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Abstract: In modern construction, it is not unusual to require a short span member to carry a very large
load such as with a transfer girder. These members generally have high shear strengths with strut-and-
tie models being able to predict these strengths generally in a conservative manner. For serviceability
checks, cracked stiffness estimates, and seismic design, however, it is also important to be able to predict
the deformations of the member accurately. In this paper a set of eight large and heavily instrumented
reinforced concrete deep beams subjected to monotonic or cyclic loading are summarized. The
displacements of these tests are explained in detail with particular attention paid to the development of
deformations over the full load history. From these deformations, the paper notes that a simple 2 degree
of freedom (DOF) kinematic model can be developed to predict the entire displacement field for a beam
after diagonal cracking has occurred. These two degrees of freedom are the average longitudinal strain
in the flexural reinforcement, and the vertical distortion of the critical loading zone near the applied load.
When the results of the measured displacements of the beam tests are compared to the pattern of
deformations from the 2 DOF model, excellent agreement is obtained. In addition, it is shown that the
width of the main diagonal crack can also be explained well using the same 2 DOF model once these
parameters are known. A forthcoming paper will explain how these parameters themselves can be
predicted.

1. Introduction

The behaviour of reinforced concrete structures is most accurately predicted when the analytical model
includes equilibrium equations, conditions for compatibility of deformations, and constitutive relations for
the cracked concrete and the reinforcement. An example of such an approach is the Modified
Compression Field Theory (MCFT) (Vecchio and Collins 1986) which, when combined with compatibility
conditions derived from the plane sections hypothesis, provides elegant and accurate equations for
analysis and design of slender beams, columns, and slabs (Collins et al. 2002). Similarly simple and
accurate equations are not available for deep beams as in these members plane sections do not remain
plane. Deep beams are usually modeled by strut-and-tie (or truss) models which are based on the lower
bound theorem of plasticity and usually provide conservative strength predictions. These strut-and-tie
models do not provide predictions of deformations, however. Deformation predictions are important for
serviceability checks, stiffness value predictions for complex structural analyses, and seismic design
considerations.

To determine an appropriate model for predicting the deformed shape of a deep beam, intensively
instrumented specimens are required. By examining these measured deformed shapes in detail, it can
be possible to develop general equations that can apply to all deep beams. These kinematic
relationships are most useful if they can be defined in terms of a limited number of explicit degrees of
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freedom similar to the curvature and longitudinal strains used for slender beams. This paper will explain
the process used to develop such a kinematic model for deep beams based on two general degrees of
freedom (DOF).

2. Experimental Program

The theory presented in this paper was developed with the help of an experimental program performed at
University of Toronto (Mihaylov 2008, Mihaylov et al. 2010). The program included 8 tests of deep
reinforced concrete beams subjected to symmetrical three-point bending applied in either a monotonic or
a fully-reversed cyclic manner. The beams had a 400 mm by 1200 mm rectangular cross section with
symmetrical top and bottom reinforcement of 6#8 headed steel deformed bars. In addition to the type of
loading, experimental variables were also the shear-span-to-depth ratio (a/d=1.55 or 2.29) and the
amount of transverse web reinforcement (p,=0% or 0.1%). Table 1 summarizes the properties of the
specimens together with important test results such as the maximum applied load P, the shear strength
V,, the ultimate midspan displacement A;, and the maximum width of the diagonal cracks wy.. In the
names of the specimens S/L stands for short/long, 0/1, stands for 0%/0.1% of transverse reinforcement,
and M/C stands for monotonic/cyclic loading. Figure 1 shows the geometry of the specimens, material
properties and other details of the tests. Figure 2 shows a photograph of specimen S1C in the test setup
for reversed cyclic loading. The downward (positive) load was applied on the top face of the beam and
was reacted by roller supports on the bottom face, while the upward (negative) load was applied on the
bottom face and was reacted by steel sections placed on top.

Figure 3 shows the envelopes of the measured load-displacement responses of the eight specimens. All
beams failed in shear with crushing of the concrete in the vicinity of the top loading plate prior to yielding
of the longitudinal reinforcement. As evident from Fig. 3, load reversals had almost no effect on the
response of specimens with transverse reinforcement as the curves for S1C and L1C almost overlap with
the curves for SIM and L1M, respectively. Somewhat surprisingly, specimens without stirrups SOC and
LOC subjected to cyclic loading were stronger than their companion specimens SOM and LOM tested
monotonically. Particularly striking were the results from the two short beams without stirrups as
specimen SOC was 62% stronger than its companion specimen SOM. This and other interesting results
from the experimental program are discussed elsewhere (Mihaylov et al. 2010).

Table 1- Summary of Tests

. fc’ Load Py Vu Wnax™ Ay
Specimen | a/d Py MPa | Type kN) | (kN) | (mm) | (mm)
SOM 0 34.2 Mono | 1420 | 721 25 6.4
soC 155 ' Cyclic | 2301 | 1162 | 3.7 10.9
S1M ' 0.10% | 33.0 M 1860 | 941 2.3 7.7
s1c SR e C | 1864 | 943 | 42 | 8a
LOM M 801 416 2.0 10.0
0 29.1
LOC 529 C 953 492 4.0 11.1
L1IM ' M 1295 | 663 3.5 14.2
0.10% | 37.8

L1C C 1253 | 642 3.5 13.7
* Measured at the last load stage prior to failure
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Figure 3: Load-displacement response

Figure 2: Specimen SOC and test setup

2. Deep Beam Behaviour

The behaviour of deep beams is illustrated by examining the behaviour of specimen S1C which had an
a/d ratio of 1.55 and a ratio of transverse reinforcement of 0.1%. Figure 4 summarizes the results from
this test in terms of a series of crack diagrams, stress diagrams, deformed shapes, and a photograph of



the failed beam. The crack diagrams correspond to load stages (LS) with increasing downward load (LSO
to LS26) while the deformed shapes drawn between the crack diagrams give the incremental change of
deformations in the beam between two load stages. These deformed shapes were obtained from the
readings of demountable displacements transducers (Zurich gauges) used on a 300 mm by 300 mm
square grid of Zurich targets. The dashed lines on the crack diagrams in Fig. 4 depict the variation of
bottom reinforcement stress determined with strain gauges at a number of locations along the length of
the beam. The crack diagram at LS26 and the deformed shape underneath it show the state of
deformations in the specimen under maximum load. All deformed shapes in Fig. 4 were magnified to
produce a maximum vertical displacement of 200 mm, while the real displacement increments are
indicated on the diagrams as fractions of the ultimate displacement, e.g. A;=8.4 mm.

Specimen S1C behaved linearly up to a load of about 500 kN when flexural cracks began to occur at
midspan as evident from LS1 in Fig. 4. Initially the deformations were predominantly flexural with a
concentration of curvature at the cracked portion of the beam (see the incremental deformed shape
between LSO and LS1). The stresses in the bottom reinforcement were largest at the midspan section
(125 MPa) and decreased to zero near the supports (see the dashed line on the crack diagram at LS1).
This stress profile indicates a change in reinforcement stress between the supports and midspan and,
thus, the presence of significant bond stresses between the bars and the surrounding concrete which is
characteristic of beam action. As the load increases, the bond stresses force diagonal cracks to
propagate from the bottom part of the section to the vicinity of the loading plate (see LS2 in Fig. 4). The
diagonal cracking results in a more uniform distribution of the tension along the bottom reinforcement
(see the stress profile at LS2) and engages the transverse reinforcement in tension. When the load has
sufficiently increased that the cracking reaches the supports, the load-bearing mechanism has
transitioned from beam action to truss action. Truss action is characterized by a significant portion of the
shear force being carried above the diagonal cracks through direct compression between the loading and
support points. In specimen S1C this transition took place between LS1 and LS2 at a load of about 1000
kN. The truss action in S1C under a load of 1300 kN is demonstrated schematically through the simple
strut-and-tie model drawn on the crack diagram at LS2. It can be seen from this model that the stirrups
(vertical ties), which yielded upon diagonal cracking, reduced the tension in the bottom reinforcement
(horizontal tie) towards the supports. In contrast, deep beams without web reinforcement develop
constant tension in the bottom reinforcement from support to support in which case the load is carried as
in a tied arch (arch action) (Mihaylov et al. 2010).

The strut-and-tie model in Fig. 4 also shows that a large portion of the shear force in S1C had to be
resisted above the diagonal cracks in the relatively shallow zone near the edge of the loading plate. This
zone will be referred to as the critical loading zone (CLZ). The incremental deformed shapes following the
formation of the major diagonal cracks (at LS2 and beyond) clearly show significant shear distortions of
the CLZ accompanied by large shear deformations along the major diagonal cracks. It can also be seen
that the load increment of 184 kN between LS16 and LS22 caused larger shear distortion than the
previous increment of 380 kN between LS2 and LS16. Prior to failure, the beam sustained three fully-
reversed load cycles at maximum load with load stages LS22 and LS26 in Fig. 4 corresponding to the
peak positive load on the first and third of these cycles. It can be seen that the cyclic load caused further
distortion of the CLZ and widening of the critical diagonal crack from 3 mm at LS22 to 4.2 mm at LS26.
Eventually, the crushing of the CLZ on the right hand side of the loading plate caused the failure of
specimen S1C at a load of 1864 kN and a midspan displacement of 8.4 mm.

The Shear Kinematic Theory (Mihaylov et al. 2011) concerns the behaviour of deep beams after the
formation of truss action. This paper focuses on a key aspect of the theory, namely the description of the
deformations in deep beams (kinematics of deep beams) after the formation of major diagonal cracks.
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Figure 4: Behaviour of specimen S1C (crack widths in mm)



3. Kinematics of Deep Beams

At low applied loads in a non-deep slender member, the kinematics can be elegantly summarized by the
basic rule that plane sections remain plane. That is, at any location, a transverse line drawn on the
surface of the beam prior to bending will remain as a straight line after bending. This is the assumption
upon which beam theory is based which allows the full load deformation of the beam to be predicted.

For deep beams such as those in this paper, the “plane sections” rule will be approximately true prior to
beam action breaking down but after the major diagonal cracks have formed, it will be significantly in
error. In Fig. 4 between LSO and LS1, the vertical lines on the incremental displaced shape are
approximately straight lines consistent with beam action. Between LS2 and LS16, by contrast, the
vertical lines are shown to be significantly warped demonstrating that the plane sections rule no longer
applies. If a rule could be developed that describes the deformed shape of deep beams after the main
diagonal cracks had formed, it would be possible to predict the full load-deformation history of these
beams just as it is for cracked slender beams. These deformation predictions can be important for
serviceability checks and seismic design considerations.

A careful examination of the crack diagrams and deformed shapes in Fig. 4 reveals deformation patterns
which can be used to establish the kinematics of deep beams. The widest diagonal crack in specimen
S1C at LS2 divided the critical shear span of the beam into a cracked bottom triangular zone and an
uncracked triangular top zone. At higher positive loads, the top triangular zone had become cracked due
to load reversals, but the widths of these cracks can be seen to be small. As a result of the different
degrees of cracking of the bottom and top zones, the top concrete block remained relatively rigid in
comparison to the bottom zone. This is evident from the greyscale map in Fig. 4 which shows the
distribution of the generalized deformation |, |+|e,| across the side face of specimen S1C at failure. In this
map the block above the critical crack is mostly white, indicating small deformations, while the zone below
the critical crack is gray, indicating larger deformations. Also note in the same diagram that the right-
hand edge of the beam and the top edge away from the CLZ remained straight compared to the visibly
curved bottom edge of the beam. Since the block above the critical crack remained mostly undeformed, it
can be represented by a rigid body which undergoes translations in the horizontal and vertical directions,
and a rotation about the loading point. Furthermore, the horizontal translation of the top block can be
neglected as it is very small compared to the vertical translation. The rotation of the top block around the
loading point will be proportional to the elongation of the bottom reinforcement. The vertical translation of
the top block will equal to the transverse displacement in the critical loading zone. The average strain
along the bottom reinforcement, & 4,4, and the shear displacement of the CLZ, A, are the two degrees of
freedom of the kinematic model presented in this paper.

Figure 5 shows the two degrees of freedom in the kinematic model. In this model the cracked concrete
below the critical crack is represented by a series of rigid struts (g=0) connected to the bottom
reinforcement and the loading point. These struts represent the concrete between the approximately
radial cracks which occur in deep beams. The strain along the bottom reinforcement is assumed constant
and equal to the average strain €., The rigid block above the critical diagonal crack and the cracked
concrete below the crack are connected by the CLZ at the top of the beam and by the flexural
reinforcement at the inner edge of the support along with the stirrups. It can be seen that the CLZ is
modeled by a single triangular element which has large compressive strains parallel to the critical crack
and zero horizontal strains. The modeling of the critical loading zone represents a very important
component of the Shear Kinematic Theory as it is the critical mechanism of shear resistance in deep
beams. Detailed information about the modeling of the CLZ can be found elsewhere (Mihaylov et al.
2011).

Based on the above assumptions, the displacement of any given point on the beam outside the CLZ and
away from the inner edge of the support can expressed by the two DOFs of the kinematic model as
follows:
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These equations were applied to the critical shear spans of the beams from the experimental study at the
last load stages performed under positive and negative applied load. The two degrees of freedom of the
model, & a,q and A, were calculated using a genetic algorithm which minimized the sum of the squares of
the error between the measured target displacements and Eqgns. 1-4. Figure 6 compares the measured
deformed shapes illustrated by displaced grids to the calculated location of the Zurich targets shown with
circles. It can be immediately seen that the kinematic model with only two DOFs provides an excellent fit
to the apparently complex pattern of deformations in deep beams under both monotonic and reversed
cyclic load. Along the diagonal crack itself, a few points can be seen to be poorly predicted often due to
relative location of the somewhat random diagonal crack compared to the targets. The model seems to
be slightly less accurate for the cases of negative load (see for example S1C) which can be explained by
the fact that the wide critical diagonal cracks caused by positive load do not close perfectly upon load
reversal. In addition, the impact of the additional reinforcement provided by the lifting hooks (See Fig. 2)
can be seen for the negative load cases. It is interesting to note that the shape of the flexural tension
side of the beams is indeed parabolic as suggested by Eq. 2.

In addition to accurate predictions of the deformed shape of deep beams the kinematic model can also be
used for predicting the maximum width of the major diagonal cracks. The width of the cracks is expressed
as a sum of two components corresponding to the two degrees of freedom of the kinematic model:
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In the first term the length I is the distance between the kinks in the bottom reinforcing bars near the
support (See Detail A, Fig. 5). It is assumed that the elongation of the bars over this distance causes the
widening of the crack associated with DOF ¢ 4. Length Iy can be estimated from:

6] I, =25h-d)cota >s,,

where 2.5(h-d) is the approximate depth of well-controlled cracks at the bottom of the section and Sy, iS
the maximum distance between these cracks along the length of the bottom reinforcement (CEB-FIP
Model Code 1990).

In the second term of Eq. 5 quantity n denotes the number of diagonal cracks above the critical diagonal
crack which occur if the beam contains a sufficient amount of transverse reinforcement. These cracks
reduce the width of the critical crack for the same shear displacement A; (crack control). An expression
for n can be derived based on the crack-spacing equations of the CEB-FIP Model Code 1990.

In Fig. 7 the results from Eqg. 5 are compared to the measured maximum width of the critical diagonal
cracks in the specimens from the experimental program. The values of DOFs g 4,4 and A; are the same
as those used in Fig. 6, length Iy equals 355 mm for the short beams and 530 mm for the long beams,
and n equals zero for all specimens. It can be seen that the kinematic model provided excellent
predictions for all beams except for SOC subjected to reversed cyclic load. It is suspected that the
discrepancy for this specimen came mainly from the inaccurate prediction of length Ip. In reality this length
is very sensitive to the pattern of the cracks near the supports which can differ significantly even between
nominally identical members. Note that there are no crack predictions at the early stages of loading where
the load is carried by beam action and the kinematic model does not apply.

4. Shear Resisting Mechanisms in Deep Beams

The kinematic model described above can be used to examine the shear resisting mechanisms in deep
beams and to formulate simple conditions for the compatibility between the deformations associated with
these mechanisms. For example, it can be seen from Fig. 5 that DOF A, associated with the shear
carried in the critical loading zone, is equal to the transverse displacement in the flexural reinforcement
near the support, associated with dowel action. The maximum shear that can be resisted by the dowel
action will be reduced by the tension in the reinforcement which is proportional to the value of DOF g 4.
It can also be seen from Fig. 5 that the average tensile strain in the transverse reinforcement g,, related to
the shear carried by the stirrups, can be expressed as a function of the two DOFs of the kinematic model
Ac and gg44. Most interestingly, the kinematic model reveals that shear in deep beams is carried also
through aggregate interlock which is completely neglected in strut-and-tie models and in most models for
shear strength of deep beams. Detail B in Fig. 5 shows clearly that in addition to the crack widening due
to A; and gy, the critical diagonal crack also undergoes a significant slip which is expressed as:

[7]1 dlip=A_sina
As the crack surfaces are rough, the slip along the crack generates shear by aggregate interlock.
If the compatibility conditions derived from the kinematic model are combined with equilibrium equations

and proper constitutive relations, then the two degrees of freedom of the model A; and &4 can be
calculated (Mihaylov et al. 2011).
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Figure 7: Prediction of crack widths

5. Conclusions

This paper presented a kinematic model with only 2 degrees of freedom capable of describing the
complete deformed shape of diagonally cracked deep beams. The degrees of freedom of the model are
the average strain along the flexural reinforcement and the shear displacement in the critical loading zone
of the beam. The model produced an excellent fit to the measured deformed shapes of eight tests of deep
beams subjected to monotonic and reversed cyclic loading. It was shown that the kinematic model can
provide simple and accurate equations for the calculation of the maximum width of the diagonal cracks in
deep beams. Most importantly, the kinematic model provides compatibility conditions between the
deformations associated with the shear resisting mechanisms in deep beams. These equations can be
used together with equilibrium equations and proper constitutive relations to predict the ultimate response
of deep beams (Mihaylov et al. 2011).
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