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Abstract:Catechols represent an important and versatile building block for the design of 

mussel-inspired synthetic adhesives and coatings. Indeed, their ability to establish large 

panoply of interactions with both organic and inorganic substrates has promoted catechol as a 

universal anchor for surface modifications. In addition to its pivotal role in adhesive 

interfaces, the catechol unit recently emerged as a powerful building block for the preparation 

of a large range of polymeric materials with intriguing structures and fascinating properties. 

The importance of catechols as efficient anchoring groups has been highlighted in recent 

excellent reviews partly dedicated to the characterization of their adhesive mechanisms onto 
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surfaces and to their applications. The aim of this paper is to review for the first time the main 

synthetic approaches developed for the design of novel catechol-based polymer materials. We 

will also highlight the importance of these groups as versatile platforms for further 

functionalization of the macromolecular structures, but also surfaces. This will be illustrated 

by briefly discussing some advanced applications developed from these catechol-modified 

polymers. The review is organized according to the chemical structure of the functionalized 

catechol polymers. Chapter 1 discusses polymers bearing catechols embedded into the 

polymer main chain. Chapter 2 focuses on the attachment of catechol moieties as pendant 

groups and Chapter 3 describes the different approaches for incorporation of the catechol unit 

at the extremity of well-defined polymers.  
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1. Introduction 

Catechols occur naturally in fruits and vegetables but in poisons, insects and teas as well. 

They are small molecules widely used for synthesis in food, pharmaceuticals or agrochemical 

ingredients, but also as stabilizing additives. For instance, tert-butylcatechol is largely 

employed as a polymerization inhibitor.[1] In organic chemistry, catechol and its derivatives 

have widely attracted scientists since decades. Indeed, they can act as antioxidant agents, as 

chelating agents in coordination chemistry or trap radicals to cite only few (Fig. 1).  

 

Fig. 1.Main chemical properties of catechols. 

In 1981, catechols have been identified by Waite and coworkers to be responsible for the 

versatile adhesion of mussels in the most inhospitable regions under very harsh and wet 

conditions.[2] This important discovery led to deeply studying the exact structure of the 

proteins responsible for the adhesion of mussels and their action mode.[3-6] The 
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posttranslationally modified amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA; 2, Fig. 2), 

has been determined as the main element required for this moisture-resistant adhesion.[4] 

Proteins found in the mussel adhesive plaque, Mefp for Mytilusedulis foot protein, were 

largely characterized and six of them were identified to present a DOPA content ranging from 

3 mole % (Mefp-2) to 30 mole % (Mefp-5).[5, 7] Evidences of its role in strong interactions 

with either organic or inorganic surfaces have been afforded by Atomic Force Microscopy 

(AFM) on both small polymer chains containing catechol end groups[8] and Mefps[9]. 

Specific adhesion mechanism of these small molecules to a large panel of surfaces is still not 

completely understood. It has been studied for many years and several proposals of 

interaction modes can be found in the literature. These have been reviewed elsewhere[10] and 

seem to be substrate dependent. However in all cases, covalent or strong non-covalent 

interactions (hydrogen bonds or π-π stacking interactions for instances) can be found between 

catechol groups and inorganic substrates such as mica[11] for example. As far as metal oxides 

are concerned, catechol groups are assumed to form bidentate bonding with the metal 

surface.[12, 13] 

 

Fig. 2.Catechol and some derivatives. 
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This amazing adhesion under wet conditions combined with the intrinsic properties of 

catechols cited here above (antioxidant, ligation ability …) have opened the door to the design 

of new (multi)functional platforms based on catechols. This review describes the state-of-the-

art research in the synthesis of (bio)macromolecules bearing catechols that are used as 

versatile platforms for the design of adherent materials, multifunctional materials and 

inorganic/polymer hybrids. Numerous scientific groups have worked worldwide on this topic 

since almost fifteen years. These works will be further detailed in the following sections. 

Briefly, catechol functions can be incorporated into macromolecules as main, side and end-

chain groups by employing various synthetic pathways. The successfully employed strategies 

include i)either the oxidative[14] or enzymatic[15] polymerization of functional catechols; 

ii)the polymerization of monomers bearing catechol groups protected or not (radical 

polymerization[16] or peptide synthesis[17]);iii) the controlled/living polymerization of 

synthetic monomers in the presence of catechol basedinitiators (ATRP,[18]ROMP[19] …)  or 

chaintransfer agents (RAFT[20]). The point that will be stressed on in this review concerns 

the final architecture of the different macromolecules obtained from these different synthetic 

approaches (Fig. 3). We will also emphasize how the reactivity of the catechol functional 

groups can be nicely exploited for further polymer derivatizations and for the development of 

advanced applications. 
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Fig. 3.Catechol based building blocks for macromolecular engineering. 

 

2. Main chain precursors 

Molecules bearing catechols are easily converted into highly reactive quinones either by a 

strong oxidant agent such as NaIO4[21] or an enzyme (horseradish peroxidase combined with 

hydrogen peroxide, HRP/H2O2, for instance[15]), but also by an aerated aqueous solution at 

neutral to alkaline pH.[22] In some conditionsthat will be detailed below, self-polymerization 

of some of these oxidized products is observed, leading to polymers that are of prime 

importance in the field of surface modifications. These oxidative polymerizations result in the 

formation of uncontrolled cross-linked films composed of a mixture of cross-linked products 

bearing mostly catechol and quinone groups that can be exploited for further derivatizationsas 

it will be illustrated in the next sections. 

2.1. Autopolymerization in aerated basic solutions. 

2.1.1. General process and initial developments. 
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Autopolymerization of catecholamines in aerated basic conditions was first demonstrated 

by Messersmith et al. for dopamine (3,Fig. 2) in a Tris buffered dopamine solution at pH 

8.5.[14] When this polymerization occurs in the presence of substrates, an adherent 

poly(dopamine) (polyDp)film is in situdeposited on the surface after 24 hours of immersion 

(Fig. 4). Film thickness increases with the immersion time as shown on Fig.5 (A) where a 

plateau isobtained after 24 hours.[14] Final polyDp thickness also increases with the 

polymerization temperature.[23] Both organic and inorganic surfaces were well covered, 

including poly(tetrafluoroethylene) (PTFE), known for its antiadhesion properties (Fig. 5 

(B)).[14] 

 

Fig. 4. Poly(dopamine) (polyDp) network adapted from Messersmith et al.[14] 
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Fig. 5. Thickness evolution of poly(dopamine) (polyDp) coating on Si as measured by AFM 

of patterned surfaces (A), X-ray Photoelectron Spectroscopy (XPS) characterizations of 

several polyDp coated surfaces (B).[14] The bar graph represents the intensity of 

characteristic substrate signal before (hatched) and after (solid) coating with polyDp. “N.A.” 

means that XPS signals of the substrates were indistinguishable from the polyDp signal.The 

blue circles represent the nitrogen/carbon ratio after polydopamine coating. 

From a mechanistic point of view, the polyDp network (Fig. 4) is presumably formed by 

Schiff base formation and/or byMichael type addition involvingquinone groups of oxidized 

dopamine with its primary amino group.[8, 24, 25] Up to now, the exact structure of polyDp 

is still lacking in the literature but some proposals can be found in publications. As 

established spectrophotometrically by Linert and coworkers, dopamine oxidation leads to 

dopaminochrome (10,Fig. 6) following a multistep reaction pathway.[22] This molecule can 

then self-polymerize and produce polymers that are usually complex networks with free 

catechol groups available for further chemical reactions (11 and 12,Fig. 6).These catechol 

groups are responsible for the strong adhesion of the polymer network to any kind of 

surfaces,both organic (polysulfone,[26, 27]polyethersulfone,[28] 

polyethylene,[29]polypyrrole,[30] hydrophobic/superhydrophobic polymers, [31-33] 

silanes[34-37] and even yeast cells[38] or raw cherry tomato[39]) and inorganic (clays,[40] 

iron-based nanoparticles,[41, 42] gold,[43] SiO2[44-47] and others[48-52]). Melanin 

formation follows a similar process and also produces such complex systems.[53] 
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Fig. 6. Mechanistic scheme for the formation of polyDp (11 and 12) by self-polymerization of 

dopamine.[43, 51, 54] 

The ability of PolyDp to adhere onto various subtrates has been largely exploited to 

promote cells adhesion on several surfaces such as glass, polystyrene, poly(dimethylsiloxane) 

(PDMS) and even PTFE.[55-58] Very recently, Jiang and coworkers managed to pattern 

PEG-coated surfaces with polyDp using microcontact printing (µCP) and PDMS stamps (Fig. 

7) which were further exploited to spatially control the anchoring of mammalian cells.[58] 
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Fig. 7.Strategy for cells patterning using polyDp coating (scale bar is 100 µm).[58] 

The substrates can also play the role of sacrificial templates that are removed after polyDp 

formation in order to form stable polyDp capsules[59-65] that can be loaded with 

hydrophobic drugs such as anticancer agent (thiocoraline).[66] As no drug leakage was 

observed after template removal, these new drug carriers have opened the door to potential 

applications in biotechnology and drug delivery systems for instances.More particularly, Zhou 

and coworkers have demonstrated pH stability for such microcapsules with outstanding 

unidirectional loading of rhodamine 6G (Rh6G) in some solvents.[60] Indeed, the polyDp 

capsules are almost impermeable to Rh6G in ethanol while the inverse is observed in aqueous 

solution with uptake rates that depend on pH (increased at high pH). The loading in aqueous 

solution is driven by the high osmotic outside pressure and gradient chemical potential. At a 

low pH, the amino groups of polyDp are protonated and charge repulsion between them and 

the positively charged dye is responsible for the low loading efficiency. At high pH, the 

catechols become negatively charged favoring the diffusion of the dye inside the capsules. 

Beside the intrinsic properties of polyDp, the presence of residual quinone groups onto the 

polymer backbone allows forfurther modifications with thiol compounds (alkanethiol, thiol-

terminated methoxy-poly(ethylene glycol), thiolated hyaluronic acid) [54, 67] and nitrogen 

derivatives (amine-terminated methoxy-poly(ethylene glycol), imidazoles)[68-70]leading to 

the formation of new materials with different structures and properties (Fig. 8). 
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Fig. 8. Possible reaction pathways of oxidized catechols with amines, thiols or imidazoles 

where R’ stands for a polymeric or peptidic backbone. 

These pioneering works have opened up wide possibilities for the preparation of 

adherentpoly(catecholamines) based coatings on any kind of substrates[14, 71]. Their 

applications in the biomedical field has been the topic of a recent review [72]. Although the 

catechol groups are responsible for the strong adhesion of the coatings to the substrates, their 

high reactivity towards various reagentsisalso exploited for further derivatizationsto provide 

various surface functionalities (Fig. 9), as it will be discussed in the following sections. 
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Fig. 9.Polydopamine coating and further derivatizations. 

2.1.2. Poly(catecholamines) – platforms for the design of advanced (nano)hybrids. 

2.1.2.1. Poly(catecholamines): reducers of metal salts and other oxides. 

Catechol groups of polyDp can act as strong reducing agents for graphene oxide[54, 73, 

74]and metal salts for the production of metal nanoparticles[75, 76] (Fig. 9, pathway A). For 

instance, Xinet al. have obtained carbon nanotubes (CNTs) coated with gold nanoparticles in 

a two steps procedure.[77] CNTs were first coated by polyDp by immersion in a buffered 

dopamine solution, followed by dipping into HAuCl4 aqueous solution. Nanometricgold 

particles (20-30 nm size) were obtained by reduction of Au3+ by catechols of polyDp without 

the need of any other chemical reagent (Fig. 10).  
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Fig. 10. Transmission Electron Microscopy (TEM) images of carbon nanotubes coated with 

polyDp (A,C) and carbon nanotubes coated with polyDp and Au nanoparticles (B, D).[77] 

Scale bars are 200 nm (A), 350 nm (B), 10 nm (C) and 50 nm (D). 

Silver nanoparticles have also been immobilizedin a similar wayon various polyDp coated 

substrates[78-82] to obtain final antibacterial (AB) properties[83, 84]. Such silver 

nanoparticles can also be elaboratedin solution by mixing dopamine and AgNO3 under 

alkaline conditionsleading to a bright yellow solution of Ag0 nanoparticles stabilized with a 

polyDp coating.[85]This material was then exploited for the fast and sensitive colorimetric 

detection of Cu2+ ions. Indeed, in the presence of Cu2+, the initiallybright yellow 

polyDp/Ag0assemblyaggregated with the formation of a dark brown suspension (Fig. 11). 
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Fig. 11.Mechanism of colorimetric determination of Cu2+ with silver/dopamine 

nanoparticles.Reproduced with permission from ref [85]. Copyright 2011 The Royal Society 

of Chemistry. 

2.1.2.2. Poly(catecholamines) as templates for the formation of minerals. 

Based on these remarkable binding properties towards various metal ions[86, 87], different 

research groups havealso used polyDp coatings as templates for the formation of 

hydroxyapatite by co-precipitation of calcium and phosphate ions (Fig. 12).[88-90] The 

hydroxyapatite formation can be carried out on various kinds of surfaces such as CNTs[88, 

90] or polymeric substrates (porous cellulose, polyester, polytetrafluoroethylene for 

instances)[89] to convert them into scaffolds for bone tissue regeneration and implantation.  

Such stabilizing effect of the catechols towards ionic species has also been exploited by 

Park et al. for the mineralization of CaCO3vaterite crystals which were further transformed 

into bone hydroxyapatite minerals in a simulated body fluid.[91-93] CaCO3 microspheres 
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were prepared by mixing CaCl2 and Na2CO3 with dopamine[91, 92] or by bubbling CO2 in an 

aqueous mixture of CaCl2, NH4OH and dopamine[93]. 

 

Fig. 12. A) Formation of calcium phosphate crystals on polyDp coatings, B) Scanning 

Electron Microscopy (SEM) images of polyester fibers (1 and 2) and PTFE membrane (3 and 

4) without and with hydroxyapatites.[89] 

2.1.2.3. Poly(catecholamines) as anchoring layers for polymer brushes and other 

(bio)macromolecules. 

PolyDp coating were also exploited to graft (i) an ATRP (Atom Transfer Radical 

Polymerization) initiator for controlled radical polymerization[94-97] to generate well-

defined polymer brushes on various surfaces via a “grafting from” approach that can be 

further derivatizedfor instance by the anchoring of chitosan (Fig. 13) or (ii) various 

(bio)macromolecules (Fig. 9, pathways B and C). These can either favor cell adhesion and 

improve blood compatibility by grafting heparin, concanavalin A or bovine serum albumin 

(BSA)[98-112] or avoid protein adhesion with poly(ethylene glycol) (PEG)[113-116], platelet 

activation thanks to selenocystamine[117]and even fungal colonization or bacterial fouling 

OH

HO

OH

HO

PO4
3-

Ca2+

Ca2+

OH

HO

OH

HO

A

B 1 2

43

Biominerals formation



Published in: Progress in Polymer Science (2013), vol. 38, pp. 236-270. 

Status : Postprint (Author’s version) 

 

 

19 
 

when amphotericin B[118] or quaternary ammoniums salts[119] are immobilized onto the 

surface. Moreover, several research groupshave developedoriginal biosensors based on a 

polyDp coating post-functionalized with enzymes[120] such as glucose oxidase[121, 122] or 

antibodies[123-125]. 

 

Fig. 13. ATRP immobilized initiator on polyDp coating and controlled radical 

polymerization of 2-hydroxyethyl methacrylate (HEMA) followed by the immobilization of 

chitosan.[97] 

Other functional groups can also be incorporated onto biomimetic coatings from 

functionalized catecholamine. Messersmith et al. have reported on the self-polymerization of 

norepinephrine(4,Fig. 2) in the same conditions. This molecule contains an additional 
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polymerization(ROP)[127] of lactones such as ε-caprolactone, thereby providing a 

biodegradable poly(ε-caprolactone) (PCL) coating on the surface. 

 

Fig. 14. Ring-Opening Polymerization[127] of ε-caprolactone on poly(norepinephrine)-

modified gold substrate.[126] 
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are expected to have different chemical properties to catechols of 13 but this difference of 

reactivity is not discussed in the paper. 

Dosoretzet al. performed enzymatic polymerization of catechols with horseradish 

peroxidase (HRP) in water and obtained polymers with high water solubility.[130]Nazariet al. 

compared poly(catechols) obtained by catalytic polymerization with HRP and a cationic 

metalloporphyrin as catalysts.[131]Tetrapyridilporphyrin seemed to be a more-efficient 

catalyst as final polymer has higher molecular weight and presented better thermal stability. 

 

Fig. 15.(2,3-dihydroxy-1,4-phenylene) (13)and (2-hydroxy-1,4-oxyphenylene) (14) subunits 

found in the poly(catechol) structure.[15] 

Flavonoids such as catechin (8,Fig. 2) were polymerized using HRP with a final average 

molecular weight ranging from 4000 to 12000 g/mol.[132] A polymerization mechanism 

proposal was based on radical polyrecombinationprocessesto produce oligomers that can 

further recombine into polymers (Fig. 16), although no more details were given. However this 

pathway has been identified to compete with the probable formation of oxidation products and 

so the exact structure has not been perfectly identified yet. Poly(catechin) was also 

synthesized using HRP and the final product showed strong radical scavenging activity and 

inhibition effect against xanthine oxidase, a low-density lipoprotein responsible for the 

formation of uric acid.[133] 
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Fig. 16. Proposed structure for flavanolbased polymers.[132] 

Additionally, caffeic acid (5,Fig. 2) was deposited onto gold surfaces functionalized with 

4-aminothiophenol by dip-pen nanolithography.[134]It was then treated with HRP directly on 

the surface leading to formation of polymers incorporatingquinoid subunits (15, Fig. 17). 

 

Fig. 17.Structure (15) of poly(caffeic acid) synthesized by enzymatic polymerization using 

HRP.[134] 

Another peroxidase, xanthine oxidase (XO), was used to polymerize several 

catecholamines in Tris-HCl buffer. Roseiet al. observed that some of them, such as DOPA, 

were not polymerized presumably because of the negative influence on the enzyme activity of 

the α-carboxylic acid group contrary to dopamine.[135] 

Poly(catechol)s, exclusively composed of (2-hydroxy-1,4-oxyphenylene) subunits (14, Fig. 

15),were also successfully prepared by using oxidases such as laccase in combination with 

dissolved oxygen.[136]For example, catechin (8, Fig. 2), quercetin and rutin (16 and 17, 

respectively,Fig. 18) were oxidatively polymerized by laccase and, interestingly, both 
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polymer materials showed stronger superoxide scavenging activity compared to their 

monomer.[137-139] 

 

Fig. 18.Chemical structures of quercetin (16) and rutin (17). 

3. Side chain precursors 

3.1. Polymerization of catechol basedvinyl monomers. 

Catechol side chain polymers can be conveniently preparedby radical polymerization of 

vinyl monomers incorporating a (un)protectedcatechol unit (Fig. 19).  

3.1.1. Starting from protected monomers. 

When vinyl monomers bearing protected catechols are considered, borax 

(Na2B4O7.10H2O) is mainly used as the protecting reagent by forming a cyclic bidentateo-

benzenediol subunitas depicted in Fig. 19.[140] The radical polymerization of the protected 

monomer occurs in water and leads to linear polymer chains. Catechol deprotection is carried 

out in acidic medium leading to polymers bearing pendant catechols. Other protecting groups 

can be employed such as 2,2-dimethoxypropane[141], benzyl bromide[142] or 

dichlorodiphenylmethane[143] to name only a few. 
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Fig. 19. Polymer architectures obtained from vinyl monomers bearing (un)protectedcatechol 

unit. 

As an interestingexample, protected dopamine acrylamide (18,Fig. 20) was 

homopolymerized using 2,2’-azobisisobutyronitrile (AIBN) as radical initiator in acetonitrile 

at 70°C for 3 days (Fig. 20). Deprotection of the catechols then occurred in a mixture of acetic 

acid, hydrobromic acid and trifluoroacetic acid at room temperature. The so-formed polymer 

bearing catechol groups on each monomer unit displayed strong adhesiveproperties towards 

woodwhen cured at high temperature (180°C) with amine-containing polymers such as 

poly(ethylenimine)(PEI).[144] 
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Fig. 20. Synthesis of poly(dopamine acrylamide) (19).[144] 

Protected DOPA monomers have also been exploited for providing sustainable and durable 

AB coatings on stainless steel surfaces.[25] A linear homopolymer bearing DOPArepetitive 

units was synthesized by free radical polymerization of protected-DOPA methacrylamide (20, 

Fig. 21) in water using 4,4'-azobis(4-cyanopentanoic acid) (V-501) as initiator, followed by 

deprotection with HCl. The catechol groups of the polymer were then oxidized in water under 

basic conditions (pH = 10), leading to the corresponding water soluble polymer bearing 

quinone groups (21, Pox(mDOPA); Fig. 21). The sequential Layer-by-Layer[145]deposition 

of this polymer andpoly(allylamine) (PAH) led to cross-linked films as the result of 

amine/quinone reactions between the two complementary partners (Fig. 22). Moreover, 

introducing an AB peptide (nisin) in the last layers of the multilayer filmconferredstrong AB 

properties to the material. Furthermore, due to the covalent anchoring of the peptide, the AB 

activity was maintained even after dipping the substrate in water for one night. 

1. AIBN/CH3CN, 70°C, 3 d

OH

OH

NHO

*

n
*

2. HBr/AcOH/TFA, 25°C, 3 h

18 19

O

O

NHO

Ph
Ph



Published in: Progress in Polymer Science (2013), vol. 38, pp. 236-270. 

Status : Postprint (Author’s version) 

 

 

26 
 

 

Fig. 21. Synthesis of Pox(mDOPA) (21).[25] 

 

Fig. 22. Covalent LbL assembly for imparting robust AB property to stainless steel.[25] 

Polymers bearing catechols can also be prepared starting from protected 3,4-

dihydroxystyrene (22 and 23,Fig. 23)[146, 147] and were used asbio-inspired adhesives after 

deprotection.  
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Fig. 23. Chemical structures of 3,4-dimethoxystyrene (22)[146] and 3,4-di(OTBDMS) 

styrene (23)[147]. 

3.1.2. Starting from unprotected monomers. 

When unprotected catechols were considered, a pioneering work described the 

copolymerization of DOPA methacrylamide (24,Fig. 24) with poly(ethylene glycol) diacrylate 

under UV irradiation in the presence of a photoinitiator (Fig. 25). This copolymerization led 

to hydrogels that are of prime interest as new adhesives for biomedical applications.[16] 

 

Fig. 24. Monomers bearing catechol groups:DOPA methacrylamide (24)[16], dopamine 

methacrylamide (25)[148] and methyl ester DOPA methacrylamide (26)[149]. 
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Fig. 25. Hydrogel preparation from the copolymerization of 24 withpoly(ethylene glycol) 

diacrylate.[16] 

Importantly, since catechols are well-known polymerization inhibitors by reacting with 

radicals with the formation of aryloxy free radicals,[150, 151] the radical polymerization of 

vinyl monomers bearing unprotected catechols is at first glance surprising. Nevertheless, 

several recent works of free-radically polymerized catechol monomers attest to the viability of 

this approach.[16, 148, 152-162] Dopamine methacrylamide (25, Fig. 24) was copolymerized 

with methoxyethyl acrylate to furnish a reversible adhesive on nanostructured surfaces.[148, 

152] Copolymerization of 25 with a phosphate based monomer such as 2-

(methacryloyloxy)ethyl phosphate allowed preparing underwater adhesives through complex 

coacervates when combined with a polymer bearing positive charges (protonated amine 

bearing polymers) and divalent cations (Ca2+ or Mg2+) as depicted on Fig. 26.[153-155] 
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Fig. 26. Schematic representation of complex coacervates.[154] 

Copolymers of 25 with 1H,1H-perfluorooctyl methacrylate were also synthesized in 

acetonitrile and coated onto various surfaces to impart them ultra-low surface free 

energy.[156] Substituting perfluorooctyl methacrylate by 2-aminoethyl methacrylamide 

provided copolymers useful for facile DNA immobilization onto various substrates (Fig. 

27).[157] Oligomers of 25 and 2-(2-bromoisobutyryl) ethoxymethacrylate led to the design of 

macroinitiators for the preparation of poly(N-isopropylacrylamide) (PNIPAM) brushes on Ti 

plate by Si-ATRP.[158]Terpolymerization of 25 was also implemented, on the one hand, with 

methoxyethyl acrylate and ethylene glycol dimethacrylate for tuning the viscoelastic property 

of this pressure-sensitive adhesive[159, 160] and, on the other hand, with methoxyethyl 

acrylate and dodecyl quaternized 2-(dimethylamino)ethyl methacrylate for preparing 

antimicrobial surfaces.[161] 
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Fig. 27. Sequential method developed by Messersmith et al. to prepare DNA microarray on 

several substrates.[157] 

Dual-action homopolymer of DOPA methacrylamide (24, Fig. 24) and copolymer of 

dopamine methacrylamide (25, Fig. 24) and N-[3-(dimethylamino)propyl] methacrylamide 

were synthesized by Alexander and coworkers.[162] Due to their positive charge and/or their 

catechol groups, these polymers were able to both force bacteria aggregation and suppress 

their quorum sensing (QS) signals. Successful bacterial capture has been confirmed with these 

two polymers. Furthermore, they were able to sequester bacteria without damaging cell 

viability, thereby rendering this new strategy very attractive for the conception of novel 

antimicrobial materials. 

In all these works, neither the possible side reactions of propagating radicals with catechols 

nor their potential impact on the final polymer architecture are discussed. Polymers are 

always presented as linear structures. However, the radical polymerization of catechol bearing 

vinyl monomers is expected to provide (hyper)branched polymers or, even more, cross-linked 

materials, depending on the amount of catechols bearing monomers involved in the 

(co)polymerization process.[163] Indeed, according to the well-known reactivity of catechols 

with radicals, a catechol group of one polymer chain may react with a radical existing in 
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another chain during radical polymerization, thus forming an interchain C-O or C-C bond 

(Fig. 28). One or more bonds may exist between any two polymer chains leading to 

(hyper)branched polymers. Cross-linked materials should therefore be obtained when high 

amounts of catechol bearing monomers are used. 

 

Fig. 28.Hyperbranching mechanism for the radical polymerization of vinyl monomers bearing 

unprotected catechols.  

This expected branching reaction is however not discussed in none of the above mentioned 

manuscripts. Meanwhile, some authors recovered some insoluble materials when 

copolymerizing a conventional vinyl monomer with a catechol functionalized one, especially 

when large amounts of the latter were used.[148, 152, 156] Although not specifically 

mentioned in the above-discussed publications, these insoluble productsarepresumably the 

result of the cross-linking reactions promoted by the catechol based monomers. 

The occurrence of this branching was demonstrated and illustrated by Detrembleur et al. 

by radically copolymerizing a DOPA derivative bearing a methacrylamide group (26,Fig. 

24)[149, 163] with a methacrylate bearing an ammonium group ((2-(methacryloxy)ethyl) 

trimethylammonium chloride;  DMAEMA+) in water at 50°C. The combination of Dynamic 

(DLS) and Static Light Scattering (SLS) experiments allowed to elucidate the hyperbranched 

architecture of the so-formed water soluble polyelectrolyte[163] of a high molar mass 
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(Mw>106 g/mol). Thanks to its free catechol groups, this copolymer P(mDOPA)-co-

P(DMAEMA+) was used as a biomimetic glue for the strong anchoring of functional 

multilayers films onto stainless steel surfaces.[149, 163, 164] Antimicrobial and easy-cleaning 

stainless steel surfaces were obtained from multilayer films containing active biomolecules 

(nisin and mucin) based on that biomimetic glue.[165] The redox property of catechol was 

also exploited for the in situ formation of elemental silver nanoparticles (Ag0) by adding a 

silver nitrate (AgNO3) aqueous solution to this DOPA-based hyperbranched copolymer.[149, 

164]Indeed, catechols reduced Ag+ into Ag0 while the hyperbranched copolymer stabilized 

the so-formed nanoparticles. The LbL deposition of this silver loaded polycation with 

poly(styrene sulfonate) (PSS) as the negative counterpart led to highly biocidal coatings onto 

stainless steel.[149] Moreover, similar surface coatings were made from galvanized steel, 

thereby further indicating the high versatility of such bio-inspired glue for modifying various 

substrates. A protecting multilayer film against corrosion was built by alternating the 

deposition of P(mDOPA)-co-P(DMAEMA+) used as corrosion inhibitor with clays as 

negative counterparts that induced barrier properties. The whole process was conducted in 

water and did not release any toxic molecules in the environment while the esthetical aspect 

of the surface was preserved.[166] 

3.2. Peptide synthesis of DOPA derivatives. 

Because DOPA is largely present in the sequences of marine adhesive foot proteins, 

intensive research has been conducted on mimicking these structures by synthesizing peptides 

containing DOPA units. Some amino acids with protected side chains (lysine or glutamic acid 

for instances) were coupled with protected DOPA using the 

dicyclohexylcarbodiimidecoupling method.[167, 168]Amongst these, peptides containing up 

to three DOPA amino acids were synthesizedand coupled to a succinimidyl propionate-

activated poly(ethylene glycol) (PEG-SPA) (Fig. 29) by reaction with their free NH2 group at 
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the N-terminalextremity.[12]More particularly, Messersmith et al. studied the resistance of 

this conjugate to proteins adhesion when deposited on TiO2 substrates and its ability to reduce 

marine algal fouling.[169]Finally, various kinds of surfaces (TiO2 disks[170]and ureteral 

stents[171] for instances) coated with similar antiadhesive biomimetic peptides were found to 

strongly resist to both urinary film formation and bacterial attachment in vitro. 

 

Fig. 29. Synthesis of poly(ethylene glycol) functionalized with DOPA units.[12] 

Because DOPA amino acids are usually protected during peptide synthesis, final 

engineered macromolecules have a linear architecture with pendant DOPA moieties located at 

the extremity or within the peptide backbone (Fig. 3).Other peptides synthetic pathways and 

their final applications were reviewed elsewhere.[172] 

3.2.1. Solid phase peptide synthesis. 

Besides introducing this amino acid in marine adhesives mimic proteins,[173, 174] small 

DOPA peptides or co-peptides prepared by solid phase peptide synthesiswere intensively 

exploited to strongly anchor antifouling macromolecules onto surfaces. For example, 
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Messersmithet al. have designed a catechol based peptidomimetic polymer (27,Fig. 30) for 

long-lasting fouling resistance of Ti surfaces.[175] These N-substituted glycine chains 

conferred to the substrates proteins and cells resistance for several months. 

 

Fig. 30. Antifouling peptidomimetic polymer.[175] 

DOPA has also been incorporated into a photopolymerizable fatty acid with the aim of 

elaborating adhesive stable spherical vesicles after self-assembly in 

chloroform.[176]Methoxy-PEG-NH2 was coupled with a tetra-DOPA peptide to prepare 

metal core – polymer shell nanoparticles.[177] 

3.2.2. Ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs). 

The synthesis of α-amino acid N-carboxyanhydrides (NCAs) by phosgenation of amino 

acids has been developed in the late 80’s by Kricheldorf.[178] Deming et al.then prepared 

high molecular weight polypeptides bearing catechols by ring-opening polymerization of 

NCAs containing protected catecholsfollowed by their deprotection (Fig. 31).[179] This 

method has the advantage to allow the preparation of large quantities of polymers and 

copolymers of tunable composition, opening the door to the development of new adhesives 

materials.[180-182] 
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Fig. 31.Synthesis of adhesive copolypeptides by ring-opening polymerization of α-amino 

acid N-carboxyanhydride(NCAs) monomers. 

For example, multiple-interaction ligand has been developed by Hyeonet al. for the design 

of ultrastable and biocompatible nanoparticles.[183] Their strategy consists in the synthesis of 

a macromolecule bearing three main functional parts: a central one composed of chargedPEI 

for electrostatic interactions with the negatively charged metal nanoparticles, a firstexternal 

part consisting on poly(DOPA) able to strongly anchor the macromolecule on the 

nanoparticles, and a second external part composed of hydrophilic PEG segment required for 

solubilizing the nanoparticle/macromolecule assembly in water as a micelle(Fig. 32). This 

versatile strategy has been also extended to various nanoparticles such as Fe3O4, MnO and Au 

thatexhibited high stability in various harsh environments and might open the door to new 

relevant biomedical applications. 
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Fig. 32. Formation of water-dispersible nanoparticles through multiple-interaction ligand 

stabilization.[183] 

Oligopeptides bearing DOPA unitswere also synthesized from amphiphilic block 

copolymers containing PEG blocks (hydrophilic part)and polyester blocks (hydrophobic part) 

in order to form adhesive hydrogels after photopolymerization of their methacrylate chain-

ends (28, Fig. 33).[184]Biotinylated surfaces werealso prepared via tri-DOPA peptide 

synthesis from a biotin-PEG bearing an amino group as chain end.[185] Indeed, catechol 

groups of DOPA were used to reduce gold or silver cations into metal nanoparticles with a 

stabilizing PEG-shell on their surfaces. 
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Fig. 33.Photocurable and biodegradable block copolymers.[184] 

Interestingly,Kotovet al. prepared a terpolymer containing a tri-DOPA peptide, 

apoly(Lysine),and a PEG block (29, Fig. 34, A). The LbL deposition of aqueous solution of 

this copolymer and natural clays (Na+-Montmorillonite, MMT) afforded nacre-like films 

(Fig.34, B).[186] These authors have nicely exploited the cross-linking ability of DOPA with 

Fe3+[86, 187-190] to improve the mechanical properties of the nanohybrid films. Indeed, upon 

the addition of Fe3+ to Mefp1 (Mytilusedulis foot protein 1), the formation of a tris-

catecholato-iron(III) complex was characterized (Fig. 35).[86] Then, iron reduction and 

oxidation of one DOPA bound can occur leading to the formation of a semiquinone radical 

which can further react with oxygen to generate other radical species that induce proteins 

radical-radical coupling and so the cross-linking (Fig. 35).[190]Formation of this tris-

catecholato-iron(III) complex has recently been found to be strongly influenced by both 

iron/DOPA ratio[191] and pH[192]. 
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Fig. 34. (A) Molecular structure of DOPA-Lys-PEG copolymer where x ~ 53 and y ~ z ~ 3; 

(B) LbL process between DOPA-Lys-PEG copolymer  and MMT clay; digital photograph of 

a Fe3+ cross-linked 300 bilayer film of DOPA-Lys-PEG/clay (1); SEM cross-sectional view of 

Fe3+ cross-linked 300 bilayer film of DOPA-Lys-PEG/clay, arrows indicate the cross-section 

of the film (2).[186] 

 

Fig. 35.Structure[86] and reactivity [190] of tris-catecholato-iron(III) complex. 
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below.  
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3.3.1. Grafting of catecholamines onto activated carboxylic acid functionalized 

polymers. 

 

Fig. 36. Some strategies for the ligation of catecholaminesonto polymers bearing carboxylic 

acid (activated bycarbodiimide chemistry) (A), pentafluorophenyl (B), succinimidyl esters 

(C),and triazole activated esters (D). 

The first developed strategy consists in reacting a polymer bearing side-chain carboxylic 

acid groups(Fig. 36, pathway A) with a catecholamine such as DOPA, dopamine or its 

derivatives in the presence of an activator like a water soluble carbodiimide compound 

(ethyl(dimethylaminopropyl) carbodiimide, EDC, for instance) to promote amidation. As an 

example, dopamine methacrylamide (25, Fig. 24) has been grafted onto poly(acrylic acid-co-

butyl acrylate) in the presence of EDC to promote thecouplingreaction between the carboxylic 

acid side groups of the copolymer and the amino group of the dopaminederivative.[193] This 

chemical modification has afforded adhesive property to this copolymer and an enhancement 

of its mechanical properties. Such couplingwas also used i)to insert DOPA derivative (7, Fig. 
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2) into methacrylic triblock copolymers in order to improve the adhesion property of the so-

formed hydrogels[194] or  ii) to graft dopamine onto poly(acrylic acid) (PAA) to build robust 

multilayer films with PAH after oxidation by NaIO4[195].In a similar way, Hammond et al. 

have grafted dopamine onto PAA with EDC in order to enhance LbL film stability with 

catechol-bearing PEI. This strategy allowed for the elaboration of multilayer materials 

displaying a better control of interlayer diffusion and so opened the door to new devices in 

drug delivery.[196] 

Catecholamines can also be grafted to polymers bearing activated esters such as 

pentafluorophenyl or succinimidylesters (Fig. 36; pathways B and C respectively). This 

grafting strategyhas the advantage to occur at room temperature without any activator. For 

instance, dopamine was successfully grafted onto poly(pentafluorophenyl acrylate) and the 

conjugates were used for functionalizing nanoparticles such as TiO2, MoS2, MnO, or 

Fe2O3[197-201] and dispersing TiO2, SnO2, ZnO or CdTenanorods.[202-204] 

Very recently, a well-defined difunctionalpoly(dopamine acrylamide-co-propargyl 

acrylamide) copolymer was also prepared from a reactive poly(pentafluorophenyl acrylate) 

homopolymer and exploited to sequentially modify a titanium surface (Fig. 37).[205] In a first 

step, the difunctional copolymer30,thanks to the presence of pendantcatechol units into the 

polymer chain, was tethered onto a titanium substrate yielding a dense alkyne-functionalized 

Ti platform. Then, the copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was 

employed to covalently graft fluorescent probes (Fluorescein, Rhodamine), PEG chains, and 

sugars (mannose, β-cyclodextrin). 
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Fig. 37.Bio-inspired surface functionalization by click chemistry.[205] 

Additionally, other condensing agents can be found in the literature. For instance, poly(L-

glutamic acid) was modified with dopamine by using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-

methylmorpholinium chloride (DMTMM) and further exploited in biodegradable 

capsules.[206] 

3.3.2. Grafting of catecholamines onto hydroxyl functionalized polymers. 

Hydroxyl-functional polymers can also be converted into p-nitrophenylcarbonate using p-

nitrophenyl-chloroformate (NPC), and further modified by catecholamine (Fig. 38). For 

instance,nonfouling surfaces such as PTFE were prepared by covalent coupling of dopamine 

to hydroxyl-functional PEG.[207] 

Ti

OH OH OH OH

+

O O O O

Ti

N3

N

N

N N

N

N N

N

N

O O O O

Ti

1. Dopamine

2.
NH2

CuSO4.5H2O, 
sodium ascorbate

30

Where = Rhodamine, Fluorescein, PEG chains, sugars

*
*

O O

F

F

F

F

F

n

NHO

OH

OH

NHO

x n - x
*

*



Published in: Progress in Polymer Science (2013), vol. 38, pp. 236-270. 

Status : Postprint (Author’s version) 

 

 

43 
 

 

Fig. 38.Ligation of catecholamineonto hydroxyl-functionalized polymers using p-nitrophenyl-

chloroformate (NPC) as an activator. 

3.3.3. Grafting of catechol bearing a carboxylic acid group onto amino functionalized 

polymers. 

Another approach consists in grafting a catechol derivative bearing a carboxylic acid group 

with amine functionalized biomolecules and biopolymers such as heparin[208, 209], 

hyaluronic acid[210-213], poly(L-lysine)[214] and soy protein[143] (Fig. 39). As an example, 

chitosan was functionalized with 3,4-dihydrocaffeic acid (6, Fig. 2) by coupling the primary 

amino groups of the polymer with the carboxylic acid of 6 using the carbodiimide 

activation.[215] This functionalized chitosan was then cross-linked with terminally 

thiolatedPluronic F-127 triblock copolymer to produce temperature-sensitive and adhesive 

sol-gel transition hydrogels. Modified chitosan with carboxylic acid functions was also 

immobilized on Ti surfaces pre-treated with polyDp in order to impart it antiadhesion 

property.[216] 
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Fig. 39.Strategy for the ligation of catechol derivatives bearing a carboxylic acidfunction 

using carbodiimide chemistry. 

Synthetic polymers containing amino groups were also grafted according to similar 

strategies. For instance, PEI was modified by 3,4-dihydrocaffeic acid (6, Fig. 2) in the 

presence of EDC to form an universal surface primer for multilayer assembly[217] or to 

reinforce the mechanical properties of CTNs fibers.[218] 

Another well-known strategy consists in forming activated esters with an uronium salt such 

as O-(benzotriazol-1-yl)-N,N,N’,N’-tetramethyluroniumhexafluorophosphate (HBTU) (Fig. 

36; pathway D). This coupling reaction occurs at room temperature in the presence of 

triethylamine and 1-hydroxybenzotriazole hydrate (HOBt). Compound 6 was so coupled 

using these coupling reagents onto a 4-arm PEG-NH2. The resulting catechol end-

functionalized PEG precursors were in situ transformed into amultiblock copolymers in the 

presence of linear diacid-functionalized PCL. When coated onto a biologic mesh used for 

hernia repair, this adhesive polymer demonstrated adhesive strengths significantly higher than 

fibrin.[219] In addition, more recently, this intriguing adhesive material was used to greatly 

improve the repair of injured Achilles tendons.[220] 

3.3.4. Electrochemical grafting of catechol units onto amino functionalized polymers.  

Chitosan films electrodeposited onto gold surfaces were modified by electrochemical 

oxidation of catechols (Fig. 40).[221, 222] Gold crystals were first immersed in a chitosan 

solution (0.1%, pH 5.3) and potential was swept in the reducing direction. The substrates were 

then transferred into several aqueous catechol solutions under oxidative conditions promoting 

its covalent grafting onto the films. These modified surfaces behave as electrons donor and 

electrons acceptorin the presence of biological oxidants (O2) and reducers (NADPH), 

respectively. Such phenolic matrices may play important roles in understanding biological 
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phenomena such as electron transfer, mode-of-action of bactericidal antibiotics, 

neuromelanins activity, etc. 

 

Fig. 40. Synthetic pathway for electro-modification of chitosan with catechols.[221] 

3.4. Enzymatic derivatization of (bio)polymers bearing tyrosine moieties  

Biopolymer-polyphenol conjugates with water resistant adhesive property can also be 

produced using enzymes such as tyrosinase.Tyrosinase can oxidize the tyrosine amino acids 

of proteinsinto catechols (Fig. 41, pathway A) but also into quinones (Fig. 41, pathway B) 

depending on the reaction conditions. In the presence of a reducer such as ascorbic acid, 

tyrosine groups are converted into the adhesive DOPA amino acids by tyrosinase in aerated 

conditions.[223] 
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Fig. 41. (A) Conversion of tyrosine amino acids into DOPA by tyrosinase in the presence of a 

reducer, (B)Oxidation of phenol or catechol derivatives into reactive o-quinones using 

tyrosinase, followed by the grafting of amino-functionalized biomolecules/biopolymers 

Yamamoto et al.exploited this strategy in various publications[224, 225]and, for example, 

synthesized chitosan derivatives incorporating a tetrapeptide based tyrosine residue. These 

phenolic amino acids were then converted into DOPA by tyrosinase, thus affording, after the 

cross-linking with the grafted peptide chains, a reinforced polysaccharide hydrid fiber.[226] 

Tyrosinase was also used to couple different phenolic antioxidants (caffeic acid and 

chlorogenic acid) to wool fiber proteins[227] by oxidizing them into highly reactive o-

quinones that rapidly reacted with the proteins via their amino groups (Fig. 41, (B)).Other 

biopolymers (poly(ε-lysine) and gelatin) and synthetic polymers (poly(allylamine) and 

polyhedral oligomericsilsesquioxane) have been modified withphenolic compounds following 

the same strategy. Such type of functionalization has been reviewed elsewhere.[228] 

4. End chain precursors 
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concerned[229-233], final products were usually designed for metal nanoparticles 

stabilization such as FePt or Fe3O4 in the biomedical field (Fig. 36, pathway A). For example, 

EDC was used to catalyze the formation of amide bonds between Au-Fe3O4-Dopamine-PEG-

COOH nanoparticles and the epidermal growth factor receptor antibody. These magnetic and 

optical active dumbbell Au-Fe3O4 nanoparticles were then exploited to image binding events 

between the modified nanoparticles and A431 cells.[233] 

Catechol derivatives were also coupled to one N-hydroxysuccinimidyl activated chain-

endpolymermostly to elaborate stable biomimetic surfaces with protein, bacterial-resistant 

adlayers or antimicrobial properties (Fig. 36, pathway C).[234-238]More recently, 

nitrocatecholamines were used to end-functionnalize a four-arm star PEG-(NHS)4. 

Interestingly, these nitrocatechol functionalized polymers were employed to generate various 

covalently and metal-cross-linked responsive gels and coatings that can be on demand 

photodegraded upon light exposure (Fig. 42).[239] 
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Fig. 42. Strategies to prepare photoreactive films based on nitrodopamine derivatives: through 

metallic complexation (A) or covalent bonds (B). 

PEG modification with a catechol function using HBTU/HOBt as coupling reagents has 

been widely studied in the literature and is of prime interest for biological applications where 

a robust polymer anchoring is needed. Functionality has been integrated at one chain-end[17, 

240] or at several chain-ends when multiple arms PEG-based polymers were concerned[241-

244]. For instance, Messersmith et al. worked on the gelation conditions (natureand 

concentration of oxidizing agent, (un)protectedN-terminal side chain …) of several DOPA 

modified PEG andobtained different hydrogels fromstar-shaped architectures such as those 
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depicted in Fig. 43, 31.[245]Recently, these mussel glue hydrogels (R=H) were also 

employed in vivo as promising elastomeric tissue sealant for repairing fetal membranes[145] 

and for islet cell encapsulation.[244] 

 

Fig. 43. Examples of multiple arm-PEG modified with DOPA moieties. 

Starting from the same architecture (R = NHBoc), they developed self-healing hydrogels 

based on catechol-Fe3+ complexes and controlled their mechanical properties via pH change 

and the nature of the interpolymer cross-linking.[192] The tris-catechol-Fe3+ cross-linked gels 

exhibited better viscoelastic properties than the mono-catechol-Fe3+ complex. 

Peptide dendritic ligands containing lysine or glutamic acid werealso prepared using the 

same coupling agents from protected dopamine and added then to magnetic nanoparticles 

following the ligand-exchange method.[246]These modified nanoparticles potentially 

represent straightforward platforms for the attachment of biological active molecules of 

interest for biomedical applications. 

Additionally, by exploiting reversible boronic ester linkages, Messersmith et al. succeeded 
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multiple arms-PEG (Fig. 44).[247]Indeed, by mixing catechol end-chain functionalized 4-arm 

PEG and 1,3-benzenediboronic acid, boronate cross-linked hydrogels were conveniently 

obtained under basic conditions (pH above the diolpKa, 9 in this case) within 30 minutes at 

20°C. Interestingly, these boronate ester bonds were completely dissociated at pH below 3, 

leading back to starting materials. Self-healing property has also been demonstrated between 

two pieces of fractured gels that healed autonomously and rapidly without the use of cross-

linking agents thanks to the presence of free boronic acid and catechol units at these frontiers. 

 

Fig. 44. Schematic representation of self-healing and pH-responsive hydrogels developed by 

Messersmith et al..[247] 

Trichloro-s-triazine (TsT) was used as linker between monomethoxy-poly(ethylene glycol) 

(mPEG) and dopamine to stabilize Fe3O4 nanoparticles.[248]Enzymatically degradable 

adhesive hydrogels were synthesized by coupling an Alanine-Alanine dipeptide-modified 

branched PEG and 6 with benzotriazol-1-yl-oxy-tripyrrolidinophosphonium 

hexafluorophosphate (PyBOP), followed by oxidative coupling of the catechol chain-ends by 

the addition of NaIO4 (Fig. 45).[249] 
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Fig. 45. Enzymatically degradable adhesive hydrogels.[249] 

Dopamine was also linked to oligonucleotides bearing a carboxylic acid end group by 

using N-hydroxysuccinimide ester as the activator.[250]This activator was also involved in 

the modification of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-

PPO-PEO) triblock copolymers with DOPA to improve its bioadhesion.[251] 

4.2. Elaboration of catechol end-functionalized polymers via controlled/living and 

electrochemical polymerizations techniques. 

During the last decade, controlled radical polymerization (CRP) techniques such as Atom 

Transfer Radical Polymerization (ATRP)[252-254] and Reversible Addition-Fragmentation 

chain Transfer polymerization (RAFT),[255-257] to name few, have been proven to be very 

versatile techniques to introduce end-groups on a well-defined polymer chain. Obviously, 

much effort has been devoted over the last few years to prepare well-defined catechol end-

functionalized synthetic polymers using CRP techniques with the ultimate goal of creating 

(patterned) polymer brushes or stabilizing nanoparticles via a “grafting to” approach. In this 

context, ATRP and RAFT were found to be highly efficient procedures for the preparation of 

the sus-mentioned polymers by using catechol based initiators (32-35, Fig. 46) or chain 

transfer agents (36 and 37, Fig. 46), respectively. 
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Fig. 46.Catechol derivatives as polymerization initiators in solution; ATRP initiators 32[258], 

33[259], 34[260] and 35[261], RAFT agents 36[262] and 37[20]. 

When ATRP is concerned, zwitterionic polymers were prepared in solution from protected 

catecholic initiators (32, 33 and 34, Fig. 46) and ultra low fouling property was imparted to 

various surfaces after their immobilization.[258-260, 263]Copolymers of di(ethylene glycol) 

methyl ether methacrylate (MEO2MA) and poly((ethylene glycol) methyl ether methacrylate) 

(MAPEG) were synthesized from 35 (Fig. 46) and were then used for the stabilization of 

Fe3O4 nanoparticles.[261] Such modified nanoparticles were further studied for their ability to 

interchange their hydrophilic/hydrophobic character.[264] Indeed, they were hydrophobic 

enough to adsorb at the air/water interface but can simultaneously be squeezed out from the 

interface if the packing density exceeds a critical value. Such behavior is very promising for 

biomedical applications such as crossing biological membranes. The thermo-responsive 

character of these copolymers was also nicely exploited for inducing the controlled 
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nanoparticles agglomeration that enhanced the contrast ability of Fe3O4in magnetic resonance 

imaging applications.[229] 

Catechols bearing a RAFT agent (36,Fig. 46) were also implemented for the preparation of 

well-defined poly(tert-butyl acrylate), poly(N-isopropylacrylamide) (PNIPAM) and 

poly(styrene) that were then immobilized onto Ti surfaces.[262]In this study, the 

immobilization of polymers on the titanium surface was monitored by using surface 

plasmonresonancetechnology that allowed estimating the surface coverage (Γ) of the grafted 

polymers onto the sensor surface.The dopamine chemistry was also successfully exploited for 

the preparation of thermoresponsivenanodiamond-functionalized PNIPAM particles from 

well-defined dopamine end-functionalized PNIPAM. These particles exhibited a reversible 

Lower Critical Soluble Transition (LCST) phase transition at around 32°C leading to the 

formation of small aggregates with a particle size of ∼90 nm.  Because of its simple, gentle 

nature and versatility, this strategy is an avenue for the preparation of other responsive (pH, 

redox, etc…) functional nanodiamond particles for nanobiotechnology applications.[265] 

Fig. 47 points out that a large range of grafted polymer brushes can also be prepared, from 

the different catechol based anchors (37-42), by: 

i) performingCuAAC reactions[266, 267] between either catechol-alkyne[268] or 

catechol-azide[269] tethered surfaces and appropriate complementary 

functionalized end-terminated polymers. For instance, the alkyne-modified 

dopamine anchor 40 was immobilized onto Fe3O4 nanoparticles giving rise to 

“clickable” nanoparticles.[268]Then, an azido-end-decorated PEG was clicked 

onto these nanoparticles to render these magnetic nanoparticles soluble in water. 

Opposite strategy was also applied to titanium surfaces where an azide-

functionalized dopamine 41 was anchored to the surface prior to coupling to an 

alkyne-functional electroactive or fluorinated probe.[269] 
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ii)  using “grafting from” procedures from catechol functionalized surfaces able to 

undergo a CRP (e.g. ATRP[18, 270-276] and RAFT[20]) or ROMP[19] (Ring-

Opening Metathesis Polymerization[277]) polymerizations respectively.Of these 

polymerization techniques, the ATRP has been without doubt the most commonly 

used. This has notably been applied to build both antifouling and cell adhesive 

surfaces by grafting, for instance, PEG and zwitterionic polymers, 

respectively.[18, 270, 274] Poly(styrene) brushes were also grown from a catechol 

based RAFT transfer agent (37, Fig. 46) immobilized on Ti[87]4-modified 

ITO.[20] Interestingly, these brushes were removed from the surface by dipping 

the surface in a phosphate buffer (pH 9.0), the Ti-diol complex being easily 

dissociated under weak basic conditions. ROMP was also exploited to grow 

polymer brushes from various surfaces modified with 39 (Fig. 47).[19] This 

approach allowed the elaboration of low surface energy by grafting perfluoroalkyl-

substituted polymer brushes and also to immobilize polymers onto patterned 

surfaces by using microcontact printing (µCP). 

iii)  performing electropolymerization from TiO2 nanotubes whose inner walls are 

coated by a catechol bearing a pyrrole group (42,Fig. 47).[278]These modified 

nanotubes presented a smaller charge transfer resistance and are potential 

candidates for fabricating ordered organic/inorganic p-n heterojunctions. 
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Fig. 47. Strategies to prepare polymer brushes onto surfaces: ROMP[19], RAFT[20], 

ATRP[18], CuAAC reaction[268, 269] and electropolymerization[278]. 
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5. Conclusions. 

The main aim of this review was to present the most important and straightforward 

synthetic methods allowing the incorporation of catechol units into polymer chains and to 

highlight the importance of these catechols for further functionalization of the 

macromolecules. Indeed, the field of catechol-containing polymers, owing to their fascinating 

intrinsic chemical properties and their practical applications, has greatly expanded over the 

past decade. More particularly, the combination of synthetic versatility, rich functionality and 

inherent binding properties towards various organic and inorganic surfaces make this class of 

polymers useful for many applications including synthetic adhesives and coatings, sensors, 

bioactive and self-healing materials, smart hydrogels and photovoltaic materials.  

While most of the earlier efforts were primarily focused on the incorporation of catechol 

units into the main chains of polymers, by exploiting its redox properties, new methods have 

been explored more recently, providing for facile synthetic access to functional catechol-

containing materials with advanced properties. Many biomimetic adhesive peptides 

incorporating side-chain catechol fragments, were, for example, readily prepared by solid-

state peptide synthesis or by ring-opening polymerization of α-amino acid N-

carboxyanhydrides. Recently, ligation techniques have also been employed i) to conveniently 

elaborate catechol end- and side-functionalized polymer materials, displaying self-healing and 

stimuli-responsive properties, from preformed activated (bio)polymers and ii) to construct, via 

« click » chemistry, bio-inspired functionalized surfaces. More recently, Living/Controlled 

Polymerization techniques, such as ATRP, RAFT and ROMP, have also emerged as powerful 

and versatile techniques allowing the immobilization, using both « grafting from » and 

« grafting onto » strategies, of well-defined end-decorated catechol polymers onto different 

substrates. Surfaces and nanoparticles with controllable interface properties and very 

promising biomedical applications have been created using such approaches. 
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Throughout this review, we have shown that the various reactivity of catechols in 

combination with the different polymerization methods available allow a plethora of catechol 

containing polymers with variable structures and interesting properties to be produced. 

However, we firmly believe that the development of catechol-based polymers is still a 

burgeoning field and that exciting new catechol-based materials with applications in 

interesting new fields will be reported. 
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