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Abstract— The problem of input-to-output stability for
switched nonlinear systems is considered. Two approaches for
switching between non-exponentially stable systems are pro-
posed guaranteeing input-to-output stability for the switched
system.

I. INTRODUCTION

Stability and control theory of switched systems deals
with generic problems involving the design of switching
signals and establishing conditions on the latter to ensure
stability. It is a well known fact that a switched system
does not inherit the stability properties of the individual
subsystems –cf. [6]. A commonly used assumption is to
consider that switching among the subsystems is suffi-
ciently slow or, in other words, that the switching signal
has the so-called dwell time i.e., a minimal time-interval
between two switches. In this case it may be shown, for
a variety of stability concepts, that for a sufficiently large
dwell-time constant, stability of the individual subsystems
implies that of the switched system –cf. [3], [4], [5], [6],
[7], [8], [9], [14], [15]. The constant dwell time assumption
was weakened in [4], [14] by introducing average dwell
time. In this case, it is required that a dwell-time interval
between switches exist on sufficiently long intervals how-
ever, locally and only locally, it is possible to switch from
one subsystem to another at any desired rate. In [10] state
dependent dwell-time switching logic was introduced; this
consists in making the length of time intervals between
switches a function of the current system’s state.

In [2] we showed that conventional dwell-time based
switching preserves stability of (locally) exponentially sta-
ble systems. In this paper we extend previous results by
proposing two methods for switched non-exponentially
stable systems. The rest of the paper is organized as
follows: in Section II we recall some definitions; our main
theorems are formulated in Section III and an example is
considered in Section IV. Concluding remarks are given in
Section V.
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II. PRELIMINARIES

Consider a family of systems

ẋ = fq(x,d ), y = h(x ), q ∈ I, (1)

where x ∈ Rn, d ∈ Rm is a disturbance; y ∈ Rp is
the output of interest and q is an index in the (possibly
unbounded) countable set I . We assume that fq : Rn+m →
Rn, q ∈ I , h : Rn → Rp are continuous and locally
Lipschitz and that d : R+ → Rm is Lebesgue measurable
and essentially bounded:

‖d‖ [ t0,t ) = ess sup { |d( t )|, t ∈ [ t0, t ) } .

We denote by MRm the set of globally essentially bounded
functions, i.e., that satisfy ‖d‖ := ‖d‖[ 0,+∞ ) < +∞.

A continuous function σ : R+ → R+ is of class K
if it is strictly increasing and σ ( 0) = 0; it is of class
K∞ if it is also radially unbounded; a continuous function
β : R+ × R+ → R+ is from class KL, if β(·, t) ∈ K for
any t ∈ R+, and β(s, ·) is strictly decreasing to zero for
each s > 0.

Let t0 ∈ R+ and i : R≥t0 → I be piecewise constant
and right-continuous, then, for q = i( t ) the family of
systems (1) defines the following switched system

ẋ = fi( t )(x,d ), y = h(x ). (2)

Following [4], [7], [10], [14] we recall the definition of
dwell-time.
Definition 1. The switching signal i( t ) is said to have
average dwell-time 0 < τD < +∞, if there exists an
integer N0 such that 1 ≤ N0 < +∞ and, for any
t2 ≥ t1 ≥ 0 we have

N[ t1,t2 ) ≤ N0 +
t2 − t1

τD
,

where N[ t1,t2 ) is the number of switches. If the interval
between any two switches is not less than τD the switching
signal i( t ) has dwell-time and N0 = 1.

The system (2), where i( t ) has average dwell-time
or constant dwell-time, has finite number of switches on
any finite-time interval and its solution is continuous and
defined, at least, locally.

The switched system (2) is called forward complete if,
for all initial conditions t0 ≥ 0, x0 ∈ Rn and all inputs
d ∈ MRm , the solutions x( t, t0,x0,d ) of the switched
system (2) are defined for all t ≥ t0 (necessary and
sufficient conditions for a dynamical system (1) with fixed
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q to be forward complete can be found in [1]). We denote
the output trajectory y( t, t0,x0,d ) = h(x( t, t0,x0,d ) )
and, on occasions, we use the short-hand notations x( t ) =
x( t, t0,x0,d ), y( t ) = y( t, t0,x0,d ). Furthermore, we
recall the following stability definitions from [12], [13].
Definition 2. We say that for some fixed q ∈ I a forward
complete system (1) is Input-to-Output Stable (IOS) with
respect to the output y and the input d if there exist
functions βq ∈ KL and γq ∈ K such that for all t0 ∈
R+,x0 ∈ Rn, d ∈ MRm , and all t ≥ t0

|y( t, t0,x0,d )| ≤ βq( |x0|, t− t0 ) + γq( ‖d‖[ t0,t ) ).

We say that a switched forward complete system (2) with
i : R≥t0 → I is IOS with respect to the output y and the
input d if there exist functions β ∈ KL and γ ∈ K such
that, for all t0 ∈ R+,x0 ∈ Rn, d ∈ MRm , and all t ≥ t0,

|y( t, t0,x0,d )| ≤ β( |x0|, t− t0 ) + γ( ‖d‖[ t0,t ) ),

Definition 3. We say that for some fixed q ∈ I the forward
complete system (1) is state independent IOS (SIIOS) with
respect to the output y and the input d if there exist
functions β′q ∈ KL and γ′q ∈ K such that, for all
t0 ∈ R+,x0 ∈ Rn, d ∈ MRm , and all t ≥ t0,

|y( t, t0,x0,d )| ≤ β′q( |h(x0 )|, t− t0 ) + γ′q( ‖d‖[ t0,t ) ).

We say that a switched forward complete system (2) with
i : R≥t0 → I is SIIOS with respect to the output y and
the input d if there exist functions β′ ∈ KL and γ′ ∈ K
such that, for all t0 ∈ R+,x0 ∈ Rn, d ∈ MRm , and all
t ≥ t0,

|y( t, t0,x0,d )| ≤ β′( |h(x0 )|, t− t0 ) + γ′( ‖d‖[ t0,t ) ).

The systems are exponentially SIIOS if β′q( s, r ) =
a s e−b r or β′( s, r ) = a s e−b r for some a > 0, b > 0.

The difference between IOS and SIIOS consists in the
dependence on initial conditions. For SIIOS system if
initial the amplitude of the variable y is small, then the
overall amplitude of y during the transient is also “small”.
For an IOS system the output y,even with small initial
values, may have large transient values if x0 is “large” in
norm. In contrast to this, the asymptotic Al behavior of
IOS and SIIOS systems’ trajectories is similar: in either
case, and in the absence of disturbances, the trajectories
converge to the set {h(x ) = 0 }. In the particular case
when y = x both properties boil down to the well known
input-to-state stability (ISS) property [11].

In the sequel we make the following standing assump-
tion.
Assumption 1. For each fixed q ∈ I system from (1) is
forward complete and SIIOS with respect to output y and
the input d for functions βq ∈ KL and γ ∈ K.

Note that from Definition 3 it holds that βq( s, 0 ) ≥ s,
s ≥ 0.

III. MAIN RESULTS

In [15] it is shown under suitable smoothness assump-
tions on the switched systems that if Assumption 1 holds
for y = x and the switching signal has dwell-time τD > 0
for all j ∈ I and s ≥ 0

βj( s, τD ) ≤ λ s, 0 < λ < 1 (3)

the switched system (2) is SIIOS. In [14] an extension of
this result for the case of average dwell-time is presented
and to the more general case of h(x ) in [2]. In the latter we
also show that (3) is equivalent to exponential stability of
all subsystems in (1). An attempt to overcome the condition
on exponential stability was made in [10], where authors
introduced a state-dependent variant of dwell time. A key
property to ensure existence is local Lipschitz continuity of
functions βj with respect to the first argument near zero,
that implies local exponential stability for all subsystems
in (1) –see [2] for details.

To weaken the exponential stability condition (3) for
systems satisfying Assumption 1, under constant or average
dwell time, leads to practical asymptotic stability of the
switched system –cf. [10]. That is, there exists ε > 0 and
functions β′ ∈ KL, γ′ ∈ K such that, for all t0 ∈ R+,
x0 ∈ Rn and d ∈ MRm ,

|y(t, t0,x0,d)| ≤ β′(|h(x0)|, t− t0) + γ′(‖d‖[t0,t)) + ε .

The technical reason which leads to conclude practical as
opposite to asymptotic Al stability of {y = 0} in [10], is
that the case when a finite number of switches occurs, is
excluded. Indeed, if we rule out switches in a neighborhood
of {y = 0} then it is possible to conclude SIIOS even for
non-exponentially stable systems (1). Below, we present
alternative conditions to establish exponential SIIOS.

A. Partial exponential stability of the family (1)

The first solution deals with the case when Assumption
1 fails only for some of subsystems in (1). That is, let us
assume that I = I1 ∪ I2 where the systems corresponding
to values of q ∈ I1 are not exponentially stable and those
corresponding to values of q ∈ I2 are exponential SIIOS
stable.
Theorem 1. Let Assumption 1 hold, I = I1 ∪ I2 and there
exist 0 < τD < +∞ and κ > 1 such that

β̄2(2β̄1(s), τD) ≤ λs, s ≥ 0, 0 < λ < 1, (4)

β̄1(s) = sup
j1,...,jκ∈I1

{βj1(...2βjκ(s, 0)..., 0)}, s ≥ 0;

β̄2(s, t) = sup
j∈I2

{βj(s, t)}, s ≥ 0, t ≥ 0.

Let the switching signal i(t) satisfy the following conditions
for any j ≥ 0(tj are switching instants):

i(t) ∈ I1, t ∈ [tj , tj+1) ⇒ tj+1 − tj > 0; (5)
i(t) ∈ I2, t ∈ [tj , tj+1) ⇒ tj+1 − tj ≥ τD; (6)
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for all j ≥ 0 there exists 0 ≤ j′ ≤ κ such that

{i(tj) ∈ I2 ⇒ i(tj+j′) ∈ I2}. (7)

Then, for all t0 ∈ R+, x0 ∈ Rn, d ∈ MRm and all
t ≥ t0,

|y(t)| ≤ β̄1

(
2β̄2(2β̄1(|y(t0)|), 0)

)
+β̄1

(
2γ(‖d||))+γ(‖d‖),

lim sup
t→+∞

|y(t)| ≤ β̄1

(
2γ̄(‖d||)) + γ(‖d‖).

where

γ̄(s) = β̄2(4Λκβ̄1

(
γ(s)

)
, 0) + γ(s), Λ = 1/(1− λ)

Proof. Properties (5)–(7) imply that, when i(t) ∈ I1 the
switches with any desired frequency, are possible and
dwell-time τD affects only the time that systems (2) such
that i(t) ∈ I2 are active. According to (7) the system has
a property similar to average dwell-time with τD/κ and
N0 = κ however, it is not average dwell-time in the sense
of Definition 1 since systems from i(t) ∈ I2 cannot be
active on time intervals with length smaller than τD and
the frequency with which these systems become active is
bounded from below by κ. The solutions of system (2)
are continuous and defined, at least locally, on [t0, T ).
Actually, T = +∞ since for each fixed t the solutions of
system (2) equal those of a system from family (1) for some
fixed q ∈ I , which is forward complete by assumption.

Consider any time interval [t0, T ), T ≥ t0. Without
loosing generality the interval can be presented as con-
catenation of subintervals:

[t0, T ) =
k⋃

j=0

[tj , tj+1), tk+1 = T

with the property that for each j ≥ 0 there exists t′j ∈
(tj , tj+1) such that i(t) ∈ I1 for t ∈ [tj , t′j) and i(t) ∈ I2

for t ∈ [t′j , tj+1) and there are no switches in the latter
subinterval. From Assumption 1 (from (7) on the interval
[tj , t′j) only κ switches are possible as a maximum) we
have

|y(t)| ≤ β̄1(|y(tj)|) + κβ̄1(γ(‖d‖[tj ,t′j))), t ∈ [tj , t′j);

|y(t)| ≤ β̄2(|y(t′j)|, t− t′j) + γ(‖d||[t′j ,tj+1)), t ∈ [t′j , tj+1)

then, using (4) and tj+1− t′j ≥ τD (the latter holds due to
(6)) we obtain

|y(tj+1)| ≤
β̄2

(
β̄1 (|y(tj)|) + κβ̄1

(
γ

(
‖d‖[tj ,t′j)

))
, tj+1 − t′j

)

+ γ(‖d‖[t′j ,tj+1))

≤ β2

(
2β̄1 (|y(tj)|) , tj+1 − t′j

)

+ β2

(
2κβ̄1

(
γ

(
‖d‖[tj ,t′j)

))
, tj+1 − t′j

)

+ γ
(
d‖[t′j ,tj+1)

)

≤ λ|y(tj)|+ λκβ̄1

(
γ(‖d‖[tj ,t′j))

)
+ γ(‖d‖[t′j ,tj+1))

≤ λ|y(tj)|+ (λ + 1)κβ̄1

(
γ

(‖d‖[tj ,tj+1)

))

and for all t ∈ (tj , tj+1)

|y(t)| ≤ β2

(
2β̄1(|y(tj)|), 0

)

+ β2

(
2κβ̄1

(
γ(‖d‖[tj ,t′j))

)
, 0

)
+ γ

(
‖d‖[t′j ,tj+1)

)
.

Applying this procedure for all 0 ≤ j ≤ k we obtain:

|y(tk+1)| ≤
λ

[
λ · · · [

λ|y(t0)|+ (λ + 1)κβ̄1

(
γ

(‖d‖[t0,t1)

)) ] · · ·
+(λ + 1)κβ̄1

(
γ(‖d‖[tk−1,tk))

)]

+(λ + 1)κβ̄1

(
γ(‖d‖[tk,tk+1))

)

≤ λk|y(t0)|+ (λ + 1)
k∑

j=0

λjκβ̄1(γ(‖d‖[tk−j ,tk−j+1)))

≤ λk|y(t0)|+ 2Λκβ̄1

(
γ(‖d‖[t0,tk+1))

)
.

If there exists infinite number of switches in the system
(k → +∞), then:

|y(t)| ≤ β̄2(2β̄1(|y(t0)|), 0) + γ̄(||d‖), t ≥ t0,

lim sup
t→+∞

|y(t)| ≤ γ̄(‖d‖).

If the number of switches is finite and k ≤ K < +∞, then
for the case i(tK) ∈ I2 the same estimates are satisfied,
while for i(tK) ∈ I1 we have, for all t ≥ t0

|y(t)| ≤ β̄1(2β̄2(2β̄1(|y(t0)|), 0)) + β̄1(2γ̄(‖d‖)) + γ(‖d‖),
lim sup
t→+∞

|y(t)| ≤ β̄1(2γ̄(‖d||)) + γ(‖d‖).

Combining these estimates the result follows. •
Theorem 1 is stated in terms of a switching rule which

is less conservative than constant-dwell-time based algo-
rithms since the systems from subset I1 can be active on
any sufficiently small time interval. However, such new
switching rule is more restrictive than average dwell-time
in the sense that the systems from I2 must remain active
during the time intervals with length bigger than τD and
with frequency κ.

B. Non-uniform convergence under dwell-time

Under Assumption 1 exponential SIIOS stability of sys-
tems (1) follows from (3) provided that output trajectories
decrease (in norm) by a factor of λ over intervals of length
larger or equal to the dwell time. In non-exponentially sta-
ble systems the length of such intervals may be decreased
as a function of the output norm. In this case, the condition
(3) can be relaxed to the following.
Assumption 2. For any given S > 0 and τD > 0 there
exists a continuous function ρ : (0, S) → (0, 1) such that
for all 0 < s < S and j ∈ I

βj(s, τD) ≤ ρ(s)s.
Assumption 2 means that on any interval longer than

the dwell time τD the output trajectory of (1) for any q
decreases in norm by a factor of ρ(|x0|) ≤ 1. we claim
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that Assumption 2 holds if βj(s, 0) = s, 0 ≤ s ≤ S, j ∈ I .
To see this, take sup

j∈I

βj(s,τD)
s ≤ ρ(s) ≤ sup

j∈I

βj(s,0)
s ≤ 1.

Clearly, ρ ≥ 0 and it is strictly positive except for the case
when there exists s′ ∈ (0, S) such that

max
j∈I

βj(s′, 0)
s′

= 0 .

However, the latter cannot hold for any s′ ∈ (0, S) and
τD > 0 due to the properties of KL functions. By the
same arguments βj(s, τD) < s for s ∈ (0, S) and ρ can
be chosen to be smaller than 1 on this interval. Indeed, if
ρmax = sup

0<s<S
ρ(s) < 1 then each system in (1) is locally

exponentially stable for s ∈ (0, S). In the sequel, we focus
on situations where this property fails.

Firstly, let us consider output asymptotic stability of
switched systems without disturbances.
Theorem 2. Let Assumptions 1 and 2 hold for a given R >
0, S = S(R) = β̄(R), τD > 0, and β̄(s) = max

j∈I
{βj(s, 0)}.

Then, for all t0 ∈ R+, x0 ∈ XR, XR = {x ∈ Rn :
|h(x)| < R} and ‖d‖ = 0 the solutions of the switched
system (2) satisfy

|y(t)| ≤ β̄(|h(x0)|), ∀t ≥ t0; lim sup
t→+∞

|y(t)| = 0

provided that signal i(t) has dwell time τD.
Proof. Since Assumption 1 holds and the switching signal
has dwell-time, the solutions of (2) are continuous and
defined for all t ≥ 0. For the time being let us assume that
there exists an infinite series of switches {ti}, i = 0, 1, ...
with the property that ti+1 − ti ≥ τD for all i ≥ 0. Then,
on the first interval where the switching signal remains
constant i.e., for all t ∈ [t0, t1), we have

|y(t)| ≤ βi(t0)(|h(x0)|, t− t0) ≤ βi(t0)(|h(x0)|, 0) .

Due to Assumption 2 and since |y(t0)| < S we have
|y(t1)| ≤ ρ0|h(x0)| where ρi = ρ(|h(x(ti))|) and i ≥ 0.
Over the next interval t ∈ [t1, t2) we have

|y(t)| ≤ βi(t1)(|h(x(t1))|, t− t1)
≤ βi(t1)(ρ0|h(x0)|, 0),

|y(t2)| ≤ ρ1ρ0|h(x0)| .
Applying similar arguments for any arbitrary interval
[ti, ti+1) with i > 0, we obtain

|y(t)| ≤ βi(ti)(|h(x(ti))|, t− ti)

≤ βi(ti)(ρi−1...ρ0|h(x0)|, 0),

|y(ti+1)| ≤ ρi...ρ0|h(x0)| .
The latter estimates imply output uniform boundedness
and attractivity for all 0 < ρi < 1, i ≥ 0 such that
0 < |y(ti)| < S which holds in view of the choice of
S = S(R). Combining these estimates and the estimates
derived for the case i = 0 we obtain

|y(t)| ≤ β̄[|h(x0)|], ∀t ≥ t0; lim sup
t→+∞

|y(t)| = 0.

The latter is also valid if the number of switches is finite.•
Now, we consider the case with disturbances.

Theorem 3. Let Assumption 1 and Assumption 2 hold
(with S = +∞, τD > 0) and let the disturbances satisfy
+∞∫
0

γ(|d(t)|)dt < +∞. Then, for all t0 ∈ R+, x0 ∈ Rn

and d ∈ MRm the solutions of the switched system (2)
admit the following estimates for some 0 < c < +∞ and
for all t ≥ t0

|y(t)| ≤ β̄(2|h(x0)|) + β̄(2cγ(||d‖) + 2) + γ(‖d‖),

lim sup
t→+∞

|y(t)| = 0.

Proof. From Assumption 1 and the dwell-time property on
the switching signal we obtain the existence of solutions
of (2) for all t ≥ t0. Consider the series of switches {ti},
where i = 0, 1, ... +∞ with the property ti+1 − ti ≥ τD,
i ≥ 0. Then, over the first interval [t0, t1) we have

|y(t)| ≤ βi(t0)(|h(x0)|, t− t0) + γ(‖d‖[t0,t))
≤ βi(t0)(|h(x0)|, 0) + γ(‖d‖[t0,t)) .

Since S = +∞ then, due to Assumption 2 (denote ρi =
ρ(|h(x(ti))|), i ≥ 0)

|y(t1)| ≤ ρ0|h(x0)|+ γ(‖d||[t0,t1)).

Similarly, on the next interval i.e., for all t ∈ [t1, t2),

|y(t)| ≤ βi(t1)(|h(x(t1))|, t− t1) + γ(‖d‖[t1,t))

≤ βi(t1)(ρ0|h(x0)|+ γ(‖d‖[t0,t1)), 0) + γ(‖d‖[t1,t)),

|y(t2)| ≤ ρ1ρ0|h(x0)|+ ρ1γ(‖d‖[t0,t1)) + γ(‖d‖[t1,t2)).

And for all t ∈ [t2, t3):

|y(t)| ≤ βi(t2)(|h(x(t2))|, t− t2) + γ(‖d‖[t2,t))
≤ βi(t2)(ρ1ρ0|h(x0)|+ ρ1γ(||d‖[t0,t1))

+ γ(‖d‖[t1,t2)), 0) + γ(‖d‖[t2,t)),

|y(t3)| ≤ ρ2ρ1ρ0|h(x0)|+ ρ2ρ1γ(‖d‖[t0,t1))
+ ρ2γ(‖d‖[t1,t2)) + γ(‖d‖[t2,t3)) .

Applying similar arguments for any arbitrary interval we
obtain, for all t ∈ [ti, ti+1), i > 0:

|y(t)| ≤ βi(ti)(|h(x(ti))|, t− ti) + γ(‖d‖[ti,t))

≤ βi(ti)


ρi−1 · · · ρ0|h(x0)|

+
i−1∑

j=0




i−1∏

k=j+1

ρk


γ(||d‖[tj ,tj+1)), 0




+γ(‖d‖[ti,t)),
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|y(ti+1)| ≤ ρi...ρ0|h(x0)|+ γ(‖d‖[ti,t))

+
i−1∑

j=0




i∏

k=j+1

ρk


γ(‖d‖[tj ,tj+1))

where it is supposed that
k2∏

k=k1

ρk = 1 if k1 > k2.

Combining these estimates and the estimates derived for
the case i = 0 we obtain

|y(t)| ≤ β̄ (2|h(x0)|) + γ(‖d‖[t0,t)),

+ β̄


2

i−1∑

j=0




i−1∏

k=j+1

ρk


γ(‖d‖[t0,t))




lim sup
t→+∞

|y(t)| ≤
i−1∑

j=0




i∏

k=j+1

ρk


γ(‖d‖) + γ(‖d‖).

Note, that these estimates are also valid for the case
of finite number of switches. Let us stress that without
additional assumptions the term proportional to the norm
of disturbance can be unbounded since 0 < ρk < 1.
Furthermore, for any ε > 0 there exists iε ≥ 0 such that

∞∑

j=iε

γ(‖d‖[tj ,tj+1)) ≤ ε.

In this case we have for all t ∈ [ti, ti+1) and i > 0,

|y(t)| ≤ β̄ (2|h(x0)|) + γ(‖d‖[ti,t)),

+ β̄


2

i−1∑

j=0




i−1∏

k=j+1

ρk


γ(‖d‖[tj ,tj+1))




|y(ti+1)| ≤ ρi...ρ0|h(x0)|+ γ(‖d‖[ti,t))

+
i−1∑

j=0




i∏

k=j+1

ρk


γ(‖d‖[tj ,tj+1))

and

∞∑

j=0




∞∏

k=j+1

ρk


γ(‖d‖[tj ,tj+1))

≤ iεγ(‖d‖) +
∞∑

j=iε




∞∏

k=j+1

ρk


γ(‖d‖[tj ,tj+1))

≤ iεγ(‖d‖) +
∞∑

j=iε

γ(‖d‖[tj ,tj+1)) ≤ iεγ(‖d‖) + ε .

Therefore, for each ε > 0 and for all t ≥ t0,

|y(t)| ≤ β̄ (2|h(x0)|) + β̄ (2iεγ(‖d‖) + 2ε) + γ(‖d‖),
|y(ti+1)| ≤ ρi...ρ0|h(x0)|+ (iε + 1)γ(||d‖) + ε, i ≥ 0.

Since ε can be chosen arbitrary and due to the fact that
γ(‖d‖[T,+∞)) → 0 with T → +∞, the last inequality im-
plies that the output y(t) converges to zero asymptotically.

As a corollary of Theorem 3 we see exponentially stable
SIIOS systems family (1) with dwell-time switching do not
yield an exponentially SIIOS switched system (2) (opposite
to the case of exponentially stable systems switching) and
stability of the switched system follows only for integrally
bounded inputs.

IV. EXAMPLE

Consider the following family of systems for n = 1,
I = {0, 1, 2} and

f0(x, d) = −x/(1 + x2) + d f1(x, d) = −rx3 + d;
f2(x, d) = −r(1− e−x)/(1 + e−x) + d, r > 0.

Direct computations show, that

β0(s, t) =
√

W (s2es2e−2t); β1(s, t) = s/
√

2rs2t + 1;

β2(s, t) = ln
[
ϕ(s, t) + 0.5

√
ϕ(s, t) (4 + ϕ(s, t)) + 1

]

ϕ(s, t) := 0.5(e−s + es − 2)e−rt

where W (s) is Lambert function (Omega function), which
is the solution of equation W (s)eW (s) = s, s ≥ 0. For all
these functions β̄(s) = βj(s, 0) = s, s ≥ 0, j ∈ I , then as
it was discussed before

ρ(s) ≥ max
j∈I

ρj(s); ρj(s) =
βj(s, τD)

s
, j ∈ I.

0 2 4 6 8 ss1 s2

0.2

0.4

0.6

0.8 I

ρ2(s)

I

ρ0(s)

ª
ρ1(s)

Fig. 1. Graphs of gain functions

For r = 0.5 and τD = 1 functions ρj , j ∈ I are plotted
in Fig. 1. According to the latter the function ρ(s) =
max
j∈I

ρj(s) can be defined as follows for s1 = 0.785,

s2 = 2.285

ρ(s) =





ρ1(s)ifs ≤ s1;
ρ0(s)ifs ≥ s2;
ρ2(s)otherwise,

Here ρmax = 1. Thus, according to Theorem 2 this system
has bounded and converging to zero output. From Theorem
3 we conclude that these stability properties are preserved
in the presence of integrally bounded inputs. The results
of the system simulations are shown in Fig. 2; the state
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Fig. 2. Graph of switching signal i(t)
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µ
with d ≡ 0

ª

with d(t) = 0.5r sin(t)
¼

with d(t) = 0.5re−t

Fig. 3. System’s response to different perturbations

x(t) of the switched system is depicted for three cases:
without disturbance d, with converging-to-zero disturbance
d(t) = 0.5re−t and finally with the bounded disturbance
d(t) = 0.5r sin(t). In Fig. 3 the switching signal is shown.
In this example system preserves its stability properties
for the chosen bounded disturbance (the first and the last
systems are SIIOS only for bounded by r inputs).

V. CONCLUSION

The problem of output stability of switched nonlinear
systems has been considered. Two solutions of the problem
of non-exponentially stable systems switching are pro-
posed. One solution is based on new type of switching
between locally exponentially stable systems in (1) and the
rest ones. Another solution introduces new requirement on
type of decreasing under dwell-time, which allows one to
take into consideration non-exponentially stable systems.
Results of simulation confirm applicability of the proposed
solutions.
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