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1 Introduction

Strain localization is a phenomenon occuring very often in anelastic media close to
rupture and it is very important to take it into account in most of applications, par-
ticularly in geotechnics. Strain localization has been widely studied experimentally,
see for instance J . Desrues [4] or J. Desrues and G. Viggiani [5]. It has also been
put in evidence in finite element simulations even if it presents mesh dependen-
cies, see Chambon et al. [3] for instance. From a theoretical point of view, the Rice
condition [6, 7], with some assumptions, enables to determine the onset of strain
localization but does not necessarily prove the existence of shear bands.

The purpose of this paper is to establish the existence of shear bands by ex-
hibiting analytical solutions. The studied problem is the deformation of a 2D thick
walled cylinder (an annulus) made of an isotropic hardening/softening “elastic” ma-
terial and submited to internal and external pressures. The considered constitutive
equation is a 2D generalization of that one considered in [2] for 1D problems. More
precisely, the hardening/softening behaviour considered in [2] holds true for the de-
viatoric part of the 2D constitutive relation in any fixed direction of the deviatoric
strain (see section 2). Unlike that of [2] which is affine by parts, the strain stress
relation considered in this paper is truly non linear. It is said to be “elastic” be-
cause the datum of the strain and not that of its history yields the stress. In fact, this
“elastic” behaviour fits into the framework of deformation theory of plasticity and
can be thought of as the response of some elasto plastic constitutive equation to a
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monotonous loading (see [1]). In the present paper elastic unloading can only occur
on the inital elastic curve.

2 Constitutive equation

Let u be the displacement, ∇u be its gradient and the symmetrical part ε =
1
2 (∇u+∇ut) of it be the strain.

I being the identity second order tensor, the strain ε is split in its isotropic and
deviatoric part:

ε =
trε
2

I+ ε
d with trεd = 0

and the constitutive equation reads:

σ = (λ + µd) trεI+2
(

µm +(µd−µm)
M
‖εd‖

)
ε

d (1)

where ‖A‖ is the norm of the second order tensor A (in components ‖A‖2 = Ai jAi j)

and M = min
[∥∥εd

∥∥ , C√
2

]
, C being a positive constant.

For
∥∥εd
∥∥≤ C√

2
, M =

∥∥εd
∥∥ and the constitutive equation reads:

σ = (λ + µd) trεI+2µdε
d = λ trεI+2µdε

which is the usual constitutive equation of an isotropic elastic material, λ and µd
being its Lamé constants.

The constitutive equation (1) can be written:

σ = (λ + µd) trεI+Σ
εd

‖εd‖

with Σ = 2
(
µm
∥∥εd
∥∥+(µd−µm)M

)
. The coefficient µm being assumed to be neg-

ative, the plot of Σ

2 versus
∥∥εd
∥∥ is:

µd

1 1
µm

!!
d

C 2

" 2
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The relation
∥∥εd
∥∥→ Σ which is the deviatoric strain stress relation for a fixed

deviatoric strain direction εd

‖εd‖ is the same as that which is considered in [2] for 1D

problems.
Σ is clearly a continuous function of

∥∥εd
∥∥, so σ is a continuous function of ε .

In the following Λ denotes λ + µd , so the constitutive equation (1) reads:

σ = Λ trεI+2
(

µm +(µd−µm)
M
‖εd‖

)
ε

d (2)

and it is assumed that 0 < Λ + µm.

3 Axisymmetric problem and elementary solutions

We consider the deformation at equilibrium of a circular annulus of inner aud outer
radii Ri and Re made of a material the constitutive law of which is (2). The inner and
outer circles of the annulus are respectively subject to the pressures pi and pe, no
surface force density is applied to the annulus. As no orthoradial forces are applied
on the boundaries, the orthoradial displacement v is defined up to a constant, to fix
this constant, v is set to zero on the inner circle. The solution of the problem is
looked for in the form:

u = uer + veθ with ∂θ u = ∂θ v = 0 (3)

r and θ are the polar coordinates of the space variable x and er and eθ are the
associated basis vectors. From (3), we successively deduce that :

ε = ∂ruer⊗ er +
1
2

(
∂rv−

v
r

)
(eθ ⊗ er + er⊗ eθ )+

u
r

eθ ⊗ eθ

trε = ∂ru+
u
r

ε
d =

1
2

((
∂ru−

u
r

)
(er⊗ er− eθ ⊗ eθ )+

(
∂rv−

v
r

)
(er⊗ eθ + eθ ⊗ er)

)
∥∥∥ε

d
∥∥∥2

=
1
2

((
∂ru−

u
r

)2
+
(

∂rv−
v
r

)2
)

The carrying of those relations in the constitutive equation (2) yields the stress field
σ in the form:

σ = σrrer⊗ er +σrθ (eθ ⊗ er + er⊗ eθ )+σθθ eθ ⊗ eθ

with:

σrr = Λ

(
∂ru+

u
r

)
+
(

µm +(µd−µm)
M
‖εd‖

)(
∂ru−

u
r

)
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σθθ = Λ

(
∂ru+

u
r

)
−
(

µm +(µd−µm)
M
‖εd‖

)(
∂ru−

u
r

)
σrθ =

(
µm +(µd−µm)

M
‖εd‖

)(
∂rv−

v
r

)
Due to the fact that the components of the stress do not depend on θ , the equilibrium
equation divσ = 0 reads:(

∂rσrr +
1
r

(σrr−σθθ )
)

er +
(

∂rσrθ +
2
r

σrθ

)
eθ = 0

The equation ∂rσrθ + 2
r σrθ = 0 for σrθ integrates into σrθ = K

r2 . That proves, to-
gether with the possible interface conditions on circles between softening and hard-
ening parts of the material, that σrθ is continuous. Therefore, due to the boundary
conditions (σrθ = 0 for r = Ri and r = Re):

σrθ = 0

That entails that either µm +(µd−µm) M
‖εd‖ = 0, which can hold true only for

C√
2
≤
∥∥εd
∥∥ and yields

∥∥εd
∥∥= µd−µm

−µm
C√

2
, or ∂rv− v

r = 0 and v = Dr.
Let’s call elementary solutions the displacement fields that are solutions of the

equation ∂rσrr + 1
r (σrr−σθθ ) = 0 in some internal annulus of the studied do-

main. Three cases are to be considered,
∥∥εd
∥∥ ≤ C√

2
(and necessarily v = Dr),

C√
2
≤
∥∥εd
∥∥ with v = Dr and lastly

∥∥εd
∥∥= µd−µm

−µm
C√

2
.

Type 1 elementary solution - case
∥∥εd
∥∥≤ C√

2
.

This is the usual case of linear elasticity, we have u = A1r + B1
r , v = D1r and

σrr = 2ΛA1− 2µd
B1
r2 , A1, B1 and D1 being integration constants to be determined

by interface or boundary conditions. In that case
∥∥εd
∥∥= 1√

2

∣∣∂ru− u
r

∣∣=√2 |B1|
r2 and

this solution is valid in a annulus Rb ≤ r ≤ Re if 2 |B1|
R2

b
≤C

Type 2 elementary solution - case C√
2
≤
∥∥εd
∥∥ and v = Dr.

In that case we have u =−Ĉsrln r
A2

+ B2
r , v = D2r and σrr =−ΛĈs ln r2

A2
2
−2µm

B2
r2 A2,

B2 and D2 being integration constants and where s = sgn
(
∂ru− u

r

)
(sgn denotes the

sign function) and Ĉ = µd−µm
Λ+µm

C (due to the hypothesis 0 < Λ + µm, Ĉ is positive).
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We too have
∥∥εd
∥∥ = 1√

2

∣∣∂ru− u
r

∣∣ = √2
(
|B2|
r2 −Ĉ

)
and this solution is valid in a

annulus Rb ≤ r ≤ Re if C Λ+µd
Λ+µm

≤ 2|B2|
R2

e
.

Type 3 elementary solution - case
∥∥εd
∥∥= µd−µm

−µm
C√

2
.

We have u = A3r + B3
r , v = ±

∫ 1
r3

(
(µd−µm)2

µ2
m

C2r4−4B2
3

)1/2
dr + D3r and σrr =

2ΛA3. A3, B3 and D3 being integration constants. In that case
∥∥εd
∥∥= µd−µm

−µm
C√

2
and

the validity condition of this solution comes down to the positivity of (µd−µm)2

µ2
m

C2r4−

4B2
3, in a annulus Rb ≤ r ≤ Re, it reads 2 |B3|

R2
b
≤ µd−µm

−µm
C.

4 Solutions of the boundary value problem

The elementary solutions of section (3) satisfy the bulk equations (equilibrium and
constitutive equation) but they still comprise integration constants. To form solu-
tions of the boundary value problem, let’s consider a succession of the elementary
solutions defined in a successsion of concentric annuli and apply the boundary con-
ditions as well as continuity conditions for the displacement and the radial stress σrr
at the interfaces between the concentric annuli.

Let’s first consider the classical type 1 solution in the whole annulus (Ri ≤ r ≤
Re). It is obviously purely radial (D1 = 0) and the other integration constants A1
and B1 are determined using the boundary conditions . According to section (3) this

solution is valid for |pi− pe| ≤Cµd
R2

e−R2
i

R2
e

.

For Cµd
R2

e−R2
i

R2
e

< |pi− pe|, the previous classical solution is no more valid since

in points near the inner circle, the norm
∥∥εd
∥∥ of the deviatoric part of the strain

excceds the threshold C√
2
. We then consider a solution made of two elementary

solutions, one of type 2, the other of type 1 in two concentric annuli. The 6 corre-
sponding integration constants are determined using the boundary and the interface
continuity conditions. It turns out that that solution is purely radial (v = 0) and that
the validity conditions for the two elementary solutions entail that, in the inner an-
nulus (Ri ≤ r ≤ R1), the solution is of type 2 and of type 1 in the outer annulus
(R1 ≤ r ≤ Re), the radius of the interface between the 2 annuli being solution of the
transcendental equation:∣∣(Λ + µm)µdR2

i
(
R2

e−R2
1
)
+(Λ + µd)µmR2

e
(
R2

1−R2
i
)∣∣C

= (Λ + µm)R2
i R2

e

∣∣∣∣pe− pi−2ΛĈs ln
R1

Ri

∣∣∣∣
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the solving of which can only be performed numerically.

The previous solution is the only purely radial solution in the case Cµd
R2

e−R2
i

R2
e

<

|pi− pe|. That does not mean that that solution is unique, indeed bifurcation occurs
in the form of non radial solutions, therefore showing shear bands. To prove that, we
consider a solution made of a succession of a type 2, a type 3 and a type 2 elementary
solutions in three concentric annuli. Due to the same validity conditions as for the
purely radial solution, the type 2 solution has to take place in a more inner annulus
than that of the type 1 solution. Here we consider a solution which is of type 2 in
the inner annulus (Ri ≤ r≤ R1), of type 3 in the intermediate annulus (R1 ≤ r≤ R2)
and of type 2 in the outer annulus (R2 ≤ r ≤ Re).

Due to the condition v(Ri) = 0 on the orthoradial displacement, the type 2 so-
lution in the inner annulus is purely radial but the orthoradial displacement v is
necessarily different from 0 in the type 3 intermediate annulus and, by continuity
condition, so it is in the type 1 outer annulus. The intermediate annulus can be seen
as a shear band.

Contrary to the case of the purely radial solution, the validity conditions of the
three elementary solutions do not sum up in an equality but in a set of inequalities
for the integration constant B2 of the type 2 solution:

CR2
1 ≤ 2 |B2| ≤min

(
Λ

Λ + µd

µd−µm

−µm
CR2

1,CR2
2

)
That shows that, most probably, the values of the two radii R1 and R2 are not
completely determined but are bounded by some inequalities. This is consistent
with the expected fact that the width of the shear band (the intermediate annulus
(R1 ≤ r ≤ R2) is not determined as there is no internal length in the modeling.

5 Conclusion

Considering the deformation of a hardening/softening ”elastic” material in a 2D an-
nulus submitted to inner and outer pressures, which enables the determination of
anlytical solutions, it has been proved that, past the softening threshold, the purely
radial solution remains unique but that shear banding may occur. The analytical so-
lutions with shear banding have been determined bringing possible benchmark for
numerical simulation. It has also been confirmed that the shear bands have no deter-
mined length, as expected owing to the lack of any intrisic length in the modeling.
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