
 
 

 

  

Abstract—State observer design procedure is proposed for 
nonlinear locally Lipschitz systems. Possible presence of 
disturbances is taken into account. The solution is based on 
logic-based control approach applicable to nonlinear systems 
with bounded solutions. 

I. INTRODUCTION 
HE state observers design problem for nonlinear 
systems has been an area of intensive research during 

the last two decades. There exists a lot of solutions in the 
area dealing with diverse forms of systems models. Among 
them it is necessary to mention high gain techniques [4], [9], 
[15]; sliding mode observers [7], [8], [31], [37]; nonlinear 
coordinate changes [5], [19], [20], [21]; numerical 
techniques [23]; approaches dealing with smooth [14], [34] 
and nonsmooth output functions [16]. Adaptive observers 
are designed for systems with parametric uncertainties [6], 
[12], [33], [35], [38]. Observers design procedures find their 
applications not only in areas of control under partial 
measurements [15], but also for fault detection [3], [13], 
[33], [36] systems synchronization [22] and secured data 
transmission and encoding [12], [24]. 

The class of Lipschitz nonlinear systems has seen much 
attention: 
 ( ) ( , )= + +x A x φ y Bf x d , =y C x , (1) 

where nR∈x  is state vector; mR∈d  is disturbing input; 
pR∈y  is available for measurements output and functions 

: p nR R→φ  and : n m pR R+ →f  are Lipschitz continuous 
(function f  globally); constant matrices A , B , C  have 
appropriate dimensions. An advance of this class of systems 
consists in fact, that almost all nonlinear systems of the form 
 ( , )=x F x d , =y C x , 

where : n m nR R+ →F  is locally Lipschitz continuous, can 
be reduced to (1) at least locally.  

Observers design for Lipschitz systems (1) was firstly 
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considered in [32], where sufficient conditions ensuring 
asymptotic stability of the observer were proposed. In [27], 
[28] an iterative procedure based on algebraic Riccati 
equation solving was formulated. That result was later 
extended in [13]. A rather complete solution of these 
problems was presented in [29] and [30], where necessary 
and sufficient conditions directly related to observer 
matrices were proposed (a design procedure based on 
gradient optimization method was also presented in [29]). 
Robust properties of observers for (1) with respect to 
disturbing input d  were analyzed in [1], [3], [25]. Adaptive 
observers design problem for Lipschitz systems was solved 
in [6], [35]. All these solutions were obtained under 
assumption on globality of Lipschitz property for function 
f . Under such assumption applying sufficiently high 
observer feedback gain it is possible to cancel influence of 
nonlinearity on observation error dynamics and the problem 
is solvable via linear systems approach. 

Application of sliding mode approach allows one to 
ensure finite time convergence of a part of observation error 
to zero [7], [8], [31], [37]. Additionally, equivalent control 
methodic may help to estimate disturbances levels affecting 
on the system (that is useful for fault detection). Generically 
application of sliding mode approach for observation 
improves quality of transient processes and rate of error 
convergence. 

If system is locally Lipschitz, only local solution is 
possible applying conventional approaches [28], [30], [32]. 
In [18], [39] attempts were carried out to find global 
solutions for special classes of systems (1) (without 
disturbances) based on tuned observer gains, which are 
continuously increasing while observation error are 
converging to zero. Development of this approach for 
generic case (enlarging class of systems or adding 
disturbances) meets obstacles dealing with possible 
unboundedness of observer feedback gains. In this work a 
solution of the problem is proposed for perturbed system (1), 
where growing observer gains are updated by discrete 
algorithm. On each step the new gains are substituted in the 
observer using logic-based scheme if the previous observer 
gains fail to satisfy some performance criteria. This prevents 
infinite growth of the gains in the case of disturbances 
presence.  

The structure of the paper is as follows. Preliminary 
results are introduced in section 2. Main results are 
presented in section 3. Results of computer simulations are 
discussed in section 4.  
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II. PRELIMINARIES 
The norm of Lebesgue measurable and essentially 

bounded function : mR R+ →d  of time 0t ≥  will be 
defined as follows 
 { }0[ , ) 0|| || sup | ( ) |, [ , )t t ess t t t t= ∈d d . 

The set of all such functions with property 
[0, )|| || || ||+ ∞ = < + ∞d d  we will further denote as mR

M . 

Norm | |R  of matrix R  is calculated as square root of its 
maximum singular value. As usual, continuous function 

++ →σ RR:  belongs to class K  if it is strictly increasing 
and ( ) 00 =σ ; additionally it belongs to class ∞K  if it is 
also radially unbounded; and continuous function 

+++ →×β RRR:  is from class LK , if ( , )rβ ⋅ ∈K  for any 
fixed r R+∈ , and ( , )sβ ⋅  is strictly decreasing to zero for 
any fixed s R+∈ . 

If for all initial conditions 0
nR∈x  and inputs mR

∈d M  

the solutions 0( , , )tx x d  of the system (1) are defined for all 
0t ≥ , then the systems are called forward complete 

(necessary and sufficient conditions for a nonlinear system 
( , )=x F x d  to be forward complete can be found in [2]). 

L e m m a  1. Let : n lR R→g  be continuous and locally 
Lipschitz function, then there exist functions 1α , 2α ∈K  

such, that for all nR∈x , nR∈z  it holds: 
 1 2| ( ) ( ) | (1 | | ) (1 | | ) | |− ≤ α + α + −g x g z x z x z . 

P r o o f . According to local Lipschitz property of 
function g , for all 0r > , 0q >  there exists constant ,r qL  

such, that 
 ,| ( ) ( ) | | |r qL− ≤ −g x g z x z  for | | r≤x , | | q≤z . 

Consider function 
 

| | ,| |
( , ) sup | ( ) ( ) | / | |

r q
r q

= =
γ = − −

x z
g x g z x z , 

which for any 0r > , 0q >  admits bounds 

,0 ( , ) r qr q L< γ ≤ . Due to continuity of g  there exists 

continuous function 2:a R R+→  such, that 
( , ) ( , )r q a r qγ ≤ . Therefore by standard arguments in this 

case there exist functions 1α , 2α ∈K  such, that the desired 
inequality holds. ■ 

The result of the lemma is somehow related with Lemma 
2.5 from [18].  

The next property is frequently used in adaptive control 
theory. Consider a linear dynamical system 
 = +ξ A ξ B υ , =ψ Cξ  (2) 

with state nR∈ξ , input pR∈υ  and output pR∈ψ . 
Introduce the following notations: 
 ( )AI −=δ nss det)( , 1( ) ( )nW s s −= −C I A B , 

 ( )( ) ( )det ( )s s W sϕ = δ , lim ( )s sW s→+ ∞=Γ , 

where nI  is identity matrix of size nn × . Matrix 
inequalities are understood in sense of quadratic forms. 
System (2) is called minimum phase if the polynomial )( sϕ  
is Hurwitz (its zeros belong to the open left half-plane). 
System (2) is called  hyper minimum phase if it is minimum 
phase and 0>= TΓΓ  [10]. 

L e m m a  2  [11]. Let rank( ) p=B . Then the following 
properties are equivalent. 

1°. System (2) is hyper minimum phase. 
2°. There exist matrices 0>= TPP  and K  of sizes 

nn×  and p p×  respectively such, that 

 0)()( <+++ PBKCABKCAP T , TCBP = . 

3°. There exist matrices 0>= TPP  and K  of sizes 
nn×  and p n×  respectively such, that 

 0)()( <+++ PBKABKAP T , TCBP = . 

4°. There exist matrices 0>= TPP  and K  of sizes 
nn×  and n p×  respectively such, that 

 ( ) ( ) 0T− + − <P A KC A KC P , TCBP = . □ 

III. MAIN RESULTS 
In this work we suppose that the state vector x  and the 

disturbing input d  in the system (1) are bounded without 
precise information on their upper bounds. 

A s s u m p t i o n  1 . Let for the system (1) || || < +∞x  and 

mR
∈d M . □ 

The outline of this section is as follows. In the first part 
we introduce observer equations and substantiate the 
observer properties for the case when the exact upper 
estimates for || ||x  and || ||d  are given. In the second part a 
procedure is proposed, which is used for verification of 
accuracy for the given upper estimates for || ||x  and || ||d . In 
the third part the equations of the proposed hybrid state 
observer for the system (1) are presented and global 
convergence of estimation error is proven. 

 
3.1. Sliding mode state observer 
Consider the following robust state observer for (1): 

 ( ) [ ( , 0 ) ] ( )= + + + + −z A z φ y B f z u K y C z , (3) 

where nR∈z  serves as vector x  estimate; K  is observer 
matrix gain with dimension n p× , which value will be 

specified later; and pR∈u  is additional sliding mode 
feedback. Introduce into consideration dynamics of 
observation error = −e x z : 
 [ ] [ ( , ) ( ,0) ]= − + − −e A K C e B f x d f z u  (4) 
and define 



 
 

 

 
1| | if 0;

0 otherwise,
k −⎧⎪ ≠= ⎨
⎪⎩

Ce Ce Ceu  (5) 

where 0k >  is design parameter to be calculated later. 
From lemma 1 the following inequalities are satisfied for 

all nR∈x , nR∈z , mR∈d : 

 1

2

| ( , ) ( , 0 ) | (1 | ( , ) |)
(1 | | ) | ( , ) ( , 0 ) |

− ≤ α + ×
×α + −
f x d f z x d

z x d z
 

for some functions 1 2,α α ∈K . For mR
∈d M  the last 

inequality can be rewritten as follows: 

 1 2

1 2

(1 | ( , ) | ) (1 | | ) | ( , ) ( , 0 ) |
(1 | | || || ) (1 | | )[ | | || || ] .

α + α + − ≤
≤ α + + α + − +

x d z x d z
x d z x z d

 

Denote  
 1 2( , , ) (1 ) (1 )L X D Z X D Z= α + + α + ,  
 1 2( , , ) (1 ) (1 )[ ]F X D Z X D Z X Z D= α + + α + + + , 
then for all | | X≤x , | | Z≤z  and || || D≤d , 
 | ( , ) ( , 0 ) | ( , , )[ | | ]L X D Z D− ≤ − +f x d f z x z , 
 | ( , ) ( , 0 ) | ( , , )F X D Z− ≤f x d f z . 

As in conventional sliding mode observer approach [7], 
[8], [31], [37] the following property is required.  

A s s u m p t i o n  2 . The system (2) (where the matrices 
A , B  and C  are from (1)) is hyper minimum phase. □ 

Under this assumption according to lemma 2 there exist 
positive definite symmetric matrices P  and Q  such, that  

 ( ) ( )T− + − = −P A KC A KC P Q , TCBP = . 
Consider for system (4), (5) Lyapunov function 
( ) TV =e e P e , which time derivative has form: 

 [ ]
[ ]

[ ( ) ( ) ]

2 ( , ) ( , 0 )

2 ( , ) ( , 0 ) .

T T

T T

T T

V = − + − +

+ − − = − +

+ − −

e A K C P P A K C e

e P B f x d f z u e Qe

e C f x d f z u

 

Assume that 0|| || X≤x , 0|| || D≤d  and 0|| || Z≤z  for some 

0 0X > , 0 0D > , 0 0Z > , i.e. additionally to assumption 1 
suppose that upper estimates on the system (1) state and 
disturbances are known (constant 0Z  is always assigned by 
a designer), then we obtain: 
 0 0 02| |[ ( , , ) ]TV F X D Z k≤ − + −e Q e Ce . 
In this case a natural choice is 0 0 0( , , )k F X D Z> , then 

 ( ) 2 ( )V t V t≤ − α , min max0.5 ( ) / ( )α = λ λQ P , 
where min ( )λ Q , max ( )λ P  are minimum and maximum 
eigenvalues of corresponding matrices, 0 0t t≥ ≥ . Thus, 
observation error e  admits the exponential estimate 
( 0 0 0| ( ) | | ( ) |t t X≤ +e z , max min( ) / ( )ρ = λ λP P ): 

 0( )
0 0| ( ) | ( ) t tt X Z e−α −≤ ρ +e , 0t t≥ . (6) 

 
3.2. Observer gains failures verification 

Unfortunately the values 0X , 0D  are not known and in 
general case for particular k  the inequality 

0 0 0( , , )k F X D Z>  can be violated. Therefore, it is 
necessary to propose a procedure for values 0X , 0D  
validation. To do so, denote y =e Ce  and consider 

dynamics of this variable: 
 1[ ] [ ( , ) ( , 0 ) | | ]y y yk −= − + − −e C A K C e CB f x d f z e e . 

Time derivative of auxiliary Lyapunov function 
( ) 0.5 T

y y yW =e e e  takes form: 

 
1

[ ] [ ( , ) ( ,0)]

| | .

T T
y y

T
y y y

W

k −

= − + − −

−

e C A K C e e CB f x d f z

e CB e e
 

If constants 0X , 0D , 0Z  are chosen high enough and 
properties 0|| || X≤x , 0|| || D≤d , 0|| || Z≤z  are true, then 

 

0 0 0 0

[ ] [ ( , ) ( ,0)]

| | {| [ ] || | | || ( , ) ( ,0) |}

| | {| [ ] || | | |[ ( , , ) | | ]}

T T
y y

y

y L X D Z D

− + − ≤

≤ − + − ≤

≤ − + +

e C A KC e e CB f x d f z

e C A KC e CB f x d f z

e C A KC e CB e

 

and 1
min| | ( ) | |T

y y y yk k− ≥ λe CB e e CB e  (matrix CB  is 
positive definite and symmetric due to assumption 2 since 

T T T=B P B B C ). Therefore, 

 
0 0 0 0 min

| | {| [ ] || | | |

[ ( , , ) | | ] ( )}.
yW

L X D Z D k

≤ − + ×

× + − λ

e C A KC e CB

e CB
 

If 0 0 0( , , )k F X D Z>  and the estimate (6) is satisfied, then 
for any 0ε >  there exists time 0 0 0( , )T X Z tε ≥  such that 
| ( ) |t ≤ εe  for 0 0( , )t T X Zε≥ , where 

 ( )1
0( , ) ln /{ ( )}T X Z t X Z−

ε = − α ε ρ + . 

Time 0 0( , )T X Zε  defines length of the time interval, which 
is required for system (3) to observe state x  of system (1) 
with predefined accuracy ε . Let additionally 

 
1

min

0 0 0 0

( ) {1 | [ ] |
| |[ ( , , ) ]},

k
L X D Z D

−≥ λ + − ε +
+ ε +

CB C A K C
CB

 

then for 0 0( , )t T X Zε≥ , 

 ( ) | | 2 ( )yW t W t≤ − = −e  

and for 0 0 0 0 0( , ) ( , )T X Z t T X Zε ≤ ≤  

 2
0 0 0 0( ) 0.5( | ( ( , ) ) | ( , ) )yW t T X Z T X Z tε ε≤ + −e ; 

 ( ) 0W t = , 0 0 0( , )t T X Z≥ , 
where 0 0 0 0 0 0 0( , ) | ( ( , ) ) | ( , )yT X Z T X Z T X Zε ε= +e . 

Thus, the time 0 0 0( , )T X Z  can be used for detection of 
correctness of values 0X , 0D , 0Z  choice, since available 
for measurements signal ( ) ( ) ( )y t t t= −e y Cz  should 

possess the constrain ( ) 0y t =e  for 0 0 0( , )t T X Z≥ . 
 



 
 

 

3.3. Global robust hybrid observer for locally Lipschitz 
nonlinear systems 

Assume that there exists 0 0 0( , )t T X Z′ ≥  such, that 
| ( ) | 0y t′ >e , then it means that constants 0X , 0D , 0Z  

have been chosen not sufficiently high. Taking for 0X , 0D  
and 0Z  new higher values it is necessary to repeat all 
described above steps, which in general case can be 
formalized as follows: 
 1( , )i x iX h i X −= , 1( , )i d iD h i D −= , 1( , )i z iZ h i Z −= ,(7) 
 0 0X > , 0 0D > , 0 | ( 0 ) |Z > z ,  
 1, 2,3,...i N= ≤ + ∞ ; 

 
{

}min

max ( , , ),{1 | [ ] |

| |[ ( , , ) ]}/ ( ) ;
i i i i

i i i i

k F X D Z

L X D Z D

> + − ε +

+ ε + λ

C A K C

CB CB
 (8) 

( ) Proj[ , ( ) ( ( ) ) ( )
( ( ), 0 ) ( ( ) ( ) ) ],

it t t t
t t t

= + + +
+ + −

z z A z φ y B u
Bf z K y C z 1[ , )i it t t +∈ ,(9) 

 1( ) | ( ) ( ) | [ ( ) ( ) ]i it k t t t t−= − −u y C z y C z ; 

 

, | | ( ) 0 ;

( ) ( )
Proj( , )= ,

( ) ( )

| | ( ) 0 ,

T
i

T
n T

T
i

if Z

if Z

⎧ < ∨ ≤
⎪
⎪ ⎛ ⎞⎪ ⎜ ⎟−⎨ ⎜ ⎟⎪ ⎝ ⎠
⎪

= ∧ >⎪⎩

ζ z n z ζ

n z n z
z ζ I Γ ζ

n z Γn z

z n z ζ

 (10) 

 
0

1 argsup{| ( ) | 0}
i

i y
t T

t t+
≥

= >e , 0 0t = , (11) 

 0 | ( ) |i y i iT T Tε ε= +e , 1 ln
( )i i

i i
T t

X Z
ε ⎛ ⎞ε= − ⎜ ⎟α ρ +⎝ ⎠

,(12) 

where discrete systems (7) have well defined strictly 
increasing solutions for any 0 0X > , 0 0D > , 0 0Z >  for all 

1i ≥ , constant 0ε >  and matrix 0>Γ  can be taken 
arbitrary; ( )n z  is the unit outward normal vector for 
| | iZ=z , then projection algorithm (10) ensures existence 
and boundedness of the system (9) solutions [17], [26] for 
cases of wrong choices of values iX , iD , iZ  (which are 
calculated from (7) at time instants it ).  

The following result describes stability properties of this 
hybrid observation algorithm. 

T h e o r e m  1 . Let assumptions 1, 2 hold and discrete 
systems (7) have well defined strictly increasing to infinity 
solutions for any 0 0X > , 0 0D > , 0 0Z >  for all 1i ≥ . 
Then for any 0ε > , 0>Γ  for the system (1) with the 
algorithm (7)–(12) it holds that 
− || ||< + ∞z ;  
− there exists the last step N < + ∞  of the algorithm such, 

that | ( ) ( ) | 0t t− =y C z  for all 0
Nt T≥ ; 

− there exists NT Tε ≤ < + ∞  such that 
 | ( ) ( ) |t t− ≤ εx z  for all t T≥ . 

P r o o f . The operation of algorithm (7)–(12) can be 
explained in the following way. For any 1i ≥  at time instant 
it  the values iX , iD , iZ  are derived from equations (7) 

(for 0i =  the initial conditions 0X , 0D , 0Z  are used). 
Further, the value of sliding feedback gain ik  is calculated 

in accordance with (8). Finally, the time instants 0
iT  and iT ε  

are calculated from (12). If constants iX , iD , iZ  have been 

chosen correctly, then the value iT ε  defines the time instant 
after which the system insures the state observation with 
prescribed accuracy ε  (i.e. | ( ) ( ) |t t− ≤ εx z  for all it T ε≥ ). 

The value 0
iT  in this case indicates the time instant when 

available for measurements signal ( ) ( ) ( )y t t t= −e y Cz  

reaches for zero. At this point “off-line” part of calculations 
in algorithm (7)–(12) is finished (it is assumed that all these 
computations are done at the time instant it ) and “on-line” 
operations are initiated. During “on-line” part the observer 
(9) attempts to estimate the system (1) state vector values 

( )tx . The presence of projection ensures boundedness of 
the vector | ( ) | it Z≤z  for 1[ , )i it t t +∈  (the exceeding of 
bound iZ  by vector ( )tz  norm indirectly means that some 
or all values from iX , iD , iZ  have been chosen wrongly) 
and prevents finite time escapes for nonlinear perturbed 
system (9). Algorithm (9), (10) provides continuity of ( )tz  
for 1[ , )i it t t +∈  and, thus, for all 0t ≥  (the right hand side 
of the system is piecewise continuous vector function).  

If for some 0
it T′ ≥  the condition | ( ) | 0y t′ >e  is satisfied, 

it implies that values iX , iD , iZ  have been taken not 
sufficiently high. Then 1it t+ ′=  and it is necessary to repeat 
all steps of the algorithm. Since || ||< + ∞x  and || ||< + ∞d , 
for strictly increasing sequences iX , iD , iZ  there exists an 
index i N= < + ∞  such, that || || NX<x , || || ND<d . In this 

case it holds that | ( ) |t ≤ εe  for all Nt T ε≥  and | ( ) | 0y t =e  

for 0
Nt T≥ ; | ( ) | Nt Z≤z  for all Nt t≥ . 

Finally note, that it may be the case that | ( ) | 0y t =e  for 

all 0
Nt T≥ , but || || NX≥x  and/or || || ND≥d . In this case 

due to assumption 2 the equality TV = −e Qe  holds, which 
ensures convergence of the observation error to desired 
neighborhood of the origin for some finite time NT T ε≥ . ■ 

According to the result of Theorem 1 the observer 
(7)−(12) provides finite time convergence of observation 
error to ε -neighborhood of zero for any 0ε >  for all initial 

conditions 0
nR∈x  and mR

∈d M  when the corresponding 

solutions are bounded (assumption 1 is satisfied). The main 
restrictions on class of admissible for the approach systems 



 
 

 

(1) are formulated in assumption 2. The linear part of the 
system (1) (i.e. the system (2)) has to be hyper minimum 
phase, that for instance implies relative degree 1 for the 
system (2). The lower estimate NT ε  on the time of 

convergence to the ε -neighborhood of zero for the error e  
is calculated during the algorithm processing. 

R e m a r k  1 . Let us stress that application of adaptive 
control approach for continuous tuning of the gain k  in 
sense of works [18], [39] is not possible here in general 
case. Indeed, the desired value for the gain k  can be defined 
by function (|| ||, || ||, || || )F x d z , where || ||x  and || ||d  are 
unknown constant, while || ||z  is the state of observer. Thus, 
the desired value ( || ||, || ||, || || )F x d z  is not a constant and 
depends in nonlinear fashion on z . This obstruction comes 
from lemma 1 (Lipschitz constant of locally Lipschitz 
system nonlinearly depends on all arguments).  

To resolve this “loop” logic-based scheme is used and 
discrete algorithms (7) are applied in this work. □ 

R e m a r k  2 . Optimization of functions xh , dh , zh  
form can guarantee convergence of the algorithm with 
minimum number of steps or at least it can provide a desired 
upper estimate on number of the algorithm steps. For 
example, let ( , ) exp( )x ih i X i= γ  for some 0γ > , then 

1{ ln(|| ||)}N round −= γ x , where {}round ⋅  is rounding-off 
operator to closest bigger integer number.  

R e m a r k  3 . According to (12) the time instants iT ε  
may go to infinity rather fast with growing iX  and iZ , that 
increases required time for each step execution since 
 0

1 | ( ) |i i y i it T T Tε ε
+ ≥ = +e . 

Values of ( )y iT εe  may be small and the growth of time 

follows by iT ε . To overcome this obstacle and reduce rate of 

time iT ε  increasing one can use different 0ε >  for each 
step, for instance, one can substitute in (8) and (12) 

( )i iX Zε = χρ +  for some 0 1< χ < , then 
1 ln( )i iT tε −= − α χ  and for | ( ) |y iT Eε ≤e , 0i I≥ ≥ , 

0E >  the time required for each step i I≥  execution 
becomes also bounded (in the case of explicit failure): 
 0 1

1 ln( )i i it T t E −
+ ≥ = + − α χ . □ 

R e m a r k  4 . If for wrongly chosen constants iX , iD , 

iZ  the vector ( )tz  at time instant 1it +  belongs to its 
boundary iZ  (or close to it) when it is worth to modify the 
algorithm and reset the value of vector z , i.e. 

1 0( ) ( )it t+ =z z  or 1( ) 0it + =z  for instances. □ 

IV. SIMULATIONS 
Let us consider a second order nonlinear system 

 [ 1 2;1 1]= −A , [ 0;1]T=B , T=C B ,  (13) 

 ( ) 0yϕ = , 3
1( , )f d x d= − +x , 

where matrix A  is unstable, but the system has globally 
bounded solutions and it is oscillating (assumption 1 holds). 
Since ( ) 1s sϕ = +  and lim ( ) 1s sW s→+ ∞ = , the system is 
hyper minimum phase and assumption 2 is satisfied. 
According to theorem 1 the observer (7)−(12) has to ensure 
robust state estimation for any initial conditions and 
bounded disturbances. For [ 2;2 ]T=K  we have 2=P I  and 

[ 2 1;1 2 ]= − −Q , 1α = ρ = . Let 0 1k = ,  ( ) sin( 0.1 )d t t= ,  

0 0 0 0.1X D Z= = = , 0.1ε =  then for initial conditions 
( 0 ) [1;1]=x  and (0) [2;2]=x  the corresponding graphics 

of the system (13) output are presented in Fig. 1, norms of 
observer error e  are plotted in Fig. 2 and increasing gains of 
the observer ik  are shown in Fig 3 (the former two in 
logarithmic scales), 0 200t≤ ≤  sec. 
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Fig. 1. The system (13) output. 
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Fig. 2. Norms of observation error e . 

 
According to this simulation the observer gain quickly 

increases ensuring required quality of observation, while the 
output then demonstrates complex oscillations changing 
range and frequency. Asymptotical error fluctuations are 
proportional to accuracy of the simulation performed in 
MATLAB 7.0.1. 

V. CONCLUSION 
The procedure for hybrid state observer design for 

nonlinear locally Lipschitz systems is proposed. Possible 



 
 

 

presence of signal uncertainties is taken into account. The 
solution is based on logic-based control approach applicable 
to nonlinear systems with bounded solutions. Finite time 
convergence of the state estimation error to any 
neighborhood of the origin is guaranteed. Computer 
simulations confirm applicability and performance of the 
proposed observer. 
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Fig. 3. Observer gains ik . 
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