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Abstract  
This paper documents the results of a comparative analysis of model uncertainty of the 

Albatross/Feathers model system for respectively the Rotterdam region, The Netherlands and 

Antwerp region, Belgium. The assessment concerned the calculation of the coefficient of 

variation for the daily distance travelled per person. The calculations are performed both at 

the aggregated level and the disaggregated level (e.g. disaggregation by certain 

socio-demographics). Results indicate that model uncertainty differs by socio-demographic 

groups. Results of a regression analysis also indicate that in both regions uncertainty in daily 

distance travelled per person is strongly correlated with the inverse square root of the relevant 

socio-demographic population and the complexity of the classification, measured in terms of 

the number of possible classes. 
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1. Introduction 

In the context of research programs such as the Travel Model Improvement Program 

(TMIP) and Amadeus, advancing the state-of-the-art in travel demand models has become a 

key priority. As a result, many metropolitan planning organizations and transportation 

authorities are in the progress of a transition towards activity-based modelling or have 

successfully completed this shift. Consequently, three inherent features are present in most 

contemporary travel demand models (see e.g. Davidson et al. (2007)): (1) a general framework 

of activity generation, (2) a tour-based structure of travel, and (3) micro-simulation modelling 

techniques. 

  

Although the calibration and validation of these models in terms of goodness-of-fit and the 

interpretation of the sign and significance of estimated parameters have been extensively 

discussed, in reporting the results of travel demand models the degree of uncertainty in the 

forecasts is seldom addressed. As reported by Cools et al. (2011), it is imminent for 

decision-makers to know the possible range and variability of future transport predictions and 

their corresponding probabilities for instance to assess the financial viability of infrastructure 

projects. Furthermore, the role of uncertainty analysis is expected to become more important in 

the near future as discussed by Rasouli et al. (2011). 

 

In essence, uncertainty in travel demand forecasts can be attributed to two basic sources: input 

uncertainty and model uncertainty. Input uncertainty relates to the fact that (future) values of the 

exogenous variables are unknown due to measurement error or scenario uncertainty. In 

contrast, model uncertainty results from specification errors (omitted variables, inappropriate 

assumptions on functional form and statistical distributions for random components), and errors 

due to the use of parameter estimates instead of the true values (the model is estimated on a 

sample of the population only). 

 

Of particular interest in activity-based travel demand modelling is model uncertainty that is due 

to one of its key features, namely micro-simulation. After all, due to micro-simulation, travel 

demand forecasts change each time the seeds to the random number generator used in the 

simulation change. The starting point for this paper is previous research (Veldhuisen, 

Timmermans and Kapoen, 2000l Castiglione et al. (2003), and Ziems et al. (2011) that 

suggested examining the stochastic variability of alternative micro-simulation model systems. 

In this direction, it is worthwhile to refer to the recent research agenda proposed by Rasouli and 

Timmermans (2012) and Horni et al. (2012) to more extensively study the effect of 

micro-simulation on uncertainty in travel demand forecasting models. 

 

Therefore, the main objective of this paper is to investigate the impact of micro-simulation on 

the coefficient of variation in daily travel distance per person for two computational process 

models that share a high similarity, namely the activity-based modeling frameworks Albatross 

(Arentze and Timmermans, 2004) and its Flemish equivalent Feathers (Bellemans et al., 2010). 
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2. Set up 

 

2.1. Study Areas 
 

The analysis of uncertainty in the selected performance indicator daily distance travelled per 

person was conducted for the larger Rotterdam area in the Netherlands and the Antwerp 

region, Belgium. Both cities are major international harbours. For many years, Rotterdam 

took the number 1 position in the world, only recently being surpassed by Seattle, Singapore 

and Shanghai.  Reflecting this role of the cities, there is a concentration of labour around the 

harbour. Moreover, there are major feeder roads to the areas of trade and employment.  

  

Rotterdam is the second largest city in the Netherlands with a population of approximately 

600,000 people in 2005. It is the centre city of a larger metropolitan area of virtually 

continuously built-up space for several million of people. In addition to the harbour, major 

office development can be observed around the central train station. Shopping facilities are 

organized according to a hierarchical structure which most stores being located in the city 

centres, some major regional developments scattered around the metropolitan area and 

neighbourhoods shopping development in every neighbourhood. The road structure can be 

characterised as consisting of major through-ways to the south, and east, completed by a 

major ring road. 

 

In correspondence to Rotterdam, Antwerp is the second largest city in Belgium with a 

population of about 460,000 people in 2005, and a population density of about 2,300 

inhabitants per km². Antwerp's docklands provide the basis to a massive concentration of 

petrochemical industries, accumulating to the second largest petrochemical cluster in the 

world after Houston, Texas. With respect to road infrastructure, an eight lane motorway 

bypass encircles much of the city centre and runs through the urban residential area of 

Antwerp and belongs to the busiest motorways in Europe. 

 

2.2. Data 
 

The first step in the uncertainty analysis consisted of creating a synthetic population for the 

study area. The approach applied for the Rotterdam area is described in detail in Arentze and 

Timmermans (2008). It is based on the principle of iteratively proportional fitting, which 

ensures that the aggregated characteristics of the synthetic population are consistent with 

reported marginal distributions in official statistics for the city.  It however also ensures that 

consistency between individuals and households is maintained by using relation matrices. 

Thus, the created synthetic population consists of both individuals and households, which are 

created simultaneously and which are consistent with observed relationships between 

individual and household characteristics. Only the individual data were used in the analysis. 

The approach used in Antwerp is also based on the principle of iterative proportional fitting, 

but is slightly less complicated with respect to the consistency between household level 

characteristics and individual-level characteristics. 

 

A 10% fraction of the synthetic population was used in both cities. This amounts to 41,668 

persons and 27,961 households for Rotterdam and 32,055 individuals for Antwerp. Figures 

1-4 portray some key characteristics of the fraction of the Rotterdam synthetic population in 
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terms of age, household composition, income, age of children in the household and car 

ownership. Household composition was based on a combination of the number of adults in 

the household and their work status. Figure 1 shows that single person non-worker household 

are mostly presented in the sample fraction (28%), followed by single person, worker 

household (22%). Two adults, one worker households make up the smallest segment in 

Rotterdam. Figure 2 provides information about income levels and shows the profile one 

might expect for many lower status kind of job typical for an international port. As illustrated 

in Figure 3, the city of Rotterdam has a remarkably high percentage of household with no 

children less than 18 years of age. The number of people without a car is also high (36%) as 

indicated in Figure 4. 

 
Figure 1: Household Composition (Rotterdam) 

 

 

 

 
Figure 2: Household Income Level (Rotterdam) 



 6 

 
Figure 3: Age of Children in Household (Rotterdam) 

 

 

 
Figure 4: Number of Cars in household (Rotterdam) 

 

Similar summary statistics for Antwerp are provided in Figures 5-8. In contrast to the 

Rotterdam synthetic population, household composition was defined in a different way due to 

the fact that the data to estimate the decision trees originated from a person-based national 

travel survey in the Flemish case, whereas the decision trees for Rotterdam were calibrated 

using household data. For the Antwerp synthetic population, household composition was based 

on a combination of the number of adults in the household and their offspring. Figure 5 shows 

that two-adult households without children have the largest share in the sample fraction (45%). 

Single-adult households with children make up the smallest segment in Antwerp. Figure 6 

provides information about household income levels and shows that the most extreme income 

groups have a lower share then the middle income classes. In correspondence to Figure 3, 

Figure 7 highlights that like the city of Rotterdam, Antwerp has a remarkably high percentage 
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of households with no children less than 18 years of age. Finally, Figure 8 illustrates that about 

three fourth of the synthetic population has at least one car available in the household. 

 

 

 

 
Figure 5: Household Composition (Antwerp) 

 

 

 

 
Figure 6: Household Income Level (Antwerp) 
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Figure 7: Age of Children in Household (Antwerp) 

 

 

 
Figure 8: Number of Cars in household (Antwerp) 

 

 

2.3. Approach 
 

The aim of the uncertainty analysis was to examine the impact of model uncertainty of the 

Albatross model system and its Flemish equivalent, developed in the context of the Feathers 

program. The 10% fraction of the synthetic population described above served as the basis for 

the study. The quintessence of uncertainty analysis is to run a model multiple times and 

calculate some measure of variation in the predicted outcomes, which serves as a measure of 

uncertainty. In the present study, the coefficient of variation was used to quantify uncertainty. 

  

To avoid that the results of the uncertainty are influenced by uncertainty in the sampled 

fraction, it was kept constant throughout the analysis. For each sampled individual of the 
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fraction of the synthesized population, the Albatross model was run 200 times. Each run 

implies identifying the action state outcome of a series of 27 decision trees which make up the 

Albatross/Feathers model system, using Monte Carlo draws. These runs result in a probability 

distribution of each facet of the simulated activity-travel patterns and the associated 

performance indicators. Each runs will result in a different activity-travel patterns and 

associated performance indicators, allowing one to assess the impact of model uncertainty on 

the variation in the performance indicators. Coefficients of variation were calculated for 

performance indicators daily distance travelled per person.   

 

In addition to this aggregate analysis, differences in uncertain as measured in terms of the 

coefficient of variation, between socio-demographics groups were further analysed using 

regression analysis. The results of this analysis indicate whether model uncertainty of any of 

these groups differs significantly from the base group. This model includes both main effects 

and first order interactions effects. In particular, the main effects are relevant for interpretation 

as they indicate any significant differences in model uncertainty between the categories of the 

selected socio-demographic variables. 

 

Because at the same time, this results of model uncertainty will be influenced by the size of 

the relevant sample size (the various segments by socio-demographics variables) and by the 

opportunity of misclassification as depicted by the number categories for single variables and 

cells (for interactions), a second analysis regressed the inverse square root of population size 

and the complexity of the classification on the coefficient of variation for the various 

socio-demographic segments. Because it is well known that the standard error and therefore 

the coefficient of variation under a set of robust conditions is directly related to population 

size and therefore one might argue that the results if such an analysis are trivial, it should be 

remembered that Albatross and Feathers are not examples of simple statistical models and 

therefore this well-known statistical relationship is not immediately clear. The fact that the 

model systems rely on a set of highly interdependent decision tables and the fact that actual 

scheduling is heavily influenced by a set of constraints may obscure this statistical 

relationship. 

 

3. Results 

3.1. Uncertainty and Socio-demographics 
 
3.1.1. Rotterdam 
 

To examine the relationship between the degree of uncertainty and the selected set of 

socio-demographic variables, a regression analysis was conducted. The socio-demographic 

variables (household composition, income, age of children and the number of cars) were 

dummy coded, which means that one category was coded all zero. It implies that the 

estimated constant of the regression equation represents the value of the performance 

indicator of the base group, which in this case is the segment of two adult – no worker 

households, with an annual income higher than 38750 euros, two or more cars and with 

children in the age cohort of 12-17.  The choice of dummy coding also means that any 

significant effect indicates a significant difference   between the estimated uncertainty for 



 10 

this baseline segment and the uncertainty of the socio-demographic category that the 

coefficient represents.  

The results are shown in Table 1. Note that both main effects and first order interaction 

effects were estimated. The estimated main effects indicate that only single workers differ 

significantly from the baseline segment in terms of uncertainty in simulated daily distance 

traveled: the uncertainty of this category is much higher. As for the income categories, only 

the uncertainty in the predicted daily distance traveled of the 16250 – 23750 euros per year 

category is significantly different from the base. The main effects for the other two 

socio-demographic variables age of children and car ownerships are not significant, suggesting 

that uncertainties for these categories do not significantly differ from uncertainty for the 

baseline segment.   

 

Table 1 also shows that most estimated interaction effects are not significant indicating 

uncertainty in predicted daily travel distance for specific category combinations of two 

socio-demographic variables is not significantly different from the uncertainty in predicted 

daily travel distance for the baseline category. However, there are some remarkable 

exceptions. Significant interaction effects can be observed for c0ch1 ((Single, No worker x 

children younger than 6), c0ca1 (Single, No worker x 1 car in household), c1ch0 (Single, 

Worker x No children younger than 18), c1ch1 (Single, Worker x Children younger than 6) 

c1ca0 (Single, Worker x No cars), c1ca1 (Single, Worker x 1 car in household), c3sec1(two 

adults, two worker x Income between 16250 and 23750 euros), sec0ch1 (income <16250 x 

children younger than 6), sec0ch2 (income < 16250 euro x children between 6 and 11 ), sec0ca1 

(income <16250 x 1 car in household), and). Most signs of these estimated interaction effects 

are negative indicating that for the corresponding specific combination of categories 

uncertainty in predicted daily distance travelled is significantly less than the sum of their main 

effects would indicate. Positive estimated interaction effects were found for c0ch1 ((Single, No 

worker x children younger than 6), c1ch1 (Single, Worker x Children younger than 6) 

c3sec1(two adults, two worker x Income between 16250 and 23750 euros), sec0ca1 (income 

<16250 x 1 car in household), and ch2ca0 (children between 6 and 11 x no car), which suggest 

that uncertainty in simulated daily distance travelled for these combined categories of 

socio-demographic variables is higher than the sum of their main effects would suggest. 

 

The correlation coefficient for this model is equal to .94, which indicates that as expected 

variation in coefficient of variation are strongly related to differences between 

socio-demographic segments.   

 

 

Table 1: Estimated effects of socio-demographics on coefficient of variation for daily distance 

traveled (Rotterdam) 

  

Parameter Estimate Std. Error t Value 

 (Constant) .186 .058 .002 

comp0 (Single. No worker) .241 .123 .054 

comp1 (Single. Worker) .454 .062 .000 

comp2 (Two adults. one worker) 

  

.066 .064 .305 

comp3 (two adults. two worker) -.024 .052 .648 

sec0 (income=min<16250) .011 .070 .875 
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sec1 (Income16250<low<23750) .095 .047 .050 

sec2 Income= Medium 23750<Med<38750 .090 .059 .133 

child0     No children younger than 18 -.069 .057 .233 

child1  Household has children younger than 6 -.064 .065 .325 

child2  Household has children 6<  <11 -.053 .088 .551 

car0  0 car in household .009 .072 .898 

car1 1 Car in household .036 .054 .505 

c0sec0 -.049 .071 .490 

c0sec1 -.053 .072 .457 

c0sec2 -.103 .068 .132 

c0ch0 .017 .107 .871 

c0ch1 .338 .113 .004 

c0ch2 .206 .134 .128 

c0ca0 -.130 .073 .078 

c0ca1 -.190 .066 .005 

c1sec0 .002 .053 .968 

c1sec1 -.018 .042 .667 

c1sec2 -.015 .052 .781 

c1ch0 -.238 .053 .000 

c1ch1 .167 .057 .005 

c1ch2 .010 .076 .893 

c1ca0 -.321 .061 .000 

c1ca1 -.383 .052 .000 

c2sec0 .083 .057 .154 

c2sec1 -.010 .039 .794 

c2sec2 -.059 .051 .257 

c2ch0 -.107 .056 .059 

c2ch1 .010 .059 .866 

c2ch2 -.076 .077 .329 

c2ca0 .012 .060 .840 

c2ca1 -.103 .049 .040 

c3sec1 .242 .062 .000 

c3sec2 -.054 .046 .241 

c3ch0 -.041 .054 .446 

c3ch1 -.017 .056 .757 

c3ch2 -.006 .076 .940 

c3ca0 .018 .057 .755 

c3ca1 -.083 .046 .076 

sec0ch0 -.126 .062 .046 

sec0ch1 -.255 .067 .000 

sec0ch2 -.226 .075 .004 

sec0ca0 .033 .056 .561 
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sec0ca1 .162 .054 .003 

sec1ch0 -.035 .044 .439 

sec1ch1 -.056 .047 .238 

sec1ch2 -.077 .054 .157 

sec1ca0 -.077 .046 .098 

sec1ca1 -.011 .038 .781 

sec2ch0 .012 .046 .799 

sec2ch1 .026 .050 .610 

sec2ch2 .081 .058 .166 

sec2ca0 .000 .045 .999 

sec2ca1 -.047 .039 .236 

ch0ca0 .061 .051 .241 

ch0ca1 .038 .042 .378 

ch1ca0 .079 .059 .182 

ch1ca1 .013 .048 .784 

ch2ca0 .187 .075 .015 

ch2ca1 .058 .052 .272 

 
 

3.1.2. Antwerp 
 

A similar regression analysis was conducted for Antwerp. Unfortunately, the variable 

household composition was measured slightly different in this study. As in Rotterdam four 

categories were distinguished, but in this case these four categories consisted of the 

combination whether or not there were children in the household and whether the household 

consists or one or two adults. This difference means that the results of the Antwerp regression 

for socio-demographic difference cannot be directly compared to the results for Rotterdam. 

Also note that household composition in this study area will be more correlated with age o 

children as there is overlap in the underlying information, which is absent in the Rotterdam 

case. 

 

While the correlation coefficient for the Rotterdam area was equal to 0.94 for Antwerp it is 

equal to 0.93. Thus, although the variables slightly differ, overall explanatory value of the two 

regression model is approximately the same. The estimated main effects indicate that only 

single with children households differ significantly from the baseline segment in terms of 

uncertainty in simulated daily distance traveled: the uncertainty of this category is much 

higher. As for the income categories, only the uncertainty in the predicted daily distance 

traveled of the less than 1250 euros per year category is significantly different from the base: 

the uncertainty for this segment is much higher compared to the base. The main effects for the 

other two socio-demographic variables age of children and car ownerships are not significant, 

suggesting that uncertainties for these categories do not significantly differ from uncertainty for 

the baseline segment. A similar result was obtained for Rotterdam.  

 

Similar to the results for Rotterdam, Table 2 shows that most estimated first order interaction 

effects are not significant indicating that uncertainty in predicted daily travel distance for 

specific category combinations of socio-demographic variables is not significantly different 
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from the uncertainty in predicted daily travel distance for the baseline category. Except for 

one interactions, the coefficients of all other significant interaction effects are negative,  

indicating that the uncertainty for combinations of socio-demographic variables are low than 

the sum of their main effects. This results was found for (Single. With children. x Income 

between 0-1249Euro). (Single. With children x Income between 1250-2249 Euro). (Single. 

With children and 1 car)and no respectively 1 car and the lowest income level. The only 

positive interaction effect was found for 1 car and children between 6 and 12 years of age.  

 

 

Table 2: Estimated effects of socio-demographics on coefficient of variation for daily distance 

traveled (Antwerp) 

 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 0.246 0.166 1.48 0.1462 

HHCOMP       Single. no children -0.138 0.212 -0.65 0.5204 

HHCOMP       Single. with children 1.823 0.306 5.96 <.0001 

HHCOMP       Double. no children -0.277 0.213 -1.30 0.2011 

SEC          0 - 1249 Euro 0.892 0.204 4.38 <.0001 

SEC          1250-2249 Euro 0.269 0.204 1.32 0.1942 

SEC          2250-3249 Euro -0.075 0.205 -0.37 0.7153 

CHILD        Younger then 6 -0.195 0.203 -0.96 0.3416 

CHILD        Between 6 and 12 -0.263 0.202 -1.30 0.2006 

NRCAR        0 -0.107 0.187 -0.57 0.5708 

NRCAR        1 -0.263 0.187 -1.41 0.1661 

HHCOMP*SEC   Single. no children 0 - 1249 

Euro 

-0.605 0.231 -2.62 0.0122 

HHCOMP*SEC   Single. no children 1250-2249 
Euro 

-0.259 0.231 -1.12 0.2683 

HHCOMP*SEC   Single. with children 0 - 1249 

Euro 

-1.455 0.314 -4.63 <.0001 

HHCOMP*SEC   Single. with children 

1250-2249 Euro 

-1.217 0.314 -3.87 0.0004 

HHCOMP*SEC   Single. with children 
2250-3249 Euro 

-0.587 0.314 -1.87 0.0687 

HHCOMP*SEC   Double. no children 0 - 1249 

Euro 

-0.333 0.245 -1.36 0.1817 

HHCOMP*SEC   Double. no children 
1250-2249 Euro 

-0.112 0.245 -0.46 0.6512 

HHCOMP*SEC   Double. no children 

2250-3249 Euro 

0.029 0.245 0.12 0.9074 

HHCOMP*CHILD Single. with children Younger 

then 6 

-0.402 0.149 -2.69 0.0102 

HHCOMP*CHILD Single. with children Between 
6 and 12 

-0.305 0.146 -2.10 0.0422 

HHCOMP*NRCAR Single. no children 0 0.247 0.226 1.09 0.2804 

HHCOMP*NRCAR Single. no children 1 0.354 0.225 1.57 0.1239 

HHCOMP*NRCAR Single. with children 0 -0.217 0.147 -1.47 0.1479 

HHCOMP*NRCAR Single. with children 1 -0.397 0.143 -2.77 0.0083 
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Parameter Estimate Standard Error t Value Pr > |t| 

HHCOMP*NRCAR Double. no children 0 0.2492 0.203 1.23 0.2269 

HHCOMP*NRCAR Double. no children 1 0.357 0.202 1.77 0.0846 

SEC*CHILD    0 - 1249 Euro Younger then 6 0.0214 0.231 0.09 0.9265 

SEC*CHILD    0 - 1249 Euro Between 6 and 12 -0.019 0.230 -0.08 0.9353 

SEC*CHILD    1250-2249 Euro Younger then 6 -0.015 0.231 -0.06 0.9487 

SEC*CHILD    1250-2249 Euro Between 6 and 
12 

-0.035 0.230 -0.15 0.8805 

SEC*CHILD    2250-3249 Euro Younger then 6 0.078 0.232 0.33 0.7394 

SEC*CHILD    2250-3249 Euro Between 6 and 

12 

0.046 0.230 0.20 0.8422 

SEC*NRCAR    0 - 1249 Euro 0 -0.640 0.200 -3.21 0.0026 

SEC*NRCAR    0 - 1249 Euro 1 -0.493 0.199 -2.47 0.0176 

SEC*NRCAR    1250-2249 Euro 0 -0.245 0.200 -1.22 0.2276 

SEC*NRCAR    1250-2249 Euro 1 -0.165 0.199 -0.83 0.4139 

SEC*NRCAR    2250-3249 Euro 0 0.134 0.201 0.67 0.5089 

SEC*NRCAR    2250-3249 Euro 1 -0.013 0.199 -0.07 0.9470 

CHILD*NRCAR  Younger then 6 0 0.170 0.170 1.00 0.3247 

CHILD*NRCAR  Younger then 6 1 0.304 0.165 1.84 0.0726 

CHILD*NRCAR  Between 6 and 12 0 0.327 0.165 1.98 0.0545 

CHILD*NRCAR  Between 6 and 12 1 0.3649 0.165 2.21 0.0331 

 

 
3.2. Uncertainty, segment size and complexity 

As discussed. the above analysis depicts differences in uncertainty as measured by the 

coefficient of variation between the selected socio-demographic groups. Uncertainty is 

however also influenced by segment size and complexity, measured in terms of the number of 

cells in the classification. To examine this relationship, a second series of regression analyses 

was conducted. The dependent variable in this regression was the coefficient of variation for 

each socio-demographic segment, defined by the combination of all selected 

socio-demographic variables, and the measure of complexity. 

3.2.1. Rotterdam 
 

The results of this regression analysis are shown in Table 3 for the Rotterdam area. The 

coefficient of correlation for this analysis is equal to 0.97, suggesting that the coefficient of 

variations is strongly influenced by population size and complexity.  Table 3 shows that 

uncertainty increase with the inverse square root of population size. It decreases with 

increasing complexity. It is difficult to argue from the start whether a positive or negative sign 

should be expected. On the one hand, the probability of misclassification, ceteris paribus, 

increases with more categories or cells. On the other hand, a larger number of cells or 

categories also increases, ceteris paribus, the homogeneity of travel behavior. All estimated 

coefficients are significant. 
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Table 3: Estimated effects of population size and complexity on coefficient of variation for 

daily distance traveled (Rotterdam) 
 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 0.017210173 0.00522445 3.29 0.0011 

Popsizeinvsqrt 1.690911279 0.05147856 32.85 <.0001 

Complexity -0.000226369 0.00006202 -3.65 0.0003 

Popsizein*complexity 0.001681788 0.00045801 3.67 0.0003 

 

 
3.2.2. Antwerp 

 

The results of this analysis for Antwerp are listed in Tale 4. In this case, all signs of the 

estimated coefficients are positive. However, only the estimated coefficient for the population 

variable is significant at conventional levels in this case. The correlation coefficient for this 

study is also equal to 0.97. Note that the same value was found for the Rotterdam area.  

 

Table 4: Estimated effects of population size and complexity on coefficient of variation for 

daily distance traveled (Antwerp) 
 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 0.003734381 0.00728605 0.51 0.6086 

Popsizeinvsqrt 1.383282569 0.04767283 29.02 <.0001 

Complexity 0.000198722 0.00015095 1.32 0.1890 

popsizein*complexity 0.000783896 0.00069270 1.13 0.2586 

     

4. Conclusions and Discussion 

The interest in uncertainty analysis is rapidly increasing recently. It witnesses the 

understanding that estimates of uncertainty provide valuable information to decision makers. 

Nevertheless, the number of studies conducting uncertainty analysis to activity-based model of 

travel demand in general and rule-based systems in particular is still very scarce.  

In this study, we have compared model uncertainty for a particular performance indicator (daily 

distance travelled per person) generated by the Albatross model system and its Flemish 

equivalent (Feathers). These models were applied to a fraction of the synthetic of respectively 

the cities of Rotterdam, The Netherlands and Antwerp (Belgium), both major European 

harbours.  

Unfortunately, due to differences in data collection, the data could not be pooled, making a 

direct analysis impossible. Consequently, the comparison in outcomes should stay more global. 

Model uncertainty, measured in terms of the coefficient of variation, in both studies for the 

investigated performance indicator is relatively small. A high proportion of variation in the 

uncertainty can be attributed to differences in socio-demographics. 
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Because uncertainty is expected to be related to population size and complexity of the 

classification, the relationship between the coefficient of variation and the inverse square root 

of population size and complexity was also analysed. Remarkable differences between the two 

cities were found.  

Overall, this study suggests that model uncertainty in Albatross (and its equivalent) is small. 

Additional research is needed to examine whether similar results will be found for other 

aggregate performance indicators and for other study areas. 
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