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Introduction

m The stress state has a strong influence on damage development and

fracture.
m Triaxiality has been used to evaluate the stress state effect on
damage/fracture.
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Introduction

m Forming processes are characterized by low triaxialities.
m The failure mode (coalescence) is different at high/low triaxialities:

Cavity controlled (Dimples) Shear controlled
T=1.10 T =047
[Barsoum and Faleskog, 2007a]




Introduction

m Given the Gurson [1977] model:
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Damage

m No damage is predicted when T' = 0. Further extensions are
required.

m Gologanu et al. [1996] note that the void expansion can vary at
same triaxialities.

m At low triaxiality, void shape evolution becomes more important
than void growth.



Lode angle influence

m Triaxiality is not able to account the shape effects on voids.
m Solution: fully account the stress state with the set (I, Jo, J3).
m A physical meaning can be asigned to Js through the Lode angle 6.
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m Stress state:
m 0 = 0: uniaxial tension plus hydrostatic pressure (triaxial tension).
m 0 = 30: pure shear plus hydrostatic pressure.
m 0 = 60: uniaxial compression plus hydrostatic pressure.

m The relation between 8 and Jjs is given by:

27 Js
X(JQ, Jg) = cos 30 = ?TE’q



Lode angle
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m P : Stress state.

m ¢ : Hydrostatic stress (I7).
m p : Deviatoric stress (J3).
m 0 : Lode angle (J3).



Lode angle

Micromechanics

m Unit cell deformation at constant triaxiality 7' = 1.
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Lode angle

Micromechanics
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Lode angle

Influence on fracture strain

m The strain at fracture is not monotonically decreasing function of
the triaxiality.
m Note that the peaks are at different triaxialities.
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Lode angle

Influence on fracture strain

m They are lode angle independent materials.
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Aluminum 2024-T351 1045 steel
[Bai and Wierzbicki, 2008; Malcher et al., 2012]
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Experimental characterization

Influence on fracture strain

The Lode angle play an important role in fracture strain.

To investigate of the Lode angle the effect, three-dimensionsal stress
state is needed.

At plain stress state [Bai and Wierzbicki, 2008]:

X(T) = cos 36 = —QgT (T2 - ;)

Usually compressive and shear specimens are used to study the
low-triaxiality regime.

m Some special specimens have been proposed.
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Experimental characterization

Barsoum and Faleskog [2007a] specimen

m Double notched
specimen, subjected to a
combination of tensile
and torsional loading.

m By changing the
tensile-to-torsional force
ratio, different values of
triaxiality can be
obtained.

VN

tmaz =3.2mm
tmin =1.2mm
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Experimental characterization

Butterfly specimen

m Specially designed to calibrate a fracture locus for lode angles
between the limiting cases X = +1.

m The specimen is charged in two directions.
m The fracture initiation is at the center.

Bai and Wierzbicki [2008] Dunand and Mohr [2011]
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Experimental characterization

Butterfly specimen

m For the same triaxiality, but for different loading histories, the strain
to fracture is not the same.

m The inaccuracies in the geometry could not be over 10 pm

axisymmetric notched tension
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Experimental characterization

Driemeier et al. [2010] specimen

m Shear specimens with
out-of-plane notches
(0.2mm and 0.5mm in
a 1.56 mm Aluminium
sheet).

m Proposed to study at
triaxialities near zero.

15



Experimental characterization

Driemeier et al. [2010] specimen

m Shear specimens with
out-of-plane notches
(0.2mm and 0.5mm in
a 1.56 mm Aluminium
sheet).

m Proposed to study at
triaxialities near zero.

m No numerical results were presented.

m The Lode angle cannot be studied in these thin sheet because no
geometric effects (diffuse necking, shear band localization) were
observed.

m This behaviour is observed in thicker sheets, leading to necking
through-the-thickness.
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Discussion

Experimental limitations

m Specimens have very low fabrication tolerances.

m Experimental test to evaluate low triaxialities should be carried on in
bulk material (compression, bars,...).

m Physical mechanisms of the Lode angle are not clear (shape change?
growth direction?).

16



Discussion

Experimental limitations

m Specimens have very low fabrication tolerances.

m Experimental test to evaluate low triaxialities should be carried on in
bulk material (compression, bars,...).

m Physical mechanisms of the Lode angle are not clear (shape change?
growth direction?).

So, what we can do?

m Shear test allow to study low values of triaxiality, but not the Lode
dependence.

m Is the DCO1 steel really Lode angle dependent?.

m Most of these experimental campaigns are done for calibration
and/or evaluation, not for particular applications.

m /s the Lode angle important during SPIF? 1%
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