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REVISITING EARLY WORKS OF THE AEROSPACE
LABORATORY OF LIEGE
Dual analysis, 60's and 70's
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SUMMARY

The goal of this presentation is to describe the main scientific contribution of the Aerospace
Laboratory of the Liége University (LTAS) during the sixties and seventies. This period was very
important for the development of the finite element techniques and the major part of the concepts and
the algorithms were defined at that time. The contribution of the LTAS was especially original
"because it was the only team in the world who was proposing the dual method and included it in a
Finite Element code for all the applications : bars, membrane and plates, using for both types of
models the same displacement solution algorithm. After the presentation of this method a short
description is made about recent improvements proposed by the authors.

1. INTRODUCTION

It seems strange to present thirty years later a scientific contribution that was well known at that time.
Moreover, young searchers use to read only recent papers and generally do not try to study the origin
of a method or the steps of its effective implementation.

Today with the necessity of ensuring the quality and the reliability of the finite element computations
the foundations of the method have to be well understood and major contributions of the first period of
development reveal to be very useful especially in the context of the estimation of the discretization
error which is the main ingredient of the quality control of the analysis.

2. THE DUAL ANALYSIS CONCEPT

2.1.- Historical sketch

The dual analysis concept was obviously the main guideline of the research performed at the LTAS
during the 60's and 70's. The words "dual analysis" or "upper and lower bounds" appear in the title of
16 papers and there are a lot of other papers where the concept was used.

The first mention to the dual analysis appeared in a paper in french language, due to B. Fraeijs de
Veubeke [1], in 1961. It is of a general nature, and not yet related to finite elements which were not
used at that time in Ligge.

A second paper [2] was presented in 1962, where the dual analysis procedure is applied in matrix
structural analysis. Indeed, it is also the first presentation of an equilibrium membrane element, but the
words "finite elements" never appear.
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The major contribution was certainly the famous paper entitled "Displacement and equilibrium models
in the finite element method" presented at Swansea in 1964. Here a complete treatment of all possible
variational formulations is given. Special emphasis is set on pure models, where compatibility or
equilibrium is verified exactly, because these models are the key of the dual analysis allowing an a
posteriori convergence measurement.

All subsequent papers consisted to apply these concepts by developing new elements or covering new
fields, such as thermal analysis, plasticity, and so on.

2.2.- An elementary physical approach
It is perhaps useful to begin with a very simplified approach insisting on physical ideas which are less

apparent in a mathematical analysis. Let us consider a structure with one single load F, and let u be the
corresponding displacement. The stiffness coefficient is then (fig. 1)
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Figure 1 : Simplified Approach
k=F/lu, 4y
and the work of the load is given by
T=Fu=ku* =F*/k @)

When using a compatible displacement model, restrictions on the possible displacements are done, so
that the computed stiffness is overestimated.

Ky 2 K 3)

dep

Conversely, with an equilibrium models, possible stress modes are restricted, so that the stiffness is
too low :

k, <k “4)
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Let us first suppose that the load is given. In this case, the displacement model leads to a lower bound
of the work i
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T, =—2—=T, (6)

If, now, the displacement is given, one has

Ty =kgyu® 2ku® =T (7
and
T, =k’ <ku’>=T (8)

that means that the bounds are reversed.

In each case, by refining the finite element mesh, both approaches converge to the true value of the
stiffness,

bogy VR, Ky T

dep

and the comparison of both results lead to a suitable convergence test.

2.3.- The general elasticity problem

pmfo

(-}
The general elasficity problem may be described as fogows. A domain Vol., with a boundary I is
submitted to spefiice loads of the form £idV, and to side loads of the form t; d I" on a part I'; of its
boundary. The complementary part I'; =I" - I'; is subjected to prescribed displacements #; .

The displacement approach consists of finding, among each displacement field that comply on I'; with
the prescribed values, the particular one that makes the total energy minimum,

TE(u) = U(u) + P(u) min, 9)
with
U(u) = strain energy = J‘m W(E)dY, (10)
1 1
W(E) = ECﬁk,svak,, &, = Strain = E(Diuj +D,u, (1)
P(u) = load potential = - Ll JudV — f - tudl (12)

As well known, the minimum corresponds to equilibrium, in the form
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Do, +f =oinVol
oyt } (13)
no,; =t onl,
where the stresses oj; are related to the strains by
O; = Cijklgkl (14)

The equilibrium approach consists of finding, among each stress fields verifying the equilibrium
conditions (13), the particular one that makes the total complementary energy minimum,

CE(o)=V(c)+ (o) min (15)
with
V(o) = stress energy = JV 1 O(o)dV, (16)
1 o
O(o) = ‘Z‘Ciﬂdaijakz (17)
Q(o) = reaction potential = —J'r n,o udl (18)

Here, the minimum corresponds to compatibility.

2.4.- Kinematical admissibility
A displacement field is kinematically admissible if

- it leads to a finite strain energy
- itverifies u; =u; onI'.

The set of kinematically admissible displacements fields will be noted K.
Any difference

Su, =u,—v, 19

between two kinematically admissible displacements is called a displacement variation. On I'y, it
verifies

§u, =i, 1, =0 (20)

The set of displacement variations is a linear space 8K. Moreover, if a particular displacement field,
which complies with the condition on S,, is known, it may be noted # without risk of confusion, and
one has

K=u+5K Q1)

Displacement finite element models consist of seeking a subset K;, of K, to which corresponds the
variation subspace 8K,. For the purpose of the dual analysis, it is essential that K, contains
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displacements that exactly verify #, =# on S,, that means that, the displacement field # in (21) can

be chosen in K. The exact problem is to find # € +& K such that TE(u) is minimum. Its F.E.
approximation is

Find u, € u + 6 K, such that TE(u) is minimum. (22)

Using this approximation, the local equilibrium is lost and replaced by more global conditions of
equilibrium.

2.5.- Static admissibility

A stress field is statically admissible if

- it leads to a finite stress energy
- it verifies the equilibrium equations (13).

The set of statically admissible stress fields will be noted S.

Any difference

o Oy =0, — Ty (23)
between two statically admissible stress fields is called a stress variation.
It verifies

D;o,;=0imnVol, no,;=0onl, (24)

It is thus a self-stress. The set of stress variations is a linear space 6S.
Assuming that a particular solution & of equilibrium is known, one has

S=c+6S8 (25)
Equilibrium finite element models consist of secking a subset S, of S, to which corresponds the
variation subspace 6S,. Here also, the dual analysis needs that S, contains an exact solution of

equilibrium (it is a restriction). The finite element approximation consists of

Find o, € 6 +3J S, such that CE (o) is minimum. (26)

2.6.- A property of the exact solution

The exact solution verifies
Oo; = Cijklg e
from which
W(e)+®(o)=0,¢, 27

Now, by the classical virtual work theorem,
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[ oweav=[_fudv+ jrz tuds + | 7,0 T dS

] Ji1

and making use of property (27), one has

TE(u)+CE(c) =0 (28)

2.7.- Bounds on the total energies

Because the finite element subsets verify
K,cK,§,cS§,
for a kinematically admissible F. E.M.,

TE(u,) = min TE > min TE = TE() 29)

and, for a statically admissible F.EM.,

CE(c;)=min CE > min CE = CE(0) (30)

Therefore, from (28),
TE(u,)+CE(c,)20 (31)

This result was known by Fraeijs de Veubeke [1] but surprisingly, never used as stated here.

2.8.- First problem - zero prescribed displacements

In this case, Q = 0 and CE = V. Moreover, K = 8K, K, = 6Ky, and the solution itself is a variation.
Setting 6u = u in the first variation of U leads to

SU=| Cpse,dV =2U()

so that the condition 8CE = 0 gives

2U(u) = -P(u),
and

TE@)=U@)+Pu)=-Uu) (32)
From (28), one obtains

0=TE@)+CE(c)=-U@)+V (o),

so that



International Colloguium in Mechanics of Solids, Fluids, Structures and Interactions
Nha Trang, 2000

Uu)=V (o) (33)
Now, result (32) is also true for u;, by the same way, and

~U(u,)=TE@,)2TEu)=-U(u),
from which

Uw,)<U(u) (34)
Concerning the equilibrium model,

V(o,)=CE(c,)=2CE(c)=V (o) (35)

As U(u) = V(o), the energy bounds are obtained.

2.9.- Second problem - zero applied loads

Here, P =0, and by the same way as for the first problem, the converse result is obtained.

Ul,)2U@w)=V (o) 2V (o,) (36)

3. WORKABILITY

After establishing the concept, it remained to solve a lot of problems.

3.1.- Elements

At that time, equilibrium elements were not available, if one excepts the old shear panels and
connected bars. Conforming plates were not available.

3.2.- Solution algorithms

If displacement elements naturally suggest a stiffness matrix process (displacement solution
algorithm), the same is not true for equilibrium elements, for which a force method, with structural
self-stresses determination, seemed more natural. But the force method is very difficult to automate.
Here, Fraeijs de Veubeke showed from the earliest stage that it is possible to use equilibrium elements
in a stiffness formulation [2]. It is also a major contribution of the LTAS.

3.3.- E.E. code

Another difficulty appeared at the coding level. In practice, most F.E. programs were based on the
nodes at which the degrees of freedom are attached. But in the equilibrium elements, the degrees of
freedom are mean displacements not related to nodes. It was thus a necessity to build a code without
any node concept, the displacements being related to the elements.
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4. STIFFNESS OBTENTION IN EQUILIBRIUM ELEMENTS

The way to obtain the stiffness matrix in an equilibrium element will be illustrated by the simple case
of a constant stress triangle. The stresses are given by

0, =0Q,0,=0,,T=0, (37

This may be summarized as

O—x a]
s=|o,|=N|a, |=Na (38)
T a,

Of course, with such a stress field, no body load is admitted.

On the boundary, one has to transmit the interface loads on each side. On side 1-2, whose length is 1;,,

12 _ 12 12
8« '—IIZ(nx o, +ny 7’_)

g;)z :llz(nalczf'*“n;zo'y) (39)

and so on. This leads to a relation of the form

g
g,

23
gx
g=|"5|=Ca (40)
gy
gy

31
_gy

If H is the Hooke matrix, the stress energy is obtained from
Vzl_[ S H s dedy, = ~a” J. N"H'N dxd a=La"sa 41
2 Jeit Vs 2 elt 4 2

Supposing that the side load vector is given, one has to minimize this energy with the condition (40),
and this may be done by making use of a Lagrange multiplier vector q : we thus make the expression

1
a—aT Ja+q" (g —Ca) (42)
stationary. Varying a, one obtains

Ja=C"q, (43)

from which a direct interpretation of q is available. For a variation da, one obtains
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SV=6a"Ja=6ad"C"q=5g"¢q

where use is made of (40). The multipliers are thus displacements working with the side loads. (more
precisely, they are mean interface displacements). Now, from (43) and (40),

a=J"'C"q
and

g=Ca=CJ'C"'qg=Kq (44)
This is the stiffness matrix, relating the surface tractions to the conjugated displacements.
Two points have to be noted. Firstly, the J matrix is always invertible, as the stress energy is positive
definite. The due singularities of the stiffness matrix come from the connection matrix C.

Unfortunately, for higher degrees, the rank of this matrix is too low and kinematical modes appear.

Secondly, the degrees of freedom of this element are interfacial displacements, not nodal
displacements (fig. 2). This is why a code using such elements may not be based on nodal definitions.

Figure 2 : Connections of the constant stress element
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5. KINEMATICAL MODES

The constant stress element having somewhat deficient connections, it was natural to turn to higher
degree elements. The first degree element is characterized by 4 displacements on each side, which are
conjugated to the resultants

X X
o

1 Ky s
gl =] 1= Jt.ds, @ = S (45)

and so on. Unfortunately, it exhibits two kinematical modes, corresponding to the possible
displacements of the hatched "skeleton" represented on fig. 3. However, the superelement obtained by
assembling three such elements has no more kinematical modes, as illustrated on fig. 4. Moreover, the
superelement obtained by assembling the four elements defined on a quadrilateral by its diagonals has
only one kinematical mode, which is purely internal and does not work for interface loads (fig. 5).

Figure 3 : Kinematical mode of the linear stress element

10



International Colloquium in Mechanics of Solids, Fluids, Structures and Inferactions
Nha Trang, 2000

Figure 4 : 3-triangle superelement Figure 5 : Quadrilateral Superelement n = |
without kinematic modes

6. PLATE ELEMENTS

For plates, the situation is exactly reversed, a property that is not so surprising if one refers to the
Southwell analogies between plates and membranes [18]. There is a formal correspondence between
membrane strains and plate moments and between membrane stresses and plate curvatures. The result
is that equilibrium plate elements are easy to obtain, and conforming plate elements difficult to obtain.
Here, C'- connections of the displacements are necessary. For a third degree triangular element, the
following degrees of freedom are needed :

e displacement and slopes at each node (9)
e normal slope at mid-sides 3),

So, 12 d.o.f. are necessary while a third degree field only contains 10 parameters. The connection is
thus not possible.

Figure 6 : The CQ element

11
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Comparing to the equilibrium membrane, it seems that superelements could work. It is the case, as we
will see on a quadrilateral divided by its diagonals. The number of required connectors is then 16 (fig.
6). Consider the following displacement field :

Subelement I : W) = o + X + day + Qx> + dsXy +agy” + oXC + oK’y + 0eXy’ + doy’

Subelement IT : w = w; + x* (01 + Qg% + o13Y)

Subelement I : w=w; = y2 (oya + 05X + Aysy)

Subelement IV : w=w; = x* (o1 + 012X + oi3y) + ¥ (014 + 005X + 0ley) (46)

It is obviously internally conforming and possesses 16 d.o.f, as required. This element, known as
CQ[20] (conforming quadrilateral) was developed in 1964 [4]. Another possibility is to assemble three
triangles, and was presented by HSIEH, CLOUGH and TOCHER in 1966 [19].

7. THE SAMCEF CODE

It was a necessity to have a finite element code working independently of nodes. Therefore, the LTAS
worked on a self-made code, whose static version was called ASEF. Progressive extensions to nodal
analysis, dynamic response, fluid-structure interactions, nonlinear analysis and optimization appeared
during the sixties and seventies, and finally led to a commercial code called SAMCEEF.

One of the greatest merits of the early LTAS is to have succeeded in the challenge of producing a high

level research with partially industrial funds. This is well reflected by the ten Ph.D. thesis which
appeared between 1969 and 1980 [25 to 34].

8. BACK TO THE DUAL ANALYSIS

The dual analysis concept certainly acted as a motor of the largest part of the LTAS works during two
decades. But industrial users of finite elements were never convinced by this approach. At that time,
the fact that two analyses were needed was considered as too expensive. Moreover, the idea of
evaluating the quality of results had not emerged. Results were obtained, and it was sufficient.

A second drawback was the fact that dual analysis was seen as a convergence sketch, but not explicitly
as an error measure.

Finally, the upper and lower bounds are reversed when passing from a given load problem to a given
displacement problem, which is paradoxical, and mixed problems were not treated.

A recent re-examination of the fundamental principles of dual analysis by the authors led to the
following results [22, 23, 24].

1) The most fundamental result is (28 and 31)
CE(o,) 2 CE(o) =-TE(u) > -TE(u,), 47)

so that if one defines a unique function

. { CE(o) for an equilibrium model )

—TE(u) for a displacement model,

the convergence curves are always on the same side.

12
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2) These curves are related to error measures, since

CE(c,)—CE(c) =energy of (o, —0) (49)
TE(u,)— TE(u) = energy of (u, —u) (50)

3) All these results are valid for any kinematically admissible displacement field u, and for any
statically admissible stress field, without necessity of advocating a Rayleigh-Ritz process. This
includes procedures such as the so-called error in constitutive equations developed by
LADEVEZE [21] where a non Rayleigh-Ritz procedure is used to obtain the equilibrium models.

Such an extension and the observation that by now, a second analysis is no more considered as
prohibitive, let us hope that a possible future would be a systematization of dual analysis in practical
cases.
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