ABSTRACT

Erythromycin resistance among group B streptococcus (GBS) isolates has been observed worldwide among group B streptococcus (GBS) isolates. In Belgium, through the 2000s, erythromycin resistance has increased from 8% to 20%. Therefore phenotypical and molecular surveillance of erythromycin and clindamycin resistance patterns have been conducted.

MATERIALS AND METHODS

Strains

<table>
<thead>
<tr>
<th>Period</th>
<th>Collection 1 (n=150)</th>
<th>Collection 2 (n=514)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>72%</td>
<td>70%</td>
</tr>
<tr>
<td>Strain</td>
<td>Laboratory</td>
<td>Belgium Natl. Reference Lab.</td>
</tr>
</tbody>
</table>

RESULTS

Distribution of resistance phenotypes and genotypes

- **Phenotypes distribution among 109 erythromycin-resistant GBS isolates**
- **Distribution of the emrTR, emm, and mefA/B genes within the different erythromycin resistance phenotypes**

CONCLUSIONS

- In Belgium, by the year 2010, prevalence of macrolide and lincosamide resistance among GBS exceeded 30%.
- Erythromycin resistance was higher among GBS isolates from adult invasive infections than from neonatal population.
- MLS phenotypes, either constitutive or inducible, were predominant leading to cross-resistance to macrolides and lincosamides.
- Resistance surveillance is mandatory to guide prophylaxis and treatment of serious GBS infections but also to identify newly acquired resistance mechanisms such as the L phenotype.

REFERENCES

- **Correction of erythromycin-resistant group B streptococcus (GBS) isolates selected in Belgium.** IDSA Poster 3007-3179; 2006; San Francisco, USA.
- Poupet U, Fedirko V, Pazy M, vanAmerongen G, de Ma P.
- **Multiple PCR assay for rapid and accurate capillary typing of group B streptococcal isolates from maternal, newborn, and community samples.** J Clin Microbiol. 43(11): 6181-6186.

AIM

To determine the phenotypical and molecular resistance patterns for erythromycin- and clindamycin-resistant group B streptococci and to identify the resistance genes (emm, emrTR and mefA/B) among erythromycin-resistant S. agalactiae isolated in Belgium from various clinical and colonizing origins.

Determinant of erythromycin and clindamycin MICs

- **Erms** method (AB Biodisk®, Sweden)
- Inoculum 0.5 McFarland on Mueller-Hinton agar <5% sheep blood
- Incubation 18h at 35°C
- MIC resistance breakpoints: >0.5 mg/L, EUCAST 2011

Determination of erythromycin resistance phenotypes

- Double-disk diffusion assay
- Erythromycin 15 µg paper-disks and clindamycin 2 µg paper disks (Becton Dickinson and Company®, USA)
- Disks placed 15-20 mm apart on agar plate; 18-24h incubation at 35°C
- MLS phenotype: susceptible to at least one of the antibiotics.
- M phenotype: susceptible to both of the antibiotics.

Evolution macrolide and lincosamide resistance in GBS in Belgium between 2000 and 2010

Distribution of resistance phenotypes and genotypes

- Genotypic distribution of 109 erythromycin-resistant GBS isolated from adult infections, neonatal infections (EOD and LOD) and colonization in pregnant women

RESULTS

Erythromycin and clindamycin resistance rates

Among the 328 clinical and colonizing GBS collected between 2008 and 2011, 109/328 isolates (33.2%) and 75/328 isolates (22.9%) were resistant to erythromycin and clindamycin respectively. Rate of resistance to clindamycin was higher when inducible resistance (ILS) was added to MLS and L phenotypes: 103/328 (31.4%).