

∣∣(xk
i )j

∣∣) (12)

Thus, the relative correction is checked against ϵr, except when∣∣(xk
i )j

∣∣ becomes small, in which case the absolute correction
is checked against ϵa.

Clearly, the price to pay is the computation of ∆xi, which
requires making at least one iteration before deciding that no
further one is necessary.

IV. ACCELERATED NEWTON SCHEME

When applied to large-scale systems, the integrated Newton
scheme suffers from three drawbacks:

• when any injector undergoes a discrete change, due to
a switching or a variable getting limited, Ai and Bi

change and the whole Jacobian J has to be updated and
factorized;

• the same holds true if convergence is slowed due to the
equations of a few injectors, which triggers an update of
the whole Jacobian J;

• no advantage is taken from the many injectors with “little
activity” yielding negligible components in the right hand
side of (8).

To tackle these issues, it is convenient to exploit the Jacobian
BBD structure and decompose (8) as explained next [15].

A. Decomposing the Newton Scheme

One easily obtains from (8, 9):

Ai∆xi = −fi(x
k−1
i ,Vk−1)−Bi∆V (13)

Assuming that Ai is nonsingular, ∆xi can be obtained from
(13) and replaced into the last row of (8), which yields:∑n

i=1 CiA
−1
i

(
fi(x

k−1
i ,Vk−1) +Bi∆V

)
+D∆V =

−g(xk−1
1 , . . . ,xk−1

n ,Vk−1) (14)

Reorganizing the terms in (14) yields:

D̃∆V = −g(xk−1
1 , . . . ,Vk−1)−

n∑
i=1

CiA
−1
i fi(x

k−1
i ,Vk−1)

(15)
where:

D̃ = D+
n∑

i=1

CiA
−1
i Bi (16)

is the Schur complement [7] of diag(A1 . . .An). At this
point, it is convenient to define:

C̃i = CiA
−1
i (17)

and rewrite (15) and (16), respectively, as:

D̃∆V = −g(xk−1
1 , . . . ,Vk−1)−

n∑
i=1

C̃ifi(x
k−1
i ,Vk−1) (18)

D̃ = D+

n∑
i=1

C̃iBi (19)

Note that the correction C̃iBi includes only a 2× 2 nonzero
sub-matrix, centered on the diagonal of D. Hence D̃ inherits
the structural symmetry and the sparsity of D.

Assuming that the Ai and D̃ matrices have been LU-
factorized, and the corresponding C̃i matrices have been
computed, the decomposed k-th Newton iteration consists of:

1) solving (18) (from the L and U factors of D̃) to obtain
∆V and update Vk

2) solving (13) (from the L and U factors of Ai) to obtain
∆xi and update xk

i of each injector.
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Let us emphasize that these two steps are mathematically
equivalent to solving the original system (8). Step 2) can be
performed concurrently and independently over the various
injectors. This can be exploited in parallel processing (but is
outside the scope of this paper).

The original system has been decomposed into n + 1
systems with matrices D̃ and Ai (i = 1, . . . , n) respectively.
Efficient sparse solvers are available for the large, sparse
and structurally symmetric matrix D̃. A sparse solver is not
justified for the Ai matrices in so far as they are relatively
small and the pattern of nonzero entries change when Eqs. (3)
change due to discrete events such as limits, etc.

As regards the computation of C̃i, (17) can be rewritten as:

AT
i C̃T

i = CT
i

Since CT
i has only two nonzero columns, so has C̃T

i . Those
columns are the solutions z1 and z2 of respectively:

AT
i z1 = e1 AT

i z2 = e2

where e1 (resp. e2) is a unit vector of dimension ni with the
unit component in first (resp. second) position.

B. Skipping converged components

The above decomposed Newton scheme offers the possibil-
ity to skip a significant amount of useless computations by:

• not updating the state vector of an injector when it has
already converged;

• not updating the network voltages if the corresponding
mismatches fall below the tolerance.

Assume that solving (6, 7) at a given time step requires E
Newton iterations, each of them correcting first the network
voltages, then the injectors states. The idea is, for injectors
with low dynamic response, to perform a lower number e of
iterations (e < E).

Let us recall that each injector state vector is corrected at
least once, in order the convergence test (12) to be performed.
Suppose that this test is passed after e iterations (e ≥ 1). It can
be concluded that the injector mismatch just before making
the last correction, i.e. ||fi(xe−1

i ,Ve−1)||∞ had already a
negligible value. From there on, it is merely verified that
the injector remains converged and, if so, (13) is not solved
any longer for that injector. This verification is no longer
performed using (12) (since ∆xi is not computed anymore);
instead, it uses (11), where ϵf is set to ||fi(xe−1

i ,Ve−1)||∞,
the mismatch at the last but one iteration.

The same principle applies to the network solution: if the
convergence test (10) is satisfied, Eq. (18) is not solved.

C. Partially updating the Jacobian

To save computing time, it is essential to keep the Jacobian
constant over several iterations and several time steps. This is
commonly referred to as the “dishonest” Newton scheme.

The computational speed-up can be made even more sig-
nificant using the decomposed formulation. The basic idea is
to keep the Jacobians D̃ and Ai (i = 1, . . . , n) constant over
as many Newton iterations and time steps as possible.

In a strict implementation of the Newton method, after
updating the Jacobian Ai of the i-th injector, the D̃ matrix
should be also updated and factorized owing to the CiA

−1
i Bi

term in (16). For the same reason, when D̃ has to be updated,
the Ai matrices should be computed and factorized in order to
bring the latest available CiA

−1
i Bi terms in (16). However,

extensive tests carried out by the authors on different systems
have shown that the D̃ and Ai matrices can be updated
independently of each other as follows:

1) when the i-th injector calls for an update of Ai, this
matrix is recomputed and factorized. The C̃i matrix
must be also recomputed since it is used in the right-
hand side of (18). However, the D̃ matrix is not updated;

2) when the network calls for a Jacobian update, the Bi

matrices of all injectors are updated and D̃ is computed
from (19) using the available C̃i matrices. However,
neither the Ai nor the C̃i matrices are updated.

Regarding item 1), it is seen from (15,16) that C̃iBi =
CiA

−1
i Bi intervenes in the D̃ matrix as the sensitivity of the

current in the i-th injector to its terminal voltage. In general, it
changes only slightly with operating conditions. Furthermore,
it is combined with the contributions of network elements
present in D; thus, the D̃ matrix is only partly affected.

V. LOCALIZED NEWTON SCHEME

While the accelerated scheme does not affect the simulated
response, the localization technique presented in this section
introduces a controllable level of approximation.

A. Principle

The idea behind localization is to detect injectors with low
dynamic activity (classified as latent) and replace their original
models with much simpler mathematical relations. The rest
of the injectors (classified as active) continue being solved
without approximation. The resulting algorithm is referred to
as localized Newton scheme.

Thus, an active injector is solved with the same accuracy as
in a detailed simulation. The techniques detailed in Section
IV-B apply to those injectors, and allow performing less
iterations (13) on injectors with lower dynamic response.

For a latent injector, on the other hand, Eqs. (13) are not
solved at all. Its vector fi is even not computed. Instead, it
is replaced by a linear approximation between currents and
voltages, as detailed in the next section.

B. Approximating the response of latent injectors

The simplified representation of a latent injector is obtained
from (13) by assuming that the injector internal dynamics are
negligible, i.e. fi(x

k−1
i ,Vk−1) ≃ 0.

Under this approximation, (13) becomes:

Ai∆xi ≃ −Bi∆V (20)

from which ∆xi is easily obtained:

∆xi ≃ −A−1
i Bi∆V (21)
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Pre-multiplying (21) by Ci gives the above mentioned linear
relation between current and voltage:

[∆Ixi ∆Iyi 0 . . . 0]
T ≃ −CiA

−1
i Bi∆V = −C̃iBi∆V (22)

This linear formula merely involves small matrix multiplica-
tions, which is much less demanding than a Newton iteration.

Furthermore, the correction −C̃iBi brought by the i-th
injector to the D matrix is the same whether the injector is
active or latent. Therefore, when an injector switches from
active to latent or vice versa, it does not modify the D̃ matrix.
The latter need not be updated, and the convergence of the
Newton method is not degraded by re-using the same matrix
according to the dishonest scheme.

If the i-th injector is latent, its current components Ixi and
Iyi are updated according to (22) but the other components of
its state vector xi are no longer updated.

C. Identifying latent injectors
Which injectors are latent and which ones are active cannot

be decided a priori because it depends on the simulated
disturbance. Furthermore, an injector may change from active
to latent after some transients have died out, then switch back
to active under the effect of the system evolving.

The linearization instant t∗i is defined as the last time the
i-th injector changed from active to latent. At the beginning of
the simulation, t∗i is initialized to zero for all injectors. After
extensive tests, the following latency identification rules were
found the most satisfactory by the authors:

1) for a “probationary” period Tp after the initial dis-
turbance, all injectors are active, in order to collect
information about their level of dynamic activity;

2) at the end of each time step, say at time t > Tp :
an injector switches from active to latent if its current
components have not changed by more than a threshold
ϵL since t = t∗i , i.e. if

|Ixi(t)− Ixi(t
∗
i )| < ϵL and |Iyi(t)− Iyi(t

∗
i )| < ϵL (23)

Thus, the current is used to identify the low dynamic
response of the injector, and skip it in the subsequent
computations;

3) at the end of each time step, a latent injector switches
from latent to active if at least one of its current
components exhibits a variation larger than ϵL, i.e. if

|Ikxi(t)− Ixi(t
∗
i )| > ϵL or |Ikyi(t)− Iyi(t

∗
i )| > ϵL (24)

which allows latent injectors to react to new dynamics.
Note that once an injector is latent, its current is computed

from the linear approximation:[
Ixi
Iyi

]
=

[
Ixi(t

∗)
Iyi(t

∗)

]
− Si

[
Vxi − Vxi(t

∗)
Vyi − Vyi(t

∗)

]
(25)

which is merely a rewrite of (22) where the (2× 2) matrix Si

contains the 4 nonzero elements of C̃iBi. Hence, the test (24)
is performed on the currents computed from (25). Therefore,
the test (24) can be seen as an indirect way of monitoring the
variations of the voltage at the terminal of the latent injector.

Combining the localization technique with accelerated New-
ton scheme of Section IV-B (for the active injectors) leads to
the flowchart shown in Fig. 2.

injectors

network

start

i := 1

Vk := Vk−1 +∆Vk

solve D̃∆Vk = −g(xk−1

i
, ...,xk−1

n ,Vk−1)

−
∑

C̃ifi(x
k−1

i
,Vk−1)

k := 1

injector i latent?

injector i converged?

i ≤ n

i := i+ 1

||g(xk
i
, ...,xk

n,V
k)||∞ < ǫg

Y

all injectors converged?

stop

Y

k := k + 1

k := k + 1

N

Y

N

N

N

Y

Y

N

xk
i
:= xk−1

i
+∆xk

i

solve Ai∆xk
i
= −fi(x

k−1

i
,Vk) xk

i
:= x∗

i
+

−A−1

i
Bi∆V∗

Fig. 2. Flowchart of the accelerated and localized Newton scheme

D. Discussion

Localization enables to solve different parts of the system
with different levels of accuracy depending on the level of
activity of the injectors. If the threshold ϵL was set to zero,
no injector would be latent; the solution accuracy would be
the same throughout the whole system and unchanged with
respect to the accelerated Newton scheme. When increasing
ϵL, injectors with low dynamic response, likely located at
some distance from the disturbance area, are considered latent.

There is no risk of uncontrolled accuracy degradation in
so far as only injectors with “little activity” are replaced
by the linear approximation (25). Hence, in a scenario with
system-wide impacts, such as the loss of interconnection tie-
lines with cascading effects leading possibly to a network
split, injectors previously switched to latent during the slow
evolution phase will get back to active under the effect of
degraded operating conditions, and accuracy will be preserved.
Clearly, in such a severe case, a lower gain in computing time
is to be expected, compared to the cases where the impact of
the initial disturbance is limited in space.

As regards the probationary period Tp, its purpose is to give
time to injectors to reveal their level of activity in response
to the disturbance. Decreasing Tp activates latency earlier,
and hence saves more computing time. However, too short
a Tp value may lead to prematurely switching injectors to
latent mode. In fact, Tp is related to the time it takes for the
initial disturbance to propagate throughout the system, which
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Fig. 3. Nordic32 test system

involves electromechanical oscillations mainly. Although the
propagation time depends on the system size, a value of 0.5
second was found satisfactory in all systems tested by the
authors, including the large one considered in Section VII.

VI. ILLUSTRATIVE EXAMPLES OF LOCALIZED SCHEME

This section illustrates the performance and accuracy of the
localized scheme. The results were obtained with the Nordic32
test system shown in Fig. 3 and documented in [16]. It includes
20 generators and 22 loads, i.e. 42 injectors.

A. Case N1

This case corresponds to the tripping of one circuit of the
double-circuit line between buses 1013 and 1014. The simu-
lation is run over 30 s, after which the system has practically
regained steady-state operation. With ϵL = 0.001 pu, 23
injectors are latent for most of the simulation. This number
increases to 28 for ϵL = 0.002 pu, and 36 for ϵL = 0.010 pu.
All values of ϵL are in per unit on a 100-MVA base.

Generator g15, located far from the outaged line, is among
them. Figure 4 shows its field voltage given by respectively
the (benchmark) integrated and the localized scheme, for
various values of ϵL. Note the narrow range of voltage values,
indicating that the AVR of g15 responds very marginally to the
disturbance. The instants at which the generator was switched
to latent are easily identified by the horizontal lines, indicating
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Fig. 5. Case N1: active power flow in remaining circuit of line 1013-1014

that the generator states (including its field voltage) are no
longer updated. The larger ϵL, the sooner the switching.

The power flow in the parallel, remaining circuit is shown
in Fig. 5, with a zoomed view on the first two seconds
following the probationary period. The curves of the four
algorithms are indistinguishable. No loss of accuracy results
from localization.

B. Case N2

This more severe case involves the outage of the line
between buses 4043 and 4047. After electromechanical oscil-
lations have died out, the system responds with two Load Tap
Changers (LTC) acting at t = 38 and t = 46 s, respectively,
to restore distribution voltages within their dead-bands.

Figure 6 shows the evolution over 20 s of the active power
of generator g15, located next to the tripped line and, hence,
significantly impacted by the disturbance. The evolutions
computed with the localized scheme, using ϵL = 0.001 or
0.002 pu, are essentially the same as that of the integrated
scheme and, therefore, they are not shown. For ϵL = 0.010 pu,
the average (resp. largest) absolute difference between the
exact and localized responses is only 0.1 % (resp. 0.7 %)
of the initial active power.
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Fig. 7. Case N2: distribution voltage controlled by an LTC

The effects of localization may be more noticeable on
discrete events, such as tap changes. Figure 7 shows the
voltage at the distribution bus controlled by one of the above
mentioned LTCs. Before the first tap change, the maximum
discrepancy between the localized (with ϵL = 0.010 pu) and
reference evolutions is 0.004 pu, to be compared to the LTC
voltage dead-band of 0.020 pu. In the reference simulation,
voltage swings reset the LTC timer four times, before the
voltage eventually leaves its dead-band. With the localized
scheme, the distribution voltage leaves its dead-band three
seconds earlier, which causes the tap change to be shifted
by the same time. Such a time shift (to be compared to the
20 s delay on the first tap change) is not significant as the
error introduced during the three seconds is 0.01 pu only.
Furthermore, the voltage eventually reaches the same value.

VII. SIMULATION RESULTS ON A LARGE-SCALE SYSTEM

A. PEGASE test system

Within the context of the PEGASE project [17], a test sys-
tem inspired of the pan-European transmission grid has been
set up, with the objective of testing the proposed approaches
on a large-scale model. The main features of the model are:

 0  50  100  150  200

t (s)

Fig. 8. Discrete event occurrence in Case C3

• 15226 buses and 21765 branches;
• 3483 synchronous machines with generic models of their

excitation systems, AVRs, OELs, turbines and speed
governors;

• 7211 dynamic loads. Some of them are equivalents of dis-
tribution systems with step-down transformers, medium-
voltage feeders and induction motor loads;

• 2945 LTCs represented as discrete devices.
This leads to a model with 146239 states. Among these, 72293
are differential and 73946 algebraic (out of which 30452
are Vx, Vy voltage components), which yields an average of
22 state variables per power plant and 5 per dynamic load.
The size of matrices Ai ranges between 4 and 29. More
information and results from this system can be found in [18].

B. Algorithms and scenarios

The results of the following three algorithms are presented:
I : Integrated Newton scheme (8, 9) in which J is updated

after a discrete change in any injector or after 3 successive
iterations in the same time step (this offers a good
compromise between the burden of updating the factors
and the burden of performing too many iterations);

A : Accelerated Newton scheme with (network and injector)
Jacobians updated independently and infrequently (see
Section IV-C) and solution of converged injectors skipped
(see Section IV-B);

L : same as A, with response localized (see Section V). All
values of ϵL are in per unit on a 100-MVA base.

One short- and two long-term cases are reported as follows:
C1 : simulation over 20 s of a double-circuit line outage;
C2 : simulation over 240 s of two double-circuit line outages;
C3 : simulation over 240 s of a bus-bar fault cleared in 0.1 s

by opening the lines involved in Case C2.
The differential equations were algebraized using the Back-

ward Differentiation Formula of order 2:

x(tj) =
4

3
x(tj − h)− 1

3
x(tj − 2h) +

2h

3
ẋ(tj) (26)

The step size h was set to 0.01 s in the half second after the
initial disturbance, then increased to 0.05 s. Results for various
step sizes are presented in Section VI.D.

The sequence of discrete events experienced in case C3 is
shown in Fig. 8, where the spikes indicate variables hitting
or leaving their limits, timers that start counting time, or LTC
moves (between t ≃ 27 and 236 s, to restore the controlled
voltages within their dead-bands). As many as 1988 events
take place during this 4-minute simulation. The limits on
variables are treated as explained in [19], while LTC changes
are enforced at the first discrete time after they have been
identified to take place.
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C. Implementation aspects

All results were obtained with the RAMSES software devel-
oped at the Univ. of Liège. It is written in FORTRAN 2003.
This language, popular in High Performance Computing, pro-
vides numerous optimized numerical (intrinsic) procedures, is
inter-operable with C, allows reusing legacy FORTRAN code,
and facilitates parallel programming.

The partial derivatives relative to network and synchronous
machine equations are computed analytically, while those
relative to the machine controllers as well as the other injectors
are evaluated by finite differences.

In Schemes A and L, the injector systems (13) are factorized
and solved with the DGETR BLAS routines for dense matrices,
while the sparse solver ma41 from the Harwell library [20]
is used to deal with the network system (15, 16). The same
sparse solver is used for the whole Jacobian in Scheme I.

D. Accuracy and choice of ϵL
As already mentioned, scheme A yields the same accuracy

as scheme I, while for scheme L, choosing ϵL involves a trade-
off between accuracy and computational effort.

It is advisable to select ϵL once for all for a given system,
based on the analysis of a set of representative disturbances.
There is a good deal of engineering judgment in this choice,
as for other typical settings of a solver (such as ϵg, ϵf , ϵa and
ϵr, see Section III). However, it can be guided by a simple
quantitative analysis of the type shown hereafter.

The impact of ϵL on accuracy has been assessed on a
subset of significant state variables; results are presented for
bus voltage magnitudes. Let Vi(k, ϵL) denote the voltage
magnitude of the i-th bus (i = 1, . . . , N ), at the k-th discrete
time (k = 1, . . . , ns) of a scheme-L simulation with latency
tolerance ϵL. The following metrics have been computed:

µ(ϵL) = max
i=1,...,N

1

ns

ns∑
k=1

( Vi(k, ϵL)− Vi(k, 0) ) (27)

ν(ϵL) = max
i=1,...,N

max
k=1,...,ns

|Vi(k, ϵL)− Vi(k, 0)| (28)

where Vi(k, 0) is the (reference) voltage value obtained with-
out latency approximation.
µ is the worst average voltage error. Its variation with

ϵL is shown in Fig. 9, for the three disturbances mentioned
in Section VII.B. Note that from one point to another, the
maximum value in (27) may take place on different buses (yet
close to the disturbance location). The curves suggest that it
is appropriate to set ϵL to 0.01 pu, since some degradation is
observed for higher values in Case C3.
ν is the worst maximum absolute voltage error. Its variation

with ϵL is shown in Fig. 10. For ϵL = 0.01 pu, the largest
voltage error at any bus and any time is around 1 %. The
peak observed for ϵL = 0.002 pu in Case C3 is due to one
voltage settling at a slightly different value under LTC dead-
band effects, as described in Section VI.B.

By way of illustration, the short- and long-term evolutions
of the voltage at the faulted bus in case C3 are shown in
Fig. 11. The results of Scheme A are not shown, as they are
indistinguishable from those of Scheme I. Two values of ϵL
are considered. The good accuracy obtained with ϵL = 0.01 pu
confirms the above analysis.

E. Computational effort

Table I details the computing times obtained with the
various schemes in the three cases. CPU times were measured
on a standard laptop with the following characteristics: Intel
Core i7-2630QM CPU, 2.9 GHz, 8 GB RAM, running under
Ubuntu Linux 11.04. The CPU times were obtained by code
profiling using Intel VTune Amplifier XE, and do not take
into account data reading and loading (which is the same
for all three algorithms). The table also shows the number of
major operations performed. The results relative to injectors
are average values per injector.

A comparison of Schemes A and I shows that the highest
gain is at the factorization level, since Scheme A allows
updating only small sub-matrices of the whole Jacobian, while
Scheme I performs full Jacobian updates. A significant gain
is also obtained by skipping solutions of converged injectors.
A slightly larger time is spent in injector function evaluations.
Compared to Scheme I, Scheme A offers a speed-up ranging
from 1.9 to 2.7, at no cost regarding accuracy.

Figure 12 shows the number of injector solutions computed
at each time step. With Scheme I (upper left plot), solutions
are computed for all injectors at each Newton iteration. Thus,
with n = 10694 injectors, the plot shows values in multiples
of n: most of time, 1,2 or 3 Newton iterations are enough. The
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TABLE I
CPU TIMES (IN SECONDS) AND NUMBER OF MAJOR OPERATIONS (FIGURES MARKED WITH A ⋆ ARE AVERAGES PER INJECTOR)

Scheme I Scheme A Scheme L
ϵL = 0.001 ϵL = 0.0025 ϵL = 0.01

time nb. op. time nb. op. time nb. op. time nb. op. time nb. op.
CASE C1

factorizing J 57.51 446 factorizing D̃ 0.69 25 0.97 32 0.76 26 0.71 25
solving for [∆V ∆x]T 11.19 1393 solving for ∆V 0.82 1031 1.06 1158 1.06 1009 0.69 844

evaluating [g f ]T 13.11 1891 evaluating g 1.97 2326 1.75 2320 2.07 2429 1.81 2012
factorizing Ai 2.84 26⋆ 1.34 16⋆ 1.23 15⋆ 1.04 13⋆

solving for ∆xi 6.51 792⋆ 5.26 594⋆ 4.66 478⋆ 2.43 255⋆
evaluating fi 14.75 2321⋆ 12.67 1805⋆ 10.28 1443⋆ 5.12 719⋆

total 90.29 total 32.81 27.49 24.45 15.10
CASE C2

factorizing J 207.58 1597 factorizing D̃ 0.75 27 1.05 36 0.96 32 0.79 28
solving for [∆V ∆x]T 90.00 11106 solving for ∆V 7.42 8514 7.39 8620 8.25 8476 8.11 8167

evaluating [g f ]T 111.86 15988 evaluating g 14.04 17160 14.92 18104 14.66 18310 13.46 17725
factorizing Ai 2.51 22⋆ 1.13 14⋆ 1.25 16⋆ 0.98 13⋆

solving for ∆xi 41.53 5634⋆ 33.07 3521⋆ 20.73 2089⋆ 7.57 718⋆
evaluating fi 117.25 19044⋆ 88.07 12212⋆ 54.76 7192⋆ 19.61 2305⋆

total 470.00 total 220.21 181.35 132.41 75.34
CASE C3

factorizing J 179.40 1374 factorizing D̃ 0.93 32 0.99 34 1.03 34 1.14 35
solving for [∆V ∆x]T 88.93 10975 solving for ∆V 8.19 8556 7.87 8547 7.83 8362 7.65 8368

evaluating [g f ]T 111.34 15946 evaluating g 13.91 17020 13.94 17052 14.32 17337 14.53 18303
factorizing Ai 4.49 40⋆ 3.26 35⋆ 2.56 27⋆ 3.39 42⋆

solving for ∆xi 47.35 5757⋆ 38.74 4744⋆ 29.69 3429⋆ 13.69 1290⋆
evaluating fi 119.44 19285⋆ 106.06 15991⋆ 83.23 11572⋆ 34.00 4278⋆

total 438.21 total 232.56 209.18 174.35 102.48

upper right plot in Fig. 12 shows the corresponding result with
Scheme A. The lower bound is n, since at least one iteration
per injector is performed at each step. As in Scheme I, some
of the injectors require more than 3 iterations; on the other
hand, a vast majority of injectors is already solved (up to the
same tolerance) with just one iteration.

A small subset of injectors require more iterations and are
also responsible for the much higher number of Jacobian
factorizations in Scheme I. Indeed, in scheme A, the slow
convergence of one injector leads to updating its own Jacobian
only, while in scheme I it slows down the convergence of the
whole system, forcing to perform many full Jacobian updates.

With the use of localization (scheme L), as expected, the

computational effort is reduced with the increase of ϵL. The
tables show that the highest gain stems from the evaluations
and the solutions of the injectors: indeed, with respect to
scheme A, several injectors are latent for some part of the
simulation. The decrease in number of injector factorizations
is milder, as it is the most “active” injectors which need to
be factorized the most, in both schemes, and are thus not
affected by latency. On the network, on the other hand, the
gain is imperceptible, if not negative in some cases: indeed, the
network cannot be latent, while a slight degradation is possible
due to the approximations brought by the latent injectors. The
speed-up brought by Scheme L compared to Scheme I ranges
from 2.1 to 6.2, for a negligible decrease in accuracy.
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Fig. 12. Case C3: number of injector solutions at each time step with Schemes I, A and L (y-axis limited to respectively 50,000 and 30,000, for legibility)

The lower two plots in Fig. 12, relative to two values
of ϵL confirm the dramatic decrease in number of solutions
brought by Scheme L. The lower bound corresponds to the
number of injectors which cannot become latent because they
experience a large variation of the current with respect to their
linearization point, which for injectors with strong dynamic
activity was taken at t∗ = 0. This lower bound is around 2000
for ϵL = 0.01 pu and 7000 for ϵL = 0.0025 pu.

Varying the step size is another well-known way of saving
computing time. Automatic step size adjustment based on es-
timates of the local truncation error is a proven technique [21].
The results reported so far relate to simulations with a constant
step size (except for a short interval after the disturbance). The
reason is that, the system response being slightly affected by
localization, Scheme L would yield different time steps with
respect to the other two schemes. This would make it more
difficult to assess the gain brought by localization. However,
results obtained when running the proposed algorithms with
different values of h are reported hereafter.

The variation of the CPU times with h is shown in Fig. 13,
relative to case C3 and ϵL = 0.01 pu. The range of h values is
reasonable considering that the average time between discrete
events is 0.12 s (1988 events in 240 s: see Fig. 8); the average
value of h could not be much larger with an accurate variable-
step size solver, unless tap changes are delayed in order more
of them to take place at the same time steps. That solver would
also spend time in identifying the discrete event times and
updating Jacobians due to changes in h. The shown CPU times
have been normalized by dividing them by the time taken by
Scheme I with h = 0.01 s. The computing times decrease
when h increases, as expected.

The figure also shows the speed-up, defined as the CPU
time of Scheme I divided by that of Scheme A (resp. L), for
a given value of h. For Scheme A, the best speed-up is 2.7.
For Scheme L it is 5.3, but it was found to be 7.9 in Case C2.

These results allows concluding that variable-step size
solvers would also benefit from the proposed solution schemes.
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VIII. CONCLUSION

Methods to speed up time simulations of large-scale power
systems have been proposed. Tests performed on a large-
scale system (around 146, 000 differential-algebraic states)
have confirmed the possibility to obtain the expected speed-up.

The proposed techniques exploit the bordered block-
diagonal structure of the Jacobian involved at each Newton
iteration. An accelerated scheme has been proposed to mini-
mize the number of partial Jacobian updates and factorizations,
and perform less iterations on components with lower dynamic
response. It brings a speed-up ranging between 2 and 3, for
the same accuracy as an integrated Newton method.

Further speed-ups have been obtained by localizing the
system response, i.e. by exploiting the fact that, in a large-
scale system, some components do not participate much in
the dynamic response. After a probationary period Tp, latent
components are not solved, but replaced by a static linear
model relating injected current to bus voltage. The degradation
of accuracy is bounded and easily controlled by the latency
tolerance ϵL, which can be interpreted as the current variation
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which is considered negligible. It is recommended to adjust
ϵL once for all for a given system. Some quantitative analysis
guidelines have been presented.

The accelerated and localized scheme offers a speed-up
ranging between 4 and 8, with respect to an integrated Newton
method, while still providing reasonably accurate responses.

Within the context of the PEGASE project, the algorithms
have been implemented in a dynamic simulation prototype
derived from EUROSTAG and a dispatch training simulator
prototype based on FAST [22].
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APPENDIX A
REFERENCE FRAME FOR PHASORS

All phasors must be projected on the same reference (x, y)
axes but the choice of the latter is free.

Axes rotating at nominal angular frequency 2πfo are not
suited for long-term simulations. Indeed, consider for instance
the case where the system settles in steady state with frequency
f ̸= fo. Since all phasors rotate at speed 2π(f − fo) with
respect to the axes, their projections of the (x, y) axes oscillate
at frequency |f − fo|. Thus, although the system is in steady
state, its simulation requires quite some computational effort.

This problem disappears when taking (x, y) axes rotating at
the speed of the Center-Of-Inertia (COI):

ωcoi =

∑
iMiωi∑
iMi

(29)

where ωi is the rotor speed of the i-th synchronous machine,
and Mi its inertia coefficient. With that reference, the model
of each machine includes the equation:

δ̇i = ωi − ωcoi i = 1, . . . ,m (30)

One possibility is to handle ωcoi as an additional algebraic
variable, and add (29) to the original set of equations. How-
ever, that equation and the presence of ωcoi in all equations
(30) hinders the decomposition defined in Section IV.A.

This drawback is avoided with the reference frame proposed
in [23]. It involves (x, y) axes rotating with speed at time t
equal to ωcoi(t− h), i.e. the speed of the COI at the previous
time step. By so doing, ωcoi in (30) is replaced by ωcoi(t−h),
which is a constant, no longer a variable. Equation (29) is not
handled together with the other equations; it is used to update
ωcoi at the end of each time step, for use at the next one. The
BBD structure of the Jacobian is preserved while retaining the
advantage of the COI reference.

In case of network split, one COI reference is used per
connected sub-system. As regards localization, when a syn-
chronous machine gets latent, it is still accounted in (29) but
with ωi at time t set equal to ωcoi(t− h).

APPENDIX B
EXAMPLE OF INJECTOR MODEL

The injector formulation used throughout the paper is illus-
trated on the single-cage induction motor model.

Using Park transformation, the three-phase stator and rotor
windings are replaced by (d, q) windings attached to the (x, y)
axes defined in the previous section [1].

Neglecting transformer voltages, the stator equations are:

0 = Vy −RsIy − ωcoi(Lss −
L2
sr

Lrr
)Ix − ωcoi

Lsr

Lrr
ψqr (31a)

0 = Vx −RsIx + ωcoi(Lss −
L2
sr

Lrr
)Iy − ωcoi

Lsr

Lrr
ψdr (31b)

where Rs is the stator resistance, Lss the stator self-
inductance, Lrr the rotor self-inductance, Lsr the mutual
inductance between stator and rotor, ψdr (resp. ψqr) the flux
linkage in the d-axis (resp. q-axis) rotor winding. The voltage
and current components have been defined in Section II.

The rotor flux linkages evolve according to:

ψ̇dr = − Rr

Lrr
ψdr +Rr

Lsr

Lrr
Iy − (ωcoi − ω)ψqr (32a)

ψ̇qr = − Rr

Lrr
ψqr +Rr

Lsr

Lrr
Ix − (ωcoi − ω)ψdr (32b)

where Rr is the rotor resistance and ω is the rotor speed.
Finally, the rotor motion equation is written as:

ω̇ =
1

2H

(
Lsr

Lrr
(ψqrIy − ψdrIx)− Tm(ω)

)
(33)

where H is the inertia constant and Tm the mechanical torque,
varying with ω according to the type of mechanical load.

The state vector xi = [Ix Iy ψdr ψqr ω]
T involves alge-

braic and differential states according to Γ = diag (0 0 1 1 1).
The following Jacobian sub-matrices are easily derived:

Ai =



−X ′
s −Rs 0 −ωcoik 0

−Rs X ′
s −ωcoik ω 0

0 kRr − Rr

Lrr
ω ψqr

kRr 0 ω − Rr

Lrr
ψdr

−kψdr

2H

kψqr

2H
−kix
2H

kiy
2H

1

2H

dTm
dω


where X ′

s = ωcoi(Lss −
L2
sr

Lrr
) and k =

Lsr

Lrr
,

Bi =


0 0 0 1 0 0
0 0 1 0 0 0
0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0
0 0 0 0 0 0


where the first (resp. second) nonzero column refers to the vx
(resp. vy) component of the complex voltage at the bus where
the motor is connected. In an N -bus system, Ci in (5) is a
2N × 5 matrix, Bi is a 5 × 2N matrix, and CiA

−1
i Bi is a

2N × 2N matrix with only four nonzero terms.
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APPENDIX C
EXTENSION TO TWO-PORTS

The single-port structure of injectors is not suited to model
two-port devices controlling the currents injected at two buses,
such as HVDC links, TCSCs and other FACTS devices. To
deal with the latter, the derivations of this paper are easily
extended to the two-port component sketched in Fig. 14.

i-th two-portp-th bus q-th bus

Vxp Vyp Vxq Vyq

I
p
xi I

p
yi I

q
xi I

q
yixi

Fig. 14. Variables involves in a two-port component

The two-port state vector includes four current components
(instead of two): xi = [Ipxi I

p
yi I

q
xi I

q
yi . . .]

T .
The corresponding Bi matrix has four nonzero rows while

Ci has four nonzero columns. The Schur complement compu-
tation is unchanged. It involves a 2N × 2N matrix CiA

−1
i Bi

with 16 nonzero terms, located in four 2 × 2 blocks, two
diagonal and two off-diagonal, respectively. The structural
symmetry of D is preserved.

A two-port switches to latent when both currents satisfy
(23), and to active when at least one current satisfies (24).
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2007 he joined the Univ. of Liège, where he received the Ph.D. degree in 2012.
Presently, he is a Marie Curie Experienced Researcher Fellow at Imperial
College London, UK. His research interest include simulation of differential-
algebraic and hybrid systems, power system dynamics and frequency control.

Angela S. Chieh (M’11) graduated from Ecole Polytechnique, France, in
2008. In the same year, she received the Engineering MSc degree from
Telecom ParisTech. She joined the “System Expertise” Dept. of RTE in 2009,
where she is working on research and development of power system analysis
tools, such as EUROSTAG, and contributing to projects such as PEGASE.

Bertrand Haut graduated in Applied Mathematics Engineering in 2003 and
obtained his Ph.D. in 2007 from the Catholic Univ. of Louvain, Belgium. Since
then he has been with the power consulting Dept. of Tractebel Engineering,
currently on time-domain simulation and small-signal analysis.

Thierry Van Cutsem (F’05) graduated in Electrical-Mechanical Engineering
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