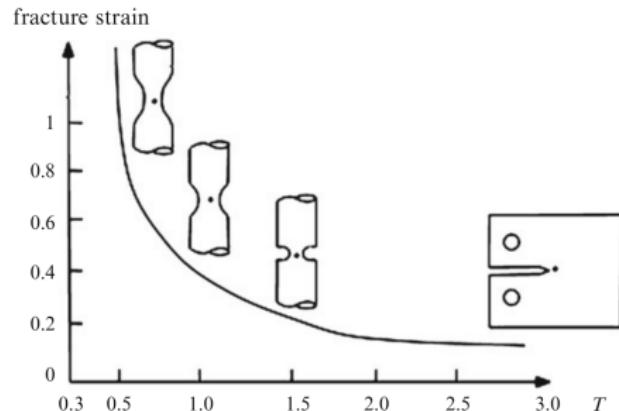


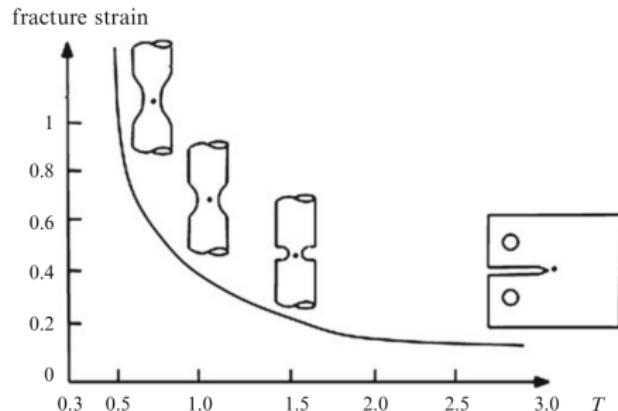
Experimental methods for Lode angle characterization in ductile fracture

Carlos Felipe Guzmán


MS²F Sector
Department ArGENCo
University of Liège, Belgium
cf.guzman@ulg.ac.be

February 27, 2013

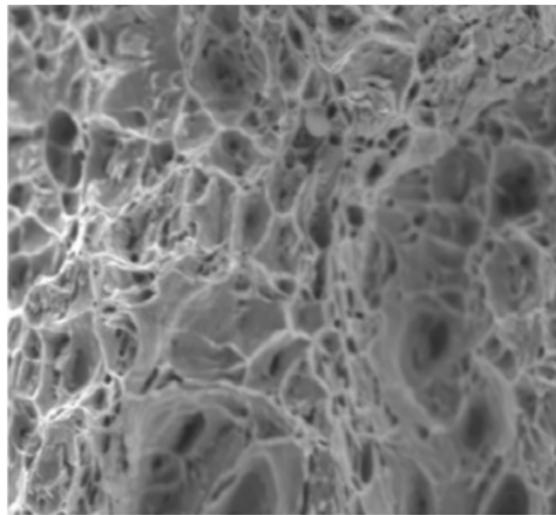
Introduction


- The stress state has a strong influence on damage development and fracture.
- Triaxiality has been used to evaluate the stress state effect on damage/fracture.

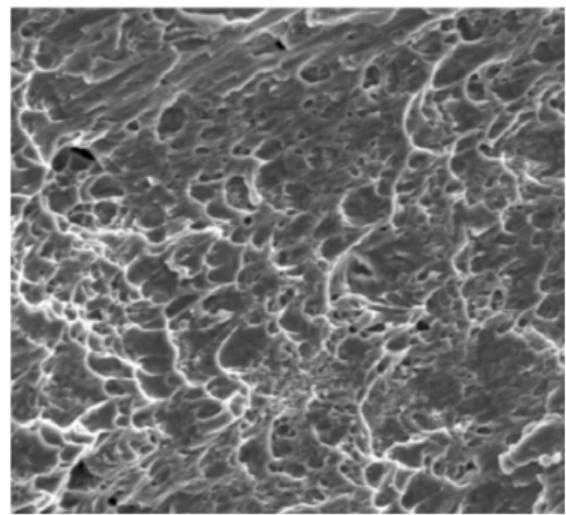
[Pineau and Pardoen, 2007]

Introduction

- The stress state has a strong influence on damage development and fracture.
- Triaxiality has been used to evaluate the stress state effect on damage/fracture.


$$T(I_1, J_2) = \frac{\sigma_m}{\sigma_{eq}} = \frac{1}{3\sqrt{3}} \frac{I_1}{\sqrt{J_2}}$$

- T ratio between volumetric I_1 and distortion J_2 effects.
- $T \rightarrow 0 \implies \epsilon_f \rightarrow \infty$


[Pineau and Pardoen, 2007]

Introduction

- Forming processes are characterized by low triaxialities.
- The failure mode (coalescence) is different at high/low triaxialities:

Cavity controlled (Dimples)
 $T = 1.10$

Shear controlled
 $T = 0.47$

[Barsoum and Faleskog, 2007a]

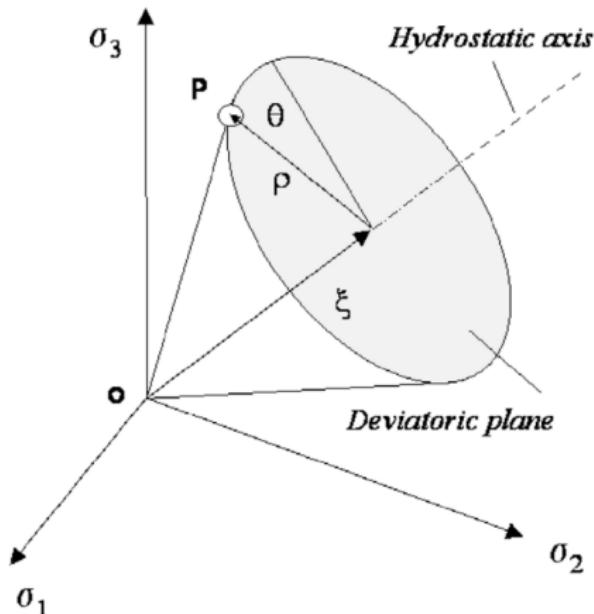
Introduction

- Given the Gurson [1977] model:

$$F = \frac{\sigma_{eq}^2}{\sigma_Y^2} - 1 + \underbrace{2f \cosh \frac{3}{2} \frac{\sigma_m}{\sigma_Y} - f^2}_{\text{Damage}} = 0$$

- No damage is predicted when $T = 0$. Further extensions are required.
- Gologanu et al. [1996] note that the void expansion can vary at same triaxialities.
- At low triaxiality, void shape evolution becomes more important than void growth.

Lode angle influence

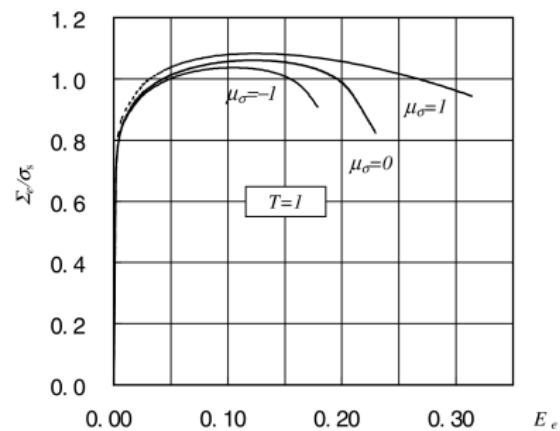
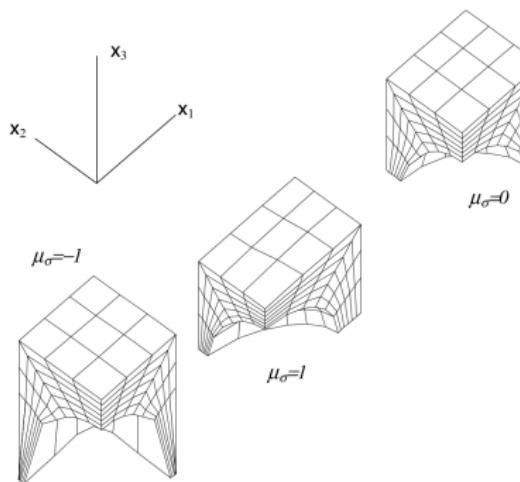

- Triaxiality is not able to account the shape effects on voids.
- Solution: fully account the stress state with the set (I_1, J_2, J_3) .
- A *physical meaning* can be assigned to J_3 through the **Lode angle** θ .

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} = \frac{I_1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \frac{2}{\sqrt{3}} \sqrt{J_2} \begin{pmatrix} \cos \theta \\ \cos(120 - \theta) \\ \cos(120 + \theta) \end{pmatrix}$$

- Stress state:
 - $\theta = 0$: uniaxial tension plus hydrostatic pressure (triaxial tension).
 - $\theta = 30$: pure shear plus hydrostatic pressure.
 - $\theta = 60$: uniaxial compression plus hydrostatic pressure.
- The relation between θ and J_3 is given by:

$$X(J_2, J_3) = \cos 3\theta = \frac{27}{2} \frac{J_3}{\sigma_{eq}^3}$$

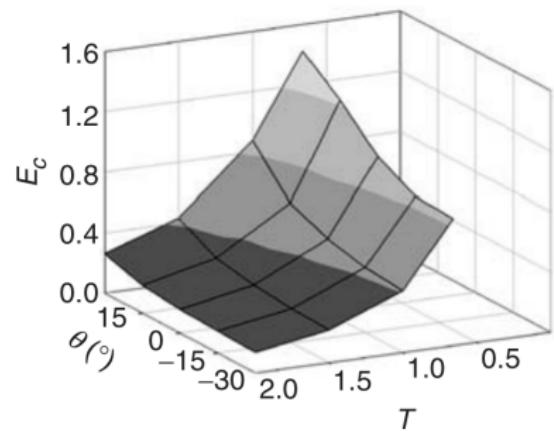
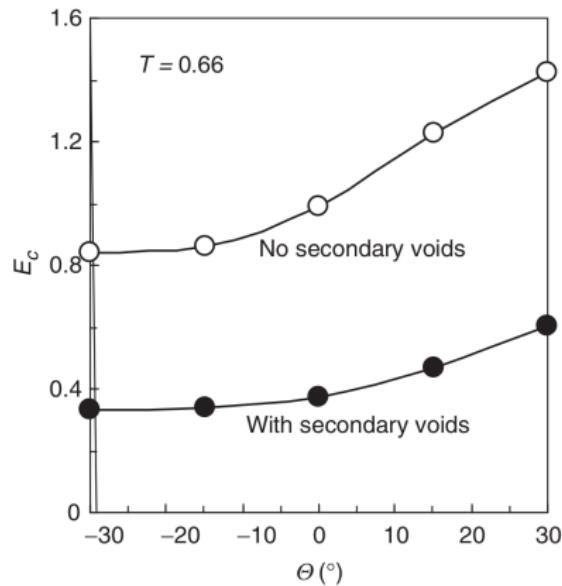
Lode angle



- P : Stress state.
- ξ : Hydrostatic stress (I_1).
- ρ : Deviatoric stress (J_2).
- θ : Lode angle (J_3).

[Coppola et al., 2009]

Lode angle

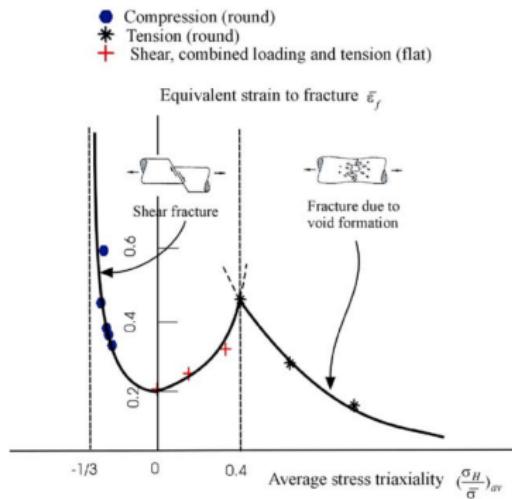
Micromechanics



- Unit cell deformation at constant triaxiality $T = 1$.

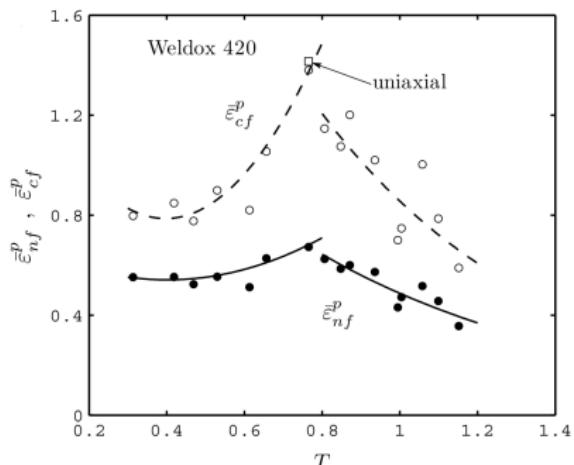
[Zhang et al., 2001]

Lode angle

Micromechanics



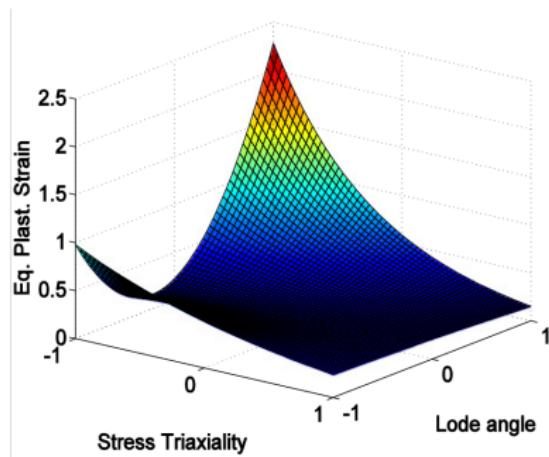
[Gao et al., 2009]


Lode angle

Influence on fracture strain

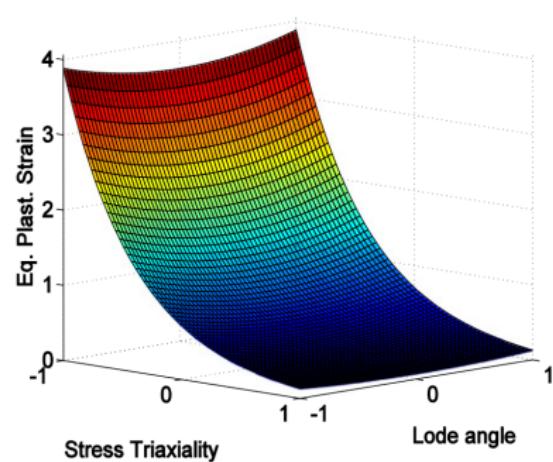
- The strain at fracture is not monotonically decreasing function of the triaxiality.
- Note that the peaks are at different triaxialities.

[Bao and Wierzbicki, 2004]



[Barsoum and Faleskog, 2007b]

Lode angle


Influence on fracture strain

- They are *lode angle independent* materials.

Aluminum 2024-T351

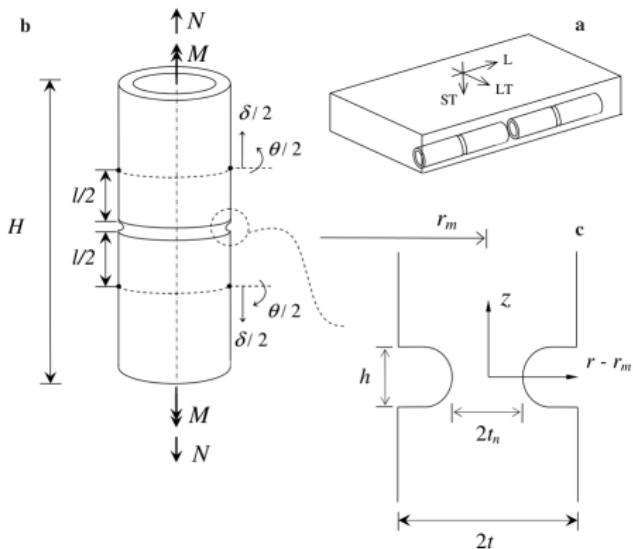
[Bai and Wierzbicki, 2008; Malcher et al., 2012]

1045 steel

Experimental characterization

Influence on fracture strain

- The Lode angle play an important role in fracture strain.
- To investigate of the Lode angle the effect, three-dimensionsal stress state is needed.
- At plain stress state [Bai and Wierzbicki, 2008]:


$$X(T) = \cos 3\theta = -\frac{27}{2}T \left(T^2 - \frac{1}{3} \right)$$

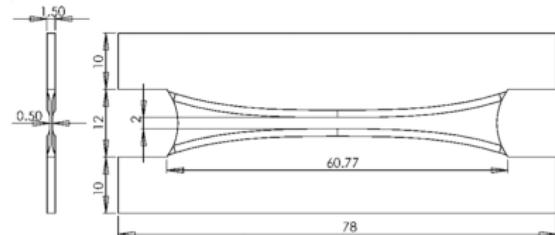
- Usually compressive and shear specimens are used to study the low-triaxiality regime.
- Some special specimens have been proposed.

Experimental characterization

Barsoum and Faleskog [2007a] specimen

- Double notched specimen, subjected to a combination of tensile and torsional loading.
- By changing the tensile-to-torsional force ratio, different values of triaxiality can be obtained.

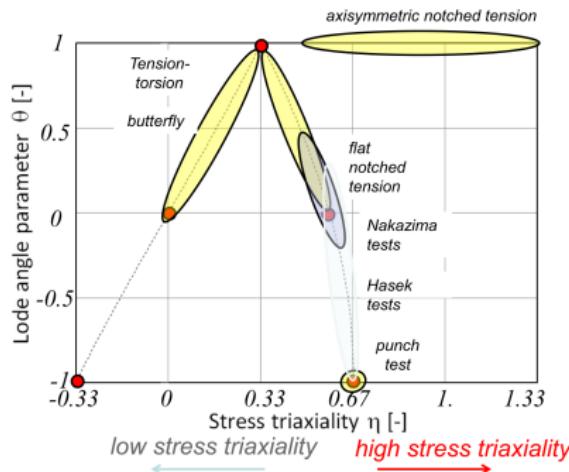
$$t_{max} = 3.2 \text{ mm}$$
$$t_{min} = 1.2 \text{ mm}$$


Experimental characterization

Butterfly specimen

- Specially designed to calibrate a fracture locus for lode angles between the limiting cases $X = \pm 1$.
- The specimen is charged in two directions.
- The fracture initiation is at the center.

Bai and Wierzbicki [2008]



Dunand and Mohr [2011]

Experimental characterization

Butterfly specimen

- For the same triaxiality, but for different loading histories, the strain to fracture is not the same.
- The inaccuracies in the geometry could not be over 10 μm

Experimental characterization

Driemeier et al. [2010] specimen

- Shear specimens with out-of-plane notches (0.2 mm and 0.5 mm in a 1.56 mm Aluminium sheet).
- Proposed to study at triaxialities near zero.

Experimental characterization

Driemeier et al. [2010] specimen

- Shear specimens with out-of-plane notches (0.2 mm and 0.5 mm in a 1.56 mm Aluminium sheet).
- Proposed to study at triaxialities near zero.
- No numerical results were presented.
- The Lode angle cannot be studied in these thin sheet because no geometric effects (diffuse necking, shear band localization) were observed.
- This behaviour is observed in thicker sheets, leading to necking through-the-thickness.

Discussion

Experimental limitations

- Specimens have very low fabrication tolerances.
- Experimental test to evaluate low triaxialities should be carried on in bulk material (compression, bars, . . .).
- Physical mechanisms of the Lode angle are not clear (shape change? growth direction?).

Discussion

Experimental limitations

- Specimens have very low fabrication tolerances.
- Experimental test to evaluate low triaxialities should be carried on in bulk material (compression, bars, . . .).
- Physical mechanisms of the Lode angle are not clear (shape change? growth direction?).

So, what we can do?

- Shear test allow to study low values of triaxiality, but not the Lode dependence.
- Is the DC01 steel really *Lode angle dependent*?.
- Most of these experimental campaigns are done for calibration and/or evaluation, not for particular applications.
- *Is the Lode angle important during SPIF?*

References I

- Bai, Y., Wierzbicki, T., Jun. 2008. A new model of metal plasticity and fracture with pressure and Lode dependence. *International Journal of Plasticity* 24 (6), 1071–1096.
- Bao, Y., Wierzbicki, T., Jan. 2004. On fracture locus in the equivalent strain and stress triaxiality space. *International Journal of Mechanical Sciences* 46 (1), 81–98.
- Barsoum, I., Faleskog, J., Mar. 2007a. Rupture mechanisms in combined tension and shear-Experiments. *International Journal of Solids and Structures* 44 (6), 1768–1786.
- Barsoum, I., Faleskog, J., Aug. 2007b. Rupture mechanisms in combined tension and shear-Micromechanics. *International Journal of Solids and Structures* 44 (17), 5481–5498.
- Coppola, T., Cortese, L., Folgarait, P., Jun. 2009. The effect of stress invariants on ductile fracture limit in steels. *Engineering Fracture Mechanics* 76 (9), 1288–1302.
- Driemeier, L., Brünig, M., Micheli, G., Alves, M., Feb. 2010. Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. *Mechanics of Materials* 42 (2), 207–217.
- Dunand, M., Mohr, D., Dec. 2011. Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading. *Engineering Fracture Mechanics* 78 (17), 2919–2934.
- Gao, X., Zhang, G., Roe, C., Jun. 2009. A Study on the Effect of the Stress State on Ductile Fracture. *International Journal of Damage Mechanics* 19 (1), 75–94.
- Gologanu, M., Leblond, J.-B., Perrin, G., Devaux, J., 1996. Recent extensions of Gurson's model for porous ductile materials. *International Seminar of Micromechanics*, 61–130.

References II

- Gurson, A., 1977. Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. *Journal of Engineering Materials and Technology* 99 (1), 2–15.
- Malcher, L., Andrade Pires, F., César de Sá, J., Mar. 2012. An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. *International Journal of Plasticity* 30-31, 81–115.
- Pineau, A., Pardoen, T., 2007. Failure mechanisms of metals. *Comprehensive structural integrity encyclopedia* 2.
- Zhang, K., Bai, J., François, D., Aug. 2001. Numerical analysis of the influence of the Lode parameter on void growth. *International Journal of Solids and Structures* 38 (32-33), 5847–5856.