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Abstract:Catechols represent an important and versatiledibgil block for the design of
mussel-inspired synthetic adhesives and coatinydeeld, their ability to establish large
panoply of interactions with both organic and ireorig substrates has promoted catechol as a
universal anchor for surface modifications. In &ddi to its pivotal role in adhesive
interfaces, the catechol unit recently emerged aewaerful building block for the preparation
of a large range of polymeric materials with intiifgg structures and fascinating properties.
The importance of catechols as efficient anchogngups has been highlighted in recent

excellent reviews partly dedicated to the charaéon of their adhesive mechanisms onto
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surfaces and to their applications. The aim of plaiger is to review for the first time the main
synthetic approaches developed for the design wdlrmatechol-based polymer materials. We
will also highlight the importance of these groups versatile platforms for further

functionalization of the macromolecular structurdest also surfaces. This will be illustrated
by briefly discussing some advanced applicationgeldped from these catechol-modified
polymers. The review is organized according todhemical structure of the functionalized
catechol polymers. Chapter 1 discusses polymersingea@atechols embedded into the
polymer main chain. Chapter 2 focuses on the attaoh of catechol moieties as pendant
groups and Chapter 3 describes the different appesafor incorporation of the catechol unit

at the extremity of well-defined polymers.
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AB TEM

AFM antibacterial

AIBN atomic force microscopy

ATRP 2,2’-azobisisobutyronitrile

BIBB atom transfer radical polymerization

CNTs 2- bromoisobutyryl bromide

CRP carbon nanotubes

CuAAC controlled radical polymerization

DLS copper-catalyzed azide-alkyne 1,3-dipolar cyclotolali

DMAEMA* dynamic light scattering

DMAP (2-(methacryloxy)ethyl) trimethylammonium chloride

DOPA 4-dimethylaminopyridine

EDC 3,4-dihydroxyphenyl-L-alanine

H.0, ethyl(dimethylaminopropyl) carbodiimide

HBTU hydrogen peroxide
O-(benzotriazol-1-yl)N,N,N’,N’-tetramethyluronium

HEMA hexafluorophosphate

HOBt 2-hydroxyethyl methacrylate

HRP 1-hydroxybenzotriazole hydrate

LbL horseradish peroxidase

Mefp layer-by-layer

MMT mytilusedulis foot protein

NCA Na'-montmorillonite

NHS a-amino acid\-carboxyanhydride

NPC N-hydroxysuccinimide

PAA p-nitrophenyl-chloroformate

PAH poly(acrylic acid)

PCL poly(allylamine hydrochloride)

PDMS poly(e-caprolactone)

PEG poly(dimethylsiloxane)

PEI poly(ethylene glycol)

PNIPAM poly(ethylenimine)

PolyDp poly(N-isopropylacrylamide)

PSS poly(dopamine)

PTFE poly(styrene sulfonate)

RAFT poly(tetrafluoroethylene)

ROMP reversible addition-fragmentation chain transfdyperization

ROP ring-opening metathesis polymerization

SLS ring opening polymerization

SBP static light scattering

SEM soybean peroxidase

Sn(Oct) scanning electron microscopy

TEA tin(Il) octanoate
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1. Introduction

Catechols occur naturally in fruits and vegetallesin poisons, insects and teas as well.
They are small molecules widely used for synthesfeod, pharmaceuticals or agrochemical
ingredients, but also as stabilizing additives. Hastance,tert-butylcatechol is largely
employed as a polymerization inhibitor.[1] In organhemistry, catechol and its derivatives
have widely attracted scientists since decade®ekhdthey can act as antioxidant agents, as

chelating agents in coordination chemistry or naqglicals to cite only few (Fig. 1).

OH

OH (0]

Where R means Radical; M, Metal and O, Oxidant

Fig. 1.Main chemical properties of catechols.

In 1981, catechols have been identified by Waite emworkers to be responsible for the
versatile adhesion of mussels in the most inhdsleitaegions under very harsh and wet
conditions.[2] This important discovery led to dgeptudying the exact structure of the
proteins responsible for the adhesion of musseld #reir action mode.[3-6] The

6
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posttranslationally modified amino acid, 3,4-dihyxyphenyl-L-alanine (DOPA2, Fig. 2),
has been determined as the main element requirethi® moisture-resistant adhesion.[4]
Proteins found in the mussel adhesive plaque, MefpMytilusedulisfoot protein, were
largely characterized and six of them were idegdifio present a DOPA content ranging from
3 mole % (Mefp-2) to 30 mole % (Mefp-5).[5, 7] Eeittes of its role in strong interactions
with either organic or inorganic surfaces have ba#orded by Atomic Force Microscopy
(AFM) on both small polymer chains containing catdcend groups[8] and Mefps[9].
Specific adhesion mechanism of these small moledol@ large panel of surfaces is still not
completely understood. It has been studied for mgegrs and several proposals of
interaction modes can be found in the literatuteese have been reviewed elsewhere[10] and
seem to be substrate dependent. However in allscasealent or strong non-covalent
interactions (hydrogen bonds ot stacking interactions for instances) can be fooeitveen
catechol groups and inorganic substrates such @ 1ii for example. As far as metal oxides
are concerned, catechol groups are assumed to laalentate bonding with the metal

surface.[12, 13]
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Fig. 2.Catechol and some derivatives.
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This amazing adhesion under wet conditions combingd the intrinsic properties of
catechols cited here above (antioxidant, ligatibitity ...) have opened the door to the design
of new (multi)functional platforms based on catdsh®his review describes the state-of-the-
art research in the synthesis of (bio)macromolecuddearing catechols that are used as
versatile platforms for the design of adherent mw®e multifunctional materials and
inorganic/polymer hybrids. Numerous scientific ggpethave worked worldwide on this topic
since almost fifteen years. These works will bethfer detailed in the following sections.
Briefly, catechol functions can be incorporatedintacromolecules as main, side and end-
chain groups by employing various synthetic pathsvaye successfully employed strategies
include i)either the oxidative[14] or enzymatic[1pblymerization of functional catechols;
ijthe polymerization of monomers bearing cateclypbups protected or not (radical
polymerization[16] or peptide synthesis[17]);iiihe controlled/living polymerization of
synthetic monomers in the presence of catecholdatiators (ATRP,[18]ROMP[19] ...) or
chaintransfer agents (RAFT[20]). The point thatl Wi stressed on in this review concerns
the final architecture of the different macromolesuobtained from these different synthetic
approaches (Fig. 3). We will also emphasize howrdetivity of the catechol functional
groups can be nicely exploited for further polyrderivatizations and for the development of

advanced applications.
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Fig. 3.Catechol based building blocks for macromolecutajireering.

2. Main chain precursors

Molecules bearing catechols are easily convertemhighly reactive quinones either by a
strong oxidant agent such as Ng&1] or an enzyme (horseradish peroxidase combivitd
hydrogen peroxide, HRP/D,, for instance[15]), but also by an aerated aqueoligtion at
neutral to alkaline pH.[22] In some conditionsthalt be detailed below, self-polymerization
of some of these oxidized products is observedjingato polymers that are of prime
importance in the field of surface modificationfieEe oxidative polymerizations result in the
formation of uncontrolled cross-linked films compdsof a mixture of cross-linked products
bearing mostly catechol and quinone groups thatbeaexploited for further derivatizationsas

it will be illustrated in the next sections.

2.1. Autopolymerization in aerated basic solutions.

2.1.1. General process and initial developments.
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Autopolymerization of catecholamines in aerateddaeasnditions was first demonstrated
by Messersmitret al. for dopamine ,Fig. 2) in a Tris buffered dopamine solution at pH
8.5.[14] When this polymerization occurs in the gmmce of substrates, an adherent
poly(dopamine) (polyDp)film isn situdeposited on the surface after 24 hours of immersio
(Fig. 4). Film thickness increases with the immamsiime as shown on Fig.5 (A) where a
plateau isobtained after 24 hours.[14] Final polybBypckness also increases with the
polymerization temperature.[23] Both organic andrganic surfaces were well covered,

including poly(tetrafluoroethylene) (PTFE), knowar fits antiadhesion properties (Fig. 5

(B)).[14]
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2

Fig. 4. Poly(dopamine) (polyDp) network adapted from Messethet al[14]
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Fig. 5. Thickness evolution of poly(dopamine) (polyDp) ting on Si as measured by AFM
of patterned surfaces (A), X-ray Photoelectron 8pecopy (XPS) characterizations of
several polyDp coated surfaces (B).[14] The barplgraepresents the intensity of
characteristic substrate signal before (hatched)adier (solid) coating with polyDp. “N.A.”

means that XPS signals of the substrates weretimgiisshable from the polyDp signal.The

blue circles represent the nitrogen/carbon ratier gfolydopamine coating.

From a mechanistic point of view, the polyDp netkv@Fig. 4) is presumably formed by
Schiff base formation and/or byMichael type additiavolvingquinone groups of oxidized
dopamine with its primary amino group.[8, 24, 25} td now, the exact structure of polyDp
is still lacking in the literature but some propgs&an be found in publications. As
established spectrophotometrically by Linert andvaxixers, dopamine oxidation leads to
dopaminochromelQ,Fig. 6) following a multistep reaction pathway.JZthis molecule can
then self-polymerize and produce polymers that wseally complex networks with free
catechol groups available for further chemical tieas (11 and 12,Fig. 6).These catechol
groups are responsible for the strong adhesionhef golymer network to any kind of
surfaces,both organic (polysulfone,[26, 27]polyeshifone,[28]
polyethylene,[29]polypyrrole,[30]  hydrophobic/supgdrophobic  polymers,  [31-33]
silanes[34-37] and even yeast cells[38] or raw mheymato[39]) and inorganic (clays,[40]
iron-based nanopatrticles,[41, 42] gold,[43] g#3-47] and others[48-52]). Melanin

formation follows a similar process and also pragusuch complex systems.[53]

11
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Fig. 6. Mechanistic scheme for the formation of polyQf énd12) by self-polymerization of

dopamine.[43, 51, 54]

The ability of PolyDp to adhere onto various sutesahas been largely exploited to
promote cells adhesion on several surfaces sughass, polystyrene, poly(dimethylsiloxane)
(PDMS) and even PTFE.[55-58] Very recently, Jiamgl @oworkers managed to pattern
PEG-coated surfaces with polyDp using microconpaiciting (LCP) and PDMS stamps (Fig.

7) which were further exploited to spatially comtitee anchoring of mammalian cells.[58]
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Fig. 7.Strategy for cells patterning using polyDp coafisgale bar is 100 um).[58]

The substrates can also play the role of saciifiermplates that are removed after polyDp
formation in order to form stable polyDp capsul®@@] that can be loaded with
hydrophobic drugs such as anticancer agent (thadice).[66] As no drug leakage was
observed after template removal, these new drugecarave opened the door to potential
applications in biotechnology and drug deliverytegss for instances.More particularly, Zhou
and coworkers have demonstrated pH stability farthsmicrocapsules with outstanding
unidirectional loading of rhodamine 6G (Rh6G) im solvents.[60] Indeed, the polyDp
capsules are almost impermeable to Rh6G in ethahité the inverse is observed in aqueous
solution with uptake rates that depend on pH (imeee at high pH). The loading in aqueous
solution is driven by the high osmotic outside ptes and gradient chemical potential. At a
low pH, the amino groups of polyDp are protonatad eharge repulsion between them and
the positively charged dye is responsible for tbw loading efficiency. At high pH, the
catechols become negatively charged favoring ttiesitbn of the dye inside the capsules.

Beside the intrinsic properties of polyDp, the prese of residual quinone groups onto the
polymer backbone allows forfurther modificationstwthiol compounds (alkanethiol, thiol-
terminated methoxy-poly(ethylene glycol), thiolategaluronic acid) [54, 67] and nitrogen
derivatives (amine-terminated methoxy-poly(ethylagigcol), imidazoles)[68-70]leading to

the formation of new materials with different stiwes and properties (Fig. 8).

13
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or or

OH OH OH OH
HO. HO. HO. HO.

Fig. 8. Possible reaction pathways of oxidized catechath amines, thiols or imidazoles

where R’ stands for a polymeric or peptidic backdon

These pioneering works have opened up wide posigbilfor the preparation of
adherentpoly(catecholamines) based coatings on kamy of substrates[14, 71]. Their
applications in the biomedical field has been thy@d of a recent review [72]. Although the
catechol groups are responsible for the strongsadhef the coatings to the substrates, their
high reactivity towards various reagentsisalso eixgdl for further derivatizationsto provide

various surface functionalities (Fig. 9), as ithwié discussed in the following sections.

14
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Inorganic/organic Coated inorganic/organic
materials materials
] l

Buffered
catecholamine

solution,
pH 8.5

Where S\ = poly(ethylene glycol)

>— = heparin, bovine serum albumin, glucose oxidase ...
e = gold, silver ...

<+ = proteins

M* = metal ions

Fig. 9.Polydopamine coating and further derivatizations.

2.1.2. Poly(catecholamines) — platforms for the desigadxanced (nano)hybrids.
2.1.2.1. Poly(catecholamines): reducers of metal salts diner @xides.

Catechol groups of polyDp can act as strong reduaments for graphene oxide[54, 73,
74]and metal salts for the production of metal meambcles[75, 76] (Fig. 9, pathway A). For
instance, Xiet al. have obtained carbon nanotubes (CNTs) coatedgwith nanoparticles in
a two steps procedure.[77] CNTs were first coategblyDp by immersion in a buffered
dopamine solution, followed by dipping into HAuChqueous solution. Nanometricgold
particles (20-30 nm size) were obtained by reductibAu** by catechols of polyDp without

the need of any other chemical reagent (Fig. 10).

15
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PolyDp Au nanoparticles

Fig. 10. Transmission Electron Microscopy (TEM) images afbon nanotubes coated with
polyDp (A,C) and carbon nanotubes coated with pplydhd Au nanopatrticles (B, D).[77]

Scale bars are 200 nm (A), 350 nm (B), 10 nm (@)%hnm (D).

Silver nanoparticles have also been immobilizedamalar wayon various polyDp coated
substrates[78-82] to obtain final antibacterial JABroperties[83, 84]. Such silver
nanoparticles can also be elaboratedin solutionmixing dopamine and AgN$under
alkaline conditionsleading to a bright yellow sadut of Ag® nanoparticles stabilized with a
polyDp coating.[85]This material was then exploified the fast and sensitive colorimetric
detection of C& ions. Indeed, in the presence of “Guthe initiallybright yellow

polyDp/Ad’assemblyaggregated with the formation of a darkhrsuspension (Fig. 11).

16
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Fig. 11.Mechanism of colorimetric determination of %u with silver/dopamine
nanoparticlefReproduced with permission from ref [85]. Copyrig@ll The Royal Society

of Chemistry.

2.1.2.2. Poly(catecholamines) as templates for the formadfaninerals.

Based on these remarkable binding properties tamaadous metal ions[86, 87], different
research groups havealso used polyDp coatings emplaees for the formation of
hydroxyapatite by co-precipitation of calcium anbopphate ions (Fig. 12).[88-90] The
hydroxyapatite formation can be carried out onosikinds of surfaces such as CNTs[88,
90] or polymeric substrates (porous cellulose, estgr, polytetrafluoroethylene for
instances)[89] to convert them into scaffolds foné tissue regeneration and implantation.

Such stabilizing effect of the catechols towardsdaspecies has also been exploited by
Parket al. for the mineralization of CaCfsaterite crystals which were further transformed

into bone hydroxyapatite minerals in a simulatedybdiuid.[91-93] CaCQ@ microspheres

17
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were prepared by mixing CaCind NaCO; with dopamine[91, 92] or by bubbling Gt an

agueous mixture of CagINH,OH and dopamine[93].

o @ (C_a”l Biominerals formation
.

Fig. 12. A) Formation of calcium phosphate crystals on pgycoatings, B) Scanning
Electron Microscopy (SEM) images of polyester fbél and 2) and PTFE membrane (3 and

4) without and with hydroxyapatites.[89]

2.1.2.3. Poly(catecholamines) as anchoring layers for pohjoneshes and other
(bio)macromolecules.

PolyDp coating were also exploited to graft (i) &ATRP (Atom Transfer Radical
Polymerization) initiator for controlled radical lgmerization[94-97] to generate well-
defined polymer brushes on various surfaces viarafting from” approach that can be
further derivatizedfor instance by the anchoring abfitosan (Fig. 13) or (ii) various
(bio)macromolecules (Fig. 9, pathways B and C).sEhean either favor cell adhesion and
improve blood compatibility by grafting heparin,no@anavalin A or bovine serum albumin
(BSA)[98-112] or avoid protein adhesion with poly(gene glycol) (PEG)[113-116], platelet

activation thanks to selenocystamine[117]and ewsrgdl colonization or bacterial fouling

18
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when amphotericin B[118] or quaternary ammoniumiss[dd 9] are immobilized onto the
surface. Moreover, several research groupshavelapmdoriginal biosensors based on a
polyDp coating post-functionalized with enzymes[jL&0ch as glucose oxidase[121, 122] or

antibodies[123-125].

Qﬁ‘/o\/\o "
O

HEMA

Br

Br
) ATRP DMAP, TEA

o) Dioxane, RT

O. 0]
ATRP Br OH
initiator HaC Br )
CHg Chitosan
BIBB EDC, NHS

Stainless steel

(0] NH-Chitosan

Fig. 13. ATRP immobilized initiator on polyDp coating andontrolled radical
polymerization of 2-hydroxyethyl methacrylate (HEM#fllowed by the immobilization of

chitosan.[97]

Other functional groups can also be incorporatedo omiomimetic coatings from
functionalized catecholamine. Messersndthal. have reported on the self-polymerization of
norepinephring,Fig. 2) in the same conditions. This molecule aorg# an additional
hydroxyl group compared to dopamine.[126] Hencedegicted in Fig. 14, after oxidative
polymerization in the presence of a gold substthtsse secondary OH groups of the resulting

poly(norepinephrine) can be then exploited to atéi the ring-opening

19
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polymerization(ROP)[127] of lactones such ascaprolactone, thereby providing a

biodegradable polygfcaprolactone) (PCL) coating on the surface.

Poly(norepinephrine) 0

55°C, 24h

Fig. 14. Ring-Opening Polymerization[127] of-caprolactone on poly(norepinephrine)-

modified gold substrate.[126]

2.2. Polymerization of catechols catalyzed by ereym

Enzymatic polymerization is defined as “timevitro polymerization of artificial substrate
monomers catalyzed by an isolated enzymwanonbiosynthetic (nonmetabolic)
pathways”.[128, 129] Polyphenols can be producedrimymatic polymerization of catechols
under very mild conditions (in water at room tengtere under atmospheric pressureand at
neutral pH) without using any toxic reagents. Meeg starting substrates are most often
coming from renewable resources that make the eatzgmpolymerization a great alternative
to other synthetic pathways that requiredpetrochamsources. In this context, several
enzymes can be involved in such polymerizationdisgussed below.

Peroxidases such as soybean peroxidase (SBP) cesnbvith hydrogen peroxide (B,)
were, for example,used to polymerize catectl Kig. 2). Indeed the peroxidase(i
combination is well-known to form an active enzymsbstrate complex able to oxidize
hydrogen donors such as phenols and amines.[15{Uthése conditions, a polycatechol,
incorporating both (2,3-dihydroxy-1,4-phenylend3)( and (2-hydroxy-1,4-oxyphenylene)

(14) subunits (Fig. 15) was obtained. It is importamnhote that phenol groups of sububit

20
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are expected to have different chemical propettesatechols ofi3 but this difference of
reactivity is not discussed in the paper.

Dosoretet al. performed enzymatic polymerization of catecholsthwhorseradish
peroxidase (HRP) in water and obtained polymerhk wigh water solubility.[130]Nazaet al.
compared poly(catechols) obtained by catalytic pasization with HRP and a cationic
metalloporphyrin as catalysts.[131]Tetrapyridilpoygn seemed to be a more-efficient

catalyst as final polymer has higher molecular Weand presented better thermal stability.

HO OH HQ OH OH OH
L0y Ao
n n
13 14
Fig. 15.(2,3-dihydroxy-1,4-phenylenell8)and (2-hydroxy-1,4-oxyphenylenel4) subunits

found in the poly(catechol) structure.[15]

Flavonoids such as catechiKig. 2) were polymerized using HRP with a finakeage
molecular weight ranging from 4000 to 12000 g/nidZ] A polymerization mechanism
proposal was based on radical polyrecombinatiorgasesto produce oligomers that can
further recombine into polymers (Fig. 16), althoughmore details were given. However this
pathway has been identified to compete with thégote formation of oxidation products and
so the exact structure has not been perfectly iftemhtyet. Poly(catechin) was also
synthesized using HRP and the final product shostezhg radical scavenging activity and
inhibition effect against xanthine oxidase, a loansity lipoprotein responsible for the

formation of uric acid.[133]

21
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Fig. 16. Proposed structure for flavanolbased polymers][132

Additionally, caffeic acid %,Fig. 2) was deposited onto gold surfaces functined with
4-aminothiophenol by dip-pen nanolithography.[1B4J&s then treated with HRP directly on

the surface leading to formation of polymers incogtingquinoid subunitslp, Fig. 17).

HO
15

Fig. 17.Structure {5) of poly(caffeic acid) synthesized by enzymatidypterization using

HRP.[134]

Another peroxidase, xanthine oxidase (XO), was uded polymerize several
catecholamines in Tris-HCI buffer. Roseil. observed that some of them, such as DOPA,
were not polymerized presumably because of thetivegafluence on the enzyme activity of
the a-carboxylic acid group contrary to dopamine.[135]

Poly(catechol)s, exclusively composed of (2-hydr@d-oxyphenylene) subunit4, Fig.
15),were also successfully prepared by using orslasich as laccase in combination with
dissolved oxygen.[136]For example, catechn ig. 2), quercetin and rutirl§ and 17,

respectively,Fig. 18) were oxidatively polymerizéy laccase and, interestingly, both
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polymer materials showed stronger superoxide sgpngnactivity compared to their

monomer.[137-139]

Fig. 18.Chemical structures of quercetit6f and rutin 17).

3. Sidechain precursors

3.1. Polymerization of catechol basedvinyl monomers.

Catechol side chain polymers can be conveniengypgmedby radical polymerization of

vinyl monomers incorporating a (un)protectedcatéand (Fig. 19).
3.1.1. Starting from protected monomers.

When vinyl monomers bearing protected catechols arensidered, borax
(Na2B4O7.10H:0) is mainly used as the protecting reagent by ilogna cyclic bidentate
benzenediol subunitas depicted in Fig. 19.[140] fddical polymerization of the protected
monomer occurs in water and leads to linear polychains. Catechol deprotection is carried
out in acidic medium leading to polymers bearingdant catechols. Other protecting groups
can be employed such as 2,2-dimethoxypropane[l4ignzyl bromide[142] or

dichlorodiphenylmethane[143] to name only a few.
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Where R =H or CHl
Fig. 19. Polymer architectures obtained from vinyl mononagaring (un)protectedcatechol

unit.

As an interestingexample, protected dopamine aoigla (@18,Fig. 20) was
homopolymerized using 2,2’-azobisisobutyronitrildEN) as radical initiator in acetonitrile
at 70°C for 3 days (Fig. 20). Deprotection of théechols then occurred in a mixture of acetic
acid, hydrobromic acid and trifluoroacetic acid@m temperature. The so-formed polymer
bearing catechol groups on each monomer unit disglatrong adhesiveproperties towards
woodwhen cured at high temperature (180°C) with n@rtiontaining polymers such as

poly(ethylenimine)(PEI).[144]
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Fig. 20. Synthesis of poly(dopamine acrylamid&9)[144]

Protected DOPA monomers have also been exploitgoréwiding sustainable and durable
AB coatings on stainless steel surfaces.[25] Adineomopolymer bearing DOPArepetitive
units was synthesized by free radical polymeriratibprotected-DOPA methacrylamid2O(
Fig. 21) in water using 4,4'-azobis(4-cyanopentaramid) (V-501) as initiator, followed by
deprotection with HCI. The catechol groups of tieéymer were then oxidized in water under
basic conditions (pH = 10), leading to the corresjiog water soluble polymer bearing
quinone groups2l, Pox(mDOPA); Fig. 21). The sequential Layer-by-€4¥45]deposition
of this polymer andpoly(allylamine) (PAH) led tooss-linked films as the result of
amine/quinone reactions between the two complememartners (Fig. 22). Moreover,
introducing an AB peptide (nisin) in the last lay@f the multilayer filmconferredstrong AB
properties to the material. Furthermore, due tocthvealent anchoring of the peptide, the AB

activity was maintained even after dipping the $watbs in water for one night.
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Fig. 22. Covalent LbL assembly for imparting robust AB pedy to stainless steel.[25]

Polymers bearing catechols can also be preparedingtafrom protected 3,4-
dihydroxystyrene42 and23,Fig. 23)[146, 147] and were used asbio-inspirdieai/es after

deprotection.
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Fig. 23. Chemical structures of 3,4-dimethoxystyrer®2)[146] and 3,4-di(OTBDMS)
styrene 23)[147].
3.1.2. Starting from unprotected monomers.
When unprotected catechols were considered, a gimge work described the
copolymerization of DOPA methacrylamid#i(Fig. 24) with poly(ethylene glycol) diacrylate
under UV irradiation in the presence of a photaatar (Fig. 25). This copolymerization led

to hydrogels that are of prime interest as new sigthe for biomedical applications.[16]

X

NH

CI\IH I\IH 9
HO o
HiC™
o) o)
OH OH OH
OH
24

OH OH
25 26

Fig. 24. Monomers bearing catechol groups:DOPA methacrylam@4)[16], dopamine

methacrylamide25)[148] and methyl ester DOPA methacrylami@é)[149].
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Fig. 25. Hydrogel preparation from the copolymerization 24f withpoly(ethylene glycol)

diacrylate.[16]

Importantly, since catechols are well-known polyiretion inhibitors by reacting with
radicals with the formation of aryloxy free radg§l50, 151] the radical polymerization of
vinyl monomers bearing unprotected catechols idirat glance surprising. Nevertheless,
several recent works of free-radically polymerizatechol monomers attest to the viability of
this approach.[16, 148, 152-162] Dopamine methaamde @5, Fig. 24) was copolymerized
with methoxyethyl acrylate to furnish a reversia#hesive on nanostructured surfaces.[148,
152] Copolymerization of 25 with a phosphate based monomer such as 2-
(methacryloyloxy)ethyl phosphate allowed prepanmglerwater adhesives through complex
coacervates when combined with a polymer bearingjtige charges (protonated amine

bearing polymers) and divalent cations {Car Mg’*) as depicted on Fig. 26.[153-155]
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Fig. 26. Schematic representation of complex coacervated.[1

Copolymers of25 with 1H,1H-perfluorooctyl methacrylate were also synthesized
acetonitrile and coated onto various surfaces tgaim them ultra-low surface free
energy.[156] Substituting perfluorooctyl methactglaby 2-aminoethyl methacrylamide
provided copolymers useful for facile DNA immobdiron onto various substrates (Fig.
27).]157] Oligomers 05 and 2-(2-bromoisobutyryl) ethoxymethacrylate ledie design of
macroinitiators for the preparation of pdl¢(sopropylacrylamide) (PNIPAM) brushes on Ti
plate by Si-ATRP.[158]Terpolymerization b was also implemented, on the one hand, with
methoxyethyl acrylate and ethylene glycol dimetkkate for tuning the viscoelastic property
of this pressure-sensitive adhesive[159, 160] amwdthe other hand, with methoxyethyl
acrylate and dodecyl quaternized 2-(dimethylamitiy)le methacrylate for preparing

antimicrobial surfaces.[161]
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Fig. 27. Sequential method developed by Messersiithl. to prepare DNA microarray on

several substrates.[157]

Dual-action homopolymer of DOPA methacrylamid#,(Fig. 24) and copolymer of
dopamine methacrylamide, Fig. 24) andN-[3-(dimethylamino)propyl] methacrylamide
were synthesized by Alexander and coworkers.[162 @ their positive charge and/or their
catechol groups, these polymers were able to bmitefbacteria aggregation and suppress
their quorum sensing (QS) signals. Successful battapture has been confirmed with these
two polymers. Furthermore, they were able to sdqudsacteria without damaging cell
viability, thereby rendering this new strategy vetractive for the conception of novel
antimicrobial materials.

In all these works, neither the possible side reastof propagating radicals with catechols
nor their potential impact on the final polymer fatecture are discussed. Polymers are
always presented as linear structures. Howevergaitlieal polymerization of catechol bearing
vinyl monomers is expected to provide (hyper)braacholymers or, even more, cross-linked
materials, depending on the amount of catecholgingeanonomers involved in the
(co)polymerization process.[163] Indeed, accordm¢he well-known reactivity of catechols

with radicals, a catechol group of one polymer chaiay react with a radical existing in
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another chain during radical polymerization, thaosrfing an interchain C-O or C-C bond
(Fig. 28). One or more bonds may exist between tany polymer chains leading to
(hyper)branched polymers. Cross-linked materialsukh therefore be obtained when high

amounts of catechol bearing monomers are used.

303333323° 3332330230° 3333333230° 3333333032°

Fig. 28.Hyperbranching mechanism for the radical polyméigraof vinyl monomers bearing

unprotected catechols.

This expected branching reaction is however natudised in none of the above mentioned
manuscripts. Meanwhile, some authors recovered sans®luble materials when
copolymerizing a conventional vinyl monomer witltaechol functionalized one, especially
when large amounts of the latter were used.[14&, 156] Although not specifically
mentioned in the above-discussed publications,ethesoluble productsarepresumably the
result of the cross-linking reactions promoted g ¢atechol based monomers.

The occurrence of this branching was demonstratedilustrated by Detremblewat al.
by radically copolymerizing a DOPA derivative begria methacrylamide grou2§Fig.
24)[149, 163] with a methacrylate bearing an ammenigroup ((2-(methacryloxy)ethyl)
trimethylammonium chloride; DMAEMA in water at 50°C. The combination of Dynamic
(DLS) and Static Light Scattering (SLS) experimeaitswed to elucidate the hyperbranched

architecture of the so-formed water soluble polgtetdyte[163] of a high molar mass
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(M,>10° g/mol). Thanks to its free catechol groups, thipalymer P(mDOPAJo-
P(DMAEMA™) was used as a biomimetic glue for the strong ameh of functional
multilayers films onto stainless steel surface9[1463, 164] Antimicrobial and easy-cleaning
stainless steel surfaces were obtained from mydtildilms containing active biomolecules
(nisin and mucin) based on that biomimetic glues]1®he redox property of catechol was
also exploited for thén situ formation of elemental silver nanoparticles {pgy adding a
silver nitrate (AgNQ) aqueous solution to this DOPA-based hyperbrancopdlymer.[149,
164]Iindeed, catechols reduced *Aigto A¢® while the hyperbranched copolymer stabilized
the so-formed nanoparticles. The LbL depositiontlns silver loaded polycation with
poly(styrene sulfonate) (PSS) as the negative eopait led to highly biocidal coatings onto
stainless steel.[149] Moreover, similar surfacetiogg were made from galvanized steel,
thereby further indicating the high versatility safch bio-inspired glue for modifying various
substrates. A protecting multilayer film againstrrogsion was built by alternating the
deposition of P(MDOPAYo-P(DMAEMA™) used as corrosion inhibitor with clays as
negative counterparts that induced barrier progerfihe whole process was conducted in
water and did not release any toxic molecules énehvironment while the esthetical aspect

of the surface was preserved.[166]

3.2.Peptide synthesis of DOPA derivatives.

Because DOPA is largely present in the sequencesmasine adhesive foot proteins,
intensive research has been conducted on mimi¢kigge structures by synthesizing peptides
containing DOPA units. Some amino acids with prieside chains (lysine or glutamic acid
for instances) were coupled with protected DOPA nasi the
dicyclohexylcarbodiimidecoupling method.[167, 16&)Angst these, peptides containing up
to three DOPA amino acids were synthesizedand edupd a succinimidyl propionate-
activated poly(ethylene glycol) (PEG-SPA) (Fig. 2§)reaction with their free NJgroup at
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theN-terminalextremity.[12]More particularly, Messersimet al. studied the resistance of
this conjugate to proteins adhesion when deposite@iO, substrates and its ability to reduce
marine algal fouling.[169]Finally, various kinds elirfaces (Ti@ disks[170]and ureteral
stents[171] for instances) coated with similar adiiesive biomimetic peptides were found to

strongly resist to both urinary film formation abdcterial attachmeim vitro.
(e} 0]
O
NH
HO%KV H N M o
CH2 >n\ + q O OMm\
O

1. Water, 3h
2. HCI, pH 1-2

(o} (o}
NHﬁ—”\/\to N/O\
HO n m
CH,

OH

OH Wheren=1-3andm =113

Fig. 29. Synthesis of poly(ethylene glycol) functionaliaedh DOPA units.[12]

Because DOPA amino acids are usually protectedngupeptide synthesis, final
engineered macromolecules have a linear archiegtith pendant DOPA moieties located at
the extremity or within the peptide backbone (RApyOther peptides synthetic pathways and

their final applications were reviewed elsewherg2|1

3.2.1. Solid phase peptide synthesis.
Besides introducing this amino acid in marine attessmimic proteins,[173, 174] small
DOPA peptides or co-peptides prepared by solid @hseptide synthesiswere intensively

exploited to strongly anchor antifouling macromaoies onto surfaces. For example,
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Messersmitht al. have designed a catechol based peptidomimetiayol\27,Fig. 30) for
long-lasting fouling resistance of Ti surfaces.[[L7Ehese N-substituted glycine chains

conferred to the substrates proteins and cellsteasie for several months.

NH, NH,
o} o}
H H H
c N N N
H N N NH
3 H H 2
O o}
OH OH OH
20 OH OH OH

27

Fig. 30. Antifouling peptidomimetic polymer.[175]

DOPA has also been incorporated into a photopolizalele fatty acid with the aim of
elaborating adhesive stable spherical vesicles r afteself-assembly in
chloroform.[176]Methoxy-PEG-NKH was coupled with a tetra-DOPA peptide to prepare

metal core — polymer shell nanoparticles.[177]

3.2.2. Ring-opening polymerization afamino acid N-carboxyanhydrides (NCAS).
The synthesis ofi-amino acidN-carboxyanhydrides (NCAs) by phosgenation of amino
acids has been developed in the late 80’s by Kidcing[178] Deminget althen prepared
high molecular weight polypeptides bearing cateshoy ring-opening polymerization of
NCAs containing protected catecholsfollowed by theeprotection (Fig. 31).[179] This
method has the advantage to allow the preparatfolarge quantities of polymers and
copolymers of tunable composition, opening the doothe development of new adhesives

materials.[180-182]
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Fig. 31.Synthesis of adhesive copolypeptides by ring-opepolymerization ot-amino

acidN-carboxyanhydride(NCAs) monomers.

For example, multiple-interaction ligand has beewetoped by Hyeaet al. for the design
of ultrastable and biocompatible nanoparticles.]I8&ir strategy consists in the synthesis of
a macromolecule bearing three main functional partsentral one composed of chargedPEI
for electrostatic interactions with the negativelyarged metal nanoparticles, a firstexternal
part consisting on poly(DOPA) able to strongly amchthe macromolecule on the
nanoparticles, and a second external part compafslegdrophilic PEG segment required for
solubilizing the nanoparticle/macromolecule assgnblwater as a micelle(Fig. 32). This
versatile strategy has been also extended to \sananoparticles such as;Pg, MNnO and Au
thatexhibited high stability in various harsh eowiments and might open the door to new

relevant biomedical applications.

35



Published in: Progress in Polymer Science (2013), vol. 38, pp. 236-270.
Status : Postprint (Author’s version)

Manoparticle

-Multibinding interaction
Coordinate bonding

Hydrophobic interactions
Electrostatic interactions

MILD [ x+y=10 ey
MIL1 ; x+y=5 2
MIL2 ; x+y =15

T T
mPEG bPEI L-DOPA

Fig. 32. Formation of water-dispersible nanoparticles tgfoumultiple-interaction ligand

stabilization.[183]

Oligopeptides bearing DOPA unitswere also syntlesiZrom amphiphilic block
copolymers containing PEG blocks (hydrophilic pant) polyester blocks (hydrophobic part)
in order to form adhesive hydrogels after photopwyization of their methacrylate chain-
ends 28, Fig. 33).[184]Biotinylated surfaces werealso prepl via tri-DOPA peptide
synthesis from a biotin-PEG bearing an amino graspchain end.[185] Indeed, catechol
groups of DOPA were used to reduce gold or sihaioas into metal nanoparticles with a

stabilizing PEG-shell on their surfaces.
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Fig. 33.Photocurable and biodegradable block copolymer4][18

Interestingly,Kotoet al. prepared a terpolymer containing a tri-DOPA pemtid
apoly(Lysine),and a PEG blocR9, Fig. 34, A). The LbL deposition of agueous santof
this copolymer and natural clays (Nelontmorillonite, MMT) afforded nacre-like films
(Fig.34, B).[186] These authors have nicely explbithe cross-linking ability of DOPA with
Fe*[86, 187-190] to improve the mechanical propertieghe nanohybrid films. Indeed, upon
the addition of F& to Mefpl Mytilusedulis foot protein 1), the formation of a tris-
catecholato-iron(lll) complex was characterizedg(F85).[86] Then, iron reduction and
oxidation of one DOPA bound can occur leading ® fitrmation of a semiquinone radical
which can further react with oxygen to generateepttadical species that induce proteins
radical-radical coupling and so the cross-linkirfgig( 35).[190]Formation of this tris-
catecholato-iron(lll) complex has recently beenniduo be strongly influenced by both

iron/DOPA ratio[191] and pH[192].
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Fig. 34. (A) Molecular structure of DOPA-Lys-PEG copolymeghere x ~53 andy ~z ~ 3;
(B) LbL process between DOPA-Lys-PEG copolymer BT clay; digital photograph of
a FE" cross-linked 300 bilayer film of DOPA-Lys-PEG/clé); SEM cross-sectional view of
Fe* cross-linked 300 bilayer film of DOPA-Lys-PEG/clayrrows indicate the cross-section

of the film (2).[186]
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Fig. 35.Structure[86] and reactivity [190] of tris-catechid-iron(l1) complex.

3.3.Chemical ligation of catechol derivatives onto praied (bio)polymers.

Another advantage of catechols relies on theirltado be efficiently incorporated
into polymer chains from preformed (bio)polymersoré particularly, a current trend in this
domain is to use chemical ligation strategies betweatecholamines(and derivatives) and
appropriately selected activated polymers.The nossful ligation strategies are discussed

below.
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3.3.1. Grafting of catecholamines onto activated carbaxyécid functionalized

polymers.

HO
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Fig. 36. Some strategies for the ligation of catecholanunes polymers bearing carboxylic

acid (activated bycarbodiimide chemistry) (A), @dhtorophenyl (B), succinimidyl esters

(C),and triazole activated esters (D).

The first developed strategy consists in reactimmplgmer bearing side-chain carboxylic
acid groups(Fig. 36, pathway A) with a catecholaansuch as DOPA, dopamine or its
derivatives in the presence of an activator likevater soluble carbodiimide compound
(ethyl(dimethylaminopropyl) carbodiimide, EDC, forstance) to promote amidation. As an
example, dopamine methacrylamid@d,(Fig. 24) has been grafted onto poly(acrylic amd-
butyl acrylate) in the presence of EDC to prombtzbuplingreaction between the carboxylic
acid side groups of the copolymer and the aminomaf the dopaminederivative.[193] This
chemical modification has afforded adhesive propertthis copolymer and an enhancement

of its mechanical properties. Such couplingwas akssd i)to insert DOPA derivativ&,(Fig.
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2) into methacrylic triblock copolymers in orderitoprove the adhesion property of the so-
formed hydrogels[194] or ii) to graft dopamine @mpibly(acrylic acid) (PAA) to build robust
multilayer films with PAH after oxidation by Nalf195].In a similar way, Hammoneit al.
have grafted dopamine onto PAA with EDC in orderetthance LbL film stability with
catechol-bearing PEI. This strategy allowed for #laboration of multilayer materials
displaying a better control of interlayer diffusiand so opened the door to new devices in
drug delivery.[196]

Catecholamines can also be grafted to polymersirgpaactivated esters such as
pentafluorophenyl or succinimidylesters (Fig. 3@&thpvays B and C respectively). This
grafting strategyhas the advantage to occur at rtmperature without any activator. For
instance, dopamine was successfully grafted ontg(entafluorophenyl acrylate) and the
conjugates were used for functionalizing nanopiagicsuch as Ti& MoS;, MnO, or
Fe03[197-201] and dispersing TEOSNQ, ZnO or CdTenanorods.[202-204]

Very recently, a well-defined difunctionalpoly(dopae acrylamideso-propargyl
acrylamide) copolymer was also prepared from atinga@oly(pentafluorophenyl acrylate)
homopolymer and exploited to sequentially moditytanium surface (Fig. 37).[205] In a first
step, the difunctional copolynt,thanks to the presence of pendantcatechol urtibstive
polymer chain, was tethered onto a titanium sutestyeelding a dense alkyne-functionalized
Ti platform. Then, the copper-catalyzed azide-aék{rB3-dipolar cycloaddition (CUAAC) was
employed to covalently graft fluorescent probesi¢feéscein, Rhodamine), PEG chains, and

sugars (mannosg@;cyclodextrin).
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Fig. 37.Bio-inspired surface functionalization by click chistry.[205]

Additionally, other condensing agents can be founthe literature. For instance, poly(L-
glutamic acid) was modified with dopamine by usth¢4,6-dimethoxy-1,3,5-triazin-2-yl)-4-
methylmorpholinium chloride (DMTMM) and further ebgted in biodegradable

capsules.[206]

3.3.2. Grafting of catecholamines onto hydroxyl functionedl polymers.
Hydroxyl-functional polymers can also be converi@d p-nitrophenylcarbonate using
nitrophenyl-chloroformate (NPC), and further moeltfi by catecholamine (Fig. 38). For
instance,nonfouling surfaces such as PTFE wereapedy covalent coupling of dopamine

to hydroxyl-functional PEG.[207]
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Fig. 38.Ligation of catecholamineonto hydroxyl-functionazpolymers using-nitrophenyl-

chloroformate (NPC) as an activator.

3.3.3. Grafting of catechol bearing a carboxylicidhgroup onto amino functionalized

polymers.

Another approach consists in grafting a catecholdive bearing a carboxylic acid group
with amine functionalized biomolecules and biopotysn such as heparin[208, 209],
hyaluronic acid[210-213], poly(L-lysine)[214] andysprotein[143] (Fig. 39). As an example,
chitosan was functionalized with 3,4-dihydrocaffamd @, Fig. 2) by coupling the primary
amino groups of the polymer with the carboxylic da@f 6 using the carbodiimide
activation.[215] This functionalized chitosan waken cross-linked with terminally
thiolatedPluronic F-127 triblock copolymer to predutemperature-sensitive and adhesive
sol-gel transition hydrogels. Modified chitosan hwitarboxylic acid functions was also
immobilized on Ti surfaces pre-treated with polyDp order to impart it antiadhesion

property.[216]
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Fig. 39.Strategy for the ligation of catechol derivativesabng a carboxylic acidfunction

using carbodiimide chemistry.

Synthetic polymers containing amino groups wereo ajsafted according to similar
strategies. For instance, PElI was modified by &@sdiocaffeic acid §, Fig. 2) in the
presence of EDC to form an universal surface prifoermultilayer assembly[217] or to
reinforce the mechanical properties of CTNs filj2ds3]

Another well-known strategy consists in formingieated esters with an uronium salt such
as O-(benzotriazol-1-yI)N,N,N’,N’-tetramethyluroniumhexafluorophosphate (HBTU) (Fig.
36; pathway D). This coupling reaction occurs abmotemperature in the presence of
triethylamine and 1-hydroxybenzotriazole hydrateO@1). Compound6 was so coupled
using these coupling reagents onto a 4-arm PEG-NHhe resulting catechol end-
functionalized PEG precursors waresitu transformed into amultiblock copolymers in the
presence of linear diacid-functionalized PCL. Wloerated onto a biologic mesh used for
hernia repair, this adhesive polymer demonstratigsive strengths significantly higher than
fibrin.[219] In addition, more recently, this ingiing adhesive material was used to greatly

improve the repair of injured Achilles tendons.[R20

3.3.4. Electrochemical grafting of catechol uniti@amino functionalized polymers.

Chitosan films electrodeposited onto gold surfasese modified by electrochemical
oxidation of catechols (Fig. 40).[221, 222] Gold/stals were first immersed in a chitosan
solution (0.1%, pH 5.3) and potential was sweghareducing direction. The substrates were
then transferred into several aqueous catecholigntuunder oxidative conditions promoting
its covalent grafting onto the films. These modifeurfaces behave as electrons donor and
electrons acceptorin the presence of biologicaldanxis (Q) and reducers (NADPH),

respectively. Such phenolic matrices may play irtgrdrroles in understanding biological
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phenomena such as electron transfer, mode-of-actdn bactericidal antibiotics,

neuromelanins activity, etc.

Electrochemica

(]
© . . o
o oxidation o N °Q
T
¢)
OH
a OH
: o
Electrodeposited {:é: +2e  +2H
chitosan

Fig. 40. Synthetic pathway for electro-modification of csan with catechols.[221]

3.4. Enzymatic derivatization of (bio)polymers bearigopsine moieties

Biopolymer-polyphenol conjugates with water resistadhesive property can also be
produced using enzymes such as tyrosinase.Tyresoas oxidize the tyrosine amino acids
of proteinsinto catechols (Fig. 41, pathway A) higo into quinones (Fig. 41, pathway B)
depending on the reaction conditions. In the presesf a reducer such as ascorbic acid,

tyrosine groups are converted into the adhesive A@mino acids by tyrosinase in aerated

conditions.[223]
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Fig. 41. (A) Conversion of tyrosine amino acids into DOPAtirosinase in the presence of a
reducer, (B)Oxidation of phenol or catechol defixed into reactiveo-quinones using

tyrosinase, followed by the grafting of amino-funoglized biomolecules/biopolymers

Yamamotoet alexploited this strategy in various publications[2225]and, for example,
synthesized chitosan derivatives incorporating teapeptide based tyrosine residue. These
phenolic amino acids were then converted into D@yAyrosinase, thus affording, after the
cross-linking with the grafted peptide chains, iafieced polysaccharide hydrid fiber.[226]

Tyrosinase was also used to couple different pheretioxidants (caffeic acid and
chlorogenic acid) to wool fiber proteins[227] byidizing them into highly reactive-
quinones that rapidly reacted with the protews their amino groups (Fig. 41, (B)).Other
biopolymers (poly-lysine) and gelatin) and synthetic polymers (pally{famine) and
polyhedral oligomericsilsesquioxane) have been fremtlivithphenolic compounds following

the same strategy. Such type of functionalizatias lieen reviewed elsewhere.[228]

4. End chain precursors

4.1. Grafting of catechol unit(s) onto chain-ends bymioal ligation.

PEG polymers have also been functionalized at ebatls with molecules bearing
catechols following strategies as those depicteBlign 36. As far as EDC coupling agent is
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concerned[229-233], final products were usually iglesd for metal nanoparticles
stabilization such as FePt orsBg in the biomedical field (Fig. 36, pathway A). Fetample,
EDC was used to catalyze the formation of amidedbdretween Au-E©,-Dopamine-PEG-
COOH nanoparticles and the epidermal growth fatoeptor antibody. These magnetic and
optical active dumbbell Au-E©®, nanoparticles were then exploited to image bindingnts
between the modified nanopatrticles and A431 c23]

Catechol derivatives were also coupled to dikbydroxysuccinimidyl activated chain-
endpolymermostly to elaborate stable biomimetidam@s with protein, bacterial-resistant
adlayers or antimicrobial properties (Fig. 36, path C).[234-238]More recently,
nitrocatecholamines were used to end-functionnaleefour-arm star PEG-(NH$)
Interestingly, these nitrocatechol functionalizedymers were employed to generate various
covalently and metal-cross-linked responsive geld aoatings that can be on demand

photodegraded upon light exposure (Fig. 42).[239]
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Fig. 42. Strategies to prepare photoreactive films basedtoodopamine derivatives: through

metallic complexation (A) or covalent bonds (B).

PEG maodification with a catechol function using HBHOBt as coupling reagents has

been widely studied in the literature and is ofr@iinterest for biological applications where

a robust polymer anchoring is needed. Functionhlity been integrated at one chain-end[17,

240] or at several chain-ends when multiple arm&®&sed polymers were concerned[241-

244]. For instance, Messersmitit al. worked on the gelation conditions (natureand

concentration of oxidizing agent, (un)protedte@rminal side chain ...) of several DOPA

modified PEG andobtained different hydrogels franshaped architectures such as those
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depicted in Fig. 43,31.[245]Recently, these mussel glue hydrogels (R=Hrewalso
employedin vivo as promising elastomeric tissue sealant for reygafietal membranes[145]

and for islet cell encapsulation.[244]

HO
R OH
HO

HNJ{» 2 o OH

HO O

HO
31

Fig. 43. Examples of multiple arm-PEG modified with DOPA ietees.

Starting from the same architecture (R = NHBocgytdeveloped self-healing hydrogels
based on catechol-Eecomplexes and controlled their mechanical progeriia pH change
and the nature of the interpolymer cross-linkingqlL The tris-catechol-Bé cross-linked gels
exhibited better viscoelastic properties than tlemoacatechol-F& complex.

Peptide dendritic ligands containing lysine or gihaic acid werealso prepared using the
same coupling agents from protected dopamine adédathen to magnetic nanoparticles
following the ligand-exchange method.[246]These ifmedl nanoparticles potentially
represent straightforward platforms for the attaehtmof biological active molecules of
interest for biomedical applications.

Additionally, by exploiting reversible boronic estankages, Messersmitst al. succeeded

in the creation of intriguing pH-responsive, sa#faling hydrogels from catechol-modified
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multiple arms-PEG (Fig. 44).[247]Indeed, by mixicgtechol end-chain functionalized 4-arm
PEG and 1,3-benzenediboronic acid, boronate cmoksd hydrogels were conveniently
obtained under basic conditions (pH above the Higl® in this case) within 30 minutes at
20°C. Interestingly, these boronate ester bond® wempletely dissociated at pH below 3,
leading back to starting materials. Self-healingperty has also been demonstrated between
two pieces of fractured gels that healed autonotgaarsd rapidly without the use of cross-

linking agents thanks to the presence of free bhoratid and catechol units at these frontiers.

A

+
?H ?H
B B
HO/ \@/ ~on

OH

Fig. 44. Schematic representation of self-healing and pparsive hydrogels developed by

Messersmitlet al.[247]

Trichloros-triazine (TsT) was used as linker between monomgtpoly(ethylene glycol)
(mPEG) and dopamine to stabilize 36g nanoparticles.[248]Enzymatically degradable
adhesive hydrogels were synthesized by couplingAlamine-Alanine dipeptide-modified
branched PEG and 6  with benzotriazol-1-yl-oxy-tripyrrolidinophosphammn
hexafluorophosphate (PyBOP), followed by oxidateepling of the catechol chain-ends by

the addition of Nal@(Fig. 45).[249]
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Fig. 45. Enzymatically degradable adhesive hydrogels.[249]

Dopamine was also linked to oligonucleotides bep@ncarboxylic acid end group by
using N-hydroxysuccinimide ester as the activator.[250§Tactivator was also involved in
the modification of poly(ethylene oxide)-poly(prdege oxide)-poly(ethylene oxide) (PEO-

PPO-PEO) triblock copolymers with DOPA to improtebioadhesion.[251]

4.2.Elaboration of catechol end-functionalized polymens controlled/living and

electrochemical polymerizations technigues.

During the last decade, controlled radical polymeion (CRP) techniques such as Atom
Transfer Radical Polymerization (ATRP)[252-254] dRdversible Addition-Fragmentation
chain Transfer polymerization (RAFT),[255-257] tanme few, have been proven to be very
versatile techniques to introduce end-groups one#-defined polymer chain. Obviously
much effort has been devoted over the last fewsyegaprepare well-defined catechol end-
functionalized synthetic polymers using CRP techaegwith the ultimate goal of creating
(patterned) polymer brushes or stabilizing nanagle# via a “grafting to” approach. In this
context, ATRP and RAFT were found to be highly@ént procedures for the preparation of
the sus-mentioned polymers by using catechol basi&dtors (32-35, Fig. 46) or chain
transfer agents36 and37, Fig. 46), respectively.
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Fig. 46.Catechol derivatives as polymerization initiatorsolution; ATRP initiator82[258],

33[259], 34[260] and35[261], RAFT agent86[262] and37[20].

When ATRP is concerned, zwitterionic polymers wearepared in solution from protected
catecholic initiators 32, 33 and 34, Fig. 46) and ultra low fouling property was imigak to
various surfaces after their immobilization.[25832@63]Copolymers of di(ethylene glycol)
methyl ether methacrylate (MEMA) and poly((ethylene glycol) methyl ether methdate)
(MAPEG) were synthesized fro®b (Fig. 46) and were then used for the stabilizatdn
Fe;04 nanoparticles.[261] Such modified nanoparticlesewarther studied for their ability to
interchange their hydrophilic/hydrophobic chara¢#&4] Indeed, they were hydrophobic
enough to adsorb at the air/water interface butstamltaneously be squeezed out from the
interface if the packing density exceeds a critiale. Such behavior is very promising for
biomedical applications such as crossing biologicembranes. The thermo-responsive

character of these copolymers was also nicely é@eplofor inducing the controlled
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nanoparticles agglomeration that enhanced the astrdibility of FgO4in magnetic resonance
imaging applications.[229]

Catechols bearing a RAFT ageB6,Fig. 46) were also implemented for the preparatibn
well-defined polyfert-butyl acrylate), poly{-isopropylacrylamide) (PNIPAM) and
poly(styrene) that were then immobilized onto Tirfaces.[262]In this study, the
immobilization of polymers on the titanium surfageas monitored by using surface
plasmonresonancetechnology that allowed estimaltiagurface coverag®)(of the grafted
polymers onto the sensor surface.The dopamine sligmvas also successfully exploited for
the preparation of thermoresponsivenanodiamondtfumedized PNIPAM particles from
well-defined dopamine end-functionalized PNIPAM.e§k particles exhibited a reversible
Lower Critical Soluble Transition (LCST) phase s#ion at around 32°C leading to the
formation of small aggregates with a particle ©2e-90 nm. Because of its simple, gentle
nature and versatility, this strategy is an aveimughe preparation of other responsive (pH,
redox, etc...) functional nanodiamond particles fanaobiotechnology applications.[265]

Fig. 47 points out that a large range of graftelymper brushes can also be prepared, from

the different catechol based anch@%42), by:

i) performingCuAAC reactions[266, 267] between eitlcatechol-alkyne[268] or
catechol-azide[269] tethered surfaces and apptepriaccomplementary
functionalized end-terminated polymers. For instéan¢he alkyne-modified
dopamine anchod0 was immobilized onto E®,; nanoparticles giving rise to
“clickable” nanoparticles.[268]Then, an azido-eretorated PEG was clicked
onto these nanopatrticles to render these magnatioparticles soluble in water.
Opposite strategy was also applied to titanium am@$ where an azide-
functionalized dopamindl was anchored to the surface prior to couplingrio a
alkyne-functional electroactive or fluorinated pedi269]
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i)

ii)

using “grafting from” procedures from catechol ftionalized surfaces able to
undergo a CRPe(g. ATRP[18, 270-276] and RAFT[20]) or ROMP[19] (Ring-
Opening Metathesis Polymerization[277]) polymelimas respectively.Of these
polymerization techniques, the ATRP has been witlloubt the most commonly
used. This has notably been applied to build baififauling and cell adhesive
surfaces by grafting, for instance, PEG and zwitec polymers,

respectively.[18, 270, 274] Poly(styrene) brushesenalso grown from a catechol
based RAFT transfer agenB87( Fig. 46) immobilized on Ti[8%}modified

ITO.[20] Interestingly, these brushes were remofredh the surface by dipping
the surface in a phosphate buffer (pH 9.0), thalidi-complex being easily
dissociated under weak basic conditions. ROMP wae exploited to grow
polymer brushes from various surfaces modified wa¢h (Fig. 47).[19] This

approach allowed the elaboration of low surfacegnby grafting perfluoroalkyl-

substituted polymer brushes and also to immobippédymers onto patterned

surfaces by using microcontact printing (LCP).

performing electropolymerization from TiChanotubes whose inner walls are
coated by a catechol bearing a pyrrole grod@Rig. 47).[278]These modified
nanotubes presented a smaller charge transfertamsts and are potential

candidates for fabricating ordered organic/inorggmn heterojunctions.
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5. Conclusions.

The main aim of this review was to present the mpgiortant and straightforward
synthetic methods allowing the incorporation ofecabl units into polymer chains and to
highlight the importance of these catechols forthier functionalization of the
macromolecules. Indeed, the field of catechol-doirtg polymers, owing to their fascinating
intrinsic chemical properties and their practicpplecations, has greatly expanded over the
past decade. More particularly, the combinatiosywithetic versatility, rich functionality and
inherent binding properties towards various orgamd inorganic surfaces make this class of
polymers useful for many applications including tbytic adhesives and coatings, sensors,
bioactive and self-healing materials, smart hydi®gad photovoltaic materials.

While most of the earlier efforts were primarilyctsed on the incorporation of catechol
units into the main chains of polymers, by expiatits redox properties, new methods have
been explored more recently, providing for facilatbetic access to functional catechol-
containing materials with advanced properties. Maopmimetic adhesive peptides
incorporating side-chain catechol fragments, wése,example, readily prepared by solid-
state peptide synthesis or by ring-opening polymation of a-amino acid N-
carboxyanhydrides. Recently, ligation techniquegehaso been employed i) to conveniently
elaborate catechol end- and side-functionalizegimet materials, displaying self-healing and
stimuli-responsive properties, from preformed aaitdd (bio)polymers and ii) to construeia
« click » chemistry, bio-inspired functionalizedrfsices. More recently, Living/Controlled
Polymerization techniques, such as ATRP, RAFT a@d/R, have also emerged as powerful
and versatile techniques allowing the immobilizatiausing both « grafting from » and
« grafting onto » strategies, of well-defined endedated catechol polymers onto different
substrates. Surfaces and nanoparticles with cdaittel interface properties and very

promising biomedical applications have been creas#uly such approaches.
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Throughout this review, we have shown that the ouemireactivity of catechols in
combination with the different polymerization mediscavailable allow a plethora of catechol
containing polymers with variable structures antkenesting properties to be produced.
However, we firmly believe that the development aaftechol-based polymers is still a
burgeoning field and that exciting new catecholdoagnaterials with applications in

interesting new fields will be reported.
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