European Congress on Computational Methods

in Applied Sciences and Engineering (ECCOMAS 2012)
J. Eberhardsteiner et.al. (eds.)

Vienna, Austria, September 10-14, 2012

NUMERICAL MODELING OF A 3POINT BENDING TEST OF A
REINFORCED CONCRETE BEAM
USING A SECOND GRADIENT THEORY

G. Jouan*? P. Kotronis', and F. Collin®

! LUNAM Université, Ecole Centrale de Nantes, Ungait de Nantes, CNRS
Institut de Recherche &énie Civil et Mécanique (GeM)
1 Rue de la Noé, F-44321 Nantes, France
gwendal.jouan@ec-nantes.fr panagiotis.kotronis @eteas.fr

?Département Argenco — Université de Liége
Institut de mécanique et Génie Civil, Bat. 52
1 Chemin des chevreuils, B-4000 Liege 1, Belgium
f.collin@ulg.ac.be

Keywor ds:. three point bending test, localization, second igradreinforced concrete

Abstract. Being a quasi-brittle material, concrete exhibétsstrain softening behavior that
cannot be reproduced with classical continuum medsamodels. To regularize the problem,
an internal length should be introduced. Severaysvo do so have been proposed in the lit-
erature. One way is the so called local second gradmodel. It is a local theory as it intro-
duces the internal length by enriching the kineoadtdescription of the continuum adding
higher order gradients of the displacement accogdia the work of Cosserat [8], Toupin
[18], Mindlin [19] and Germain [9,10]. The model kabeen developed by Chambon et al.
[11,12] and has this far been used mainly to repiel the behavior of soils. It is here ap-
plied for the first time to a reinforced concretean subjected to a 3 point bending test.
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1 INTRODUCTION

Strain localization in quasi-brittle materials, orore generally in materials exhibiting
strain softening is a well-known problem [1] [2]][3t is a phenomenon that can be clearly
observed in experimental tests, and yet cannotdmelad with classical continuum mechan-
ics models. Analytically, the solution is a crackhanzero energy dissipation [4]; numerically,
it leads to a pathological mesh dependency. Thesdcomings are due to the lack of an in-
ternal length in the continuum model.

Several ways of introducing an internal length halween proposed. Non local integral
models were first formulated by Pijaudier-Cabogle4] and applied to damage theory. The
gradient models of Aifantis [6] enrich the conventl plasticity and damage theories with
gradients of the internal variables. This type afdel can be shown to be equivalent to the
integral type models. More recently, strain locatian due to damage has been treated using
the thick level set approach [7].

A rather natural way of introducing (indirectly)ength parameter in a continuum model is
to account for the microstructure of the materidhe general class of so called
microstructured models or higher order continuundet® allows for the description of the
kinematics of the microstructure by using an addai tensor in the displacement field.
Higher order continuum theories can be traced bad¢ke works of the Cosserat brothers [8]
and have been generalized and properly formulage@dymain [9] [10] using the method of
virtual power.

The local second gradient model developed by Changb@l. can be seen as a particular
case of a higher order continua and has been osegjtilarize problems involving localiza-
tion in geomaterials [11,12]. It is hereafter usedanodel a three point bending test of a rein-
forced concrete beam.

2 THE SECOND GRADIENT MODEL

2.1 Theoretical framework

As detailed in the seminal work of Germain, usihg wirtual power method one can
choose a field of virtual displacements to descthee proper kinematics of the continuum
(including its microstructure). The internal stresslimit conditions and equilibrium equa-
tions appear naturally as long as the linear fa@presenting the virtual power is correctly de-
fined and that it respects the principle of matendependence.

Following this, if we choose the virtual displaceméeld as the “field of continuous and
continuously differentiable velocities”, then thengiple of virtual work yields:

f 0ijDij + Zijru; j dQ —f Giu;dQ — J piu; + P;Du;ds =0 (1)
D D aD
Whereu; is the displacement field; is the symmetric part of its gradiemst;, is the macro
stress (conjugate of the first gradient of the g#jofield) andZjx is a double stress (conju-
gate of the second gradient of the velocity fiet)is the classical body forcp; is a contact
force andP; a double contact forc®u; refers to the normal derivativBu; = nidui/ox,. Here
and henceforth denotes a virtual quantity.

The equilibrium equations and boundary condgiare given by:

aO'L'j azZijk

+G; =0
ox; 0x;0x;,
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WhereDq/Dx; is the tangential derivative.

Here we suppose that the model uses two consat@guations, one linking the macro
stress to the first gradient of the displacements the other linking the double stress to the
second gradient of the displacements. The two emqsatre also supposed to be decoupled.
The first gradient law can be any classical coms@ law (involving or not damage, plastici-
ty etc...). The constitutive laws can be writtenaterform as:

6ij = CijDy (5.1)

z:ijk = Kijklmnul,mn (52)

If the second gradient law is an isotropic elastie, the general form of the constitute law
involves five material parameters.
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Whereaik-- are functions of five material parameteisaz, as, as, andas[19].

A particular form of this latter constitutive eqigat has been proposed by Chambon et
al.[19] with a single moduluB (corresponding to a specific choice of thigparameters).

The internal length does not appear explicitlyhese equations. However, the analytical
solution in a one-dimensional localization problesth a bilinear first gradient law of moduli
A; andA,, exhibits a localized strain band with an intefealgthls given by [13]:

—A —A
tanh = n (7)

It is shown that the internal lengthis a function of the rati8 overA,.

The use of the second gradient model allowsh® proper representation of strain locali-
zation but it does not restore the uniqueness @fstiiution. For a one-dimensional tension
test or a biaxial compression test, the numberaofdlb and their positions can vary [14]. This
Is in accordance with experimental results whictdt® be poorly reproducible when involv-
ing strain localization.

2.2Numerical implementation

The second gradient of the displacements in thé&ie@anulation of the problem necessi-
tates the use o' elements in a finite element code. This can bedeebby introducing a
new fieldv; imposed equal to the gradientwpfthrough the use of Lagrange multipliers [15].
The new weak formulation of the problem becomes:




G. Jouan, P. Kotronis, and F. Collin

ou;
f 0;;Dij + Zijicvij  dQ —f Aij <a_xl_ U;J')dQ —F=0 (8.1)
D D ]

ou;
2y 1dO = .
fD L, <axj 17U>d 0 8.2)

The problem is then discretized using"arbde second gradient finite element: 8 of the

nodes are used faor, 4 forv; and the central node fay.
n
]

Figure 1: Second gradient finite element [15]
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This element has been implemented in the finiteneld code Lagamine and the problem
Is solved using the classical Newton-Raphson method

3 THE THREE POINT BENDING TEST

The experimental test was conducted on a reinfotoedrete beam according to the speci-
fications of the CEOS.FR benchmark. The beam thickness b=200mm, height h=500mm
and 5000mm span (see: figure 2). It was subjectedcyclic controlled load.

l (F,u) ‘g
/: | _Di

vertical
displacement

20+ 8+ 8/2 =32mm
<

5 '@' 20+ 8 +8/2=32mm

500mm

S0 20+ 8+ 322 = 44mm

20 + 8 + 32/2 = 44mm

Figure 2: Reinforced concrete beam dimensions [17]

Strains were measured with gauges placed as iedicat figure 3.
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Figure 3: Location of strain gauges [17]

4 MODELISATION OF THE BENDING TEST

The bending test is modeled as a two dimensiorddlem using the 9 node finite element
described above. Two meshes have been used feimtlwations. The first mesh consists of
5180 elements, 4148 of which are second gradiemeits representing concrete and 1032
truss elements representing the horizontal reiefoent. The average size of the concrete el-
ements for this mesh is of 0.02mx0.035m. The seme@sh consists of 13494 elements with
an average size of 0.01mx0.017m for the concretmahts. Concrete and steel elements are
supposed to be perfectly bonded. The end nodém didttom of the beam are blocked verti-
cally; the right node at the bottom is also blockedzontally.

Figure 4: Finite element meshes [15]

The concrete behavior is reproduced using the ickEsMazars damage law [16]. The
equivalent strain is defined as:

Eeq =V (E)1: (&) (9)

Where( ), denote the positive part and : is the double dotlyct. The damage is sepa-
rated in two parts Land @, one due to the tension, and one due to compressio

EdO(l - Ac) _

€eq

D,=1- M — Ate_Bt(feq_de) (10.2)
eq

Whereeqo, Ac, A, Bc and A are material parameters provided in table 1:

D.=1- A e Be(teq—¢a0) (10.1)

E (GPa) eqo A B Ac Bc B
37.2 9.10 0.7 6800 0.42 780 1.1

Table 1: Concrete material parameters

On the upper part where the loading is appliedatrabth supports at the bottom an elastic
linear law is introduced to prevent from unwanteomdge. An elasto-plastic law with iso-
tropic hardening is used for steel.
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Upper trusses
o (MPa) Area (cm?)
466 16.085 (2HA32)
Lower trusses
o (MPa) Area (cm?)
466 1.0053(2HA8)

Table 2: Steel material parameters

The second gradient constitutive law for coteepends on the elastic moduRisaken
equal to 1.5.MN.

5 RESULTS

Overall, the numerical results are in good accardamith the experimental data. Figure 5
shows the numerical global force versus displaceémaethe center of the beam compared to
the experimental results (note: for the experimetest the beam was loaded and unloaded
cyclically whereas in the simulation the beam waeded with a monotonic increasing dis-
placement).

350000

300000

250000

—— experimental

—&— numerical

-0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01
vertical displacement (m)

Figure 5: Numerical results Vs. Experimental d&trce-Displacement at the center of the beam

The force displacement graph exhibits the classmiaforced concrete behavior in three
stages: In the first stage, concrete and steelsittyin the elastic regime; then concrete starts
to damage and the slope on the force displacenuewn slightly changes. Finally, steel enters
in the plastic phase and the second change ifdpe appears. The final slope of the numeri-
cal simulation doesn’t match the experimental dng, results can be improved by doing a
parametrical study on the influence of the elastodulusB.

Figure 6 shows the pattern of the damage variabt®ncrete for different stages of load-
ing and for the two meshes.
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Figure 6.1. Damage distribution (2mm displacemenBjigure 6.2. Damage distribution (3mm displacement)

Figure 6.3. Damage distribution (4mm displacemenBigure 6.4. Damage distribution (5mm displacement)

Figure 6.5. Damage distribution (6mm displacemenBjigure 6.6. Damage distribution (7mm displacement)

Figure 6.9. Damage distribution (10mm displacementfigure 6.10. Damage distribution (15mm displace-
ment)
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Figure 6.11. Damage distribution (18mm displace- Figure 6.12. Damage scale
ment)

The damage pattern develops with sudden “peakstiwbkperimentally correspond to
developing cracks. The crack opening is not modediegttly in this simulation as the dis-
placement field remains continuous, but it can dleuwtated from the damage model either
through energetic equivalence or by simply meagutite jump in displacements between
two points located on the opposite sides of theatpd zone. This obviously works only
when the damaged bands are clearly separated. iOkie and separation of the damage bands
can be controlled by changing the internal lengthich in our case would mean changing the
slope of either or both the first gradient and selcgradient constitutive laws.

For concrete bending tests, non-local damage medeth define an equivalent strain by
averaging over a certain distarigenay develop damage on the upper compressed ptme of
beam even when the local strain is not high endaaghigger damage. This is due to the aver-
aging over an area. There is no such problem wighrhodel as all the variables are local,
including the equivalent strain.

6 CONCLUSIONS

A second gradient model has been used to modehtke point bending test of a rein-
forced concrete beam. The results show that theemisdable to reproduce the force-
displacement curve obtained experimentally. Theadgrocalizes into bands and their width
is controlled by the model parameters. The unigseé the solution is however not restored
as shown by the results obtained with two diffemaesshes. In these two cases the bands are
of the same size but their numbers can vary (figdré&8eing a local theory, the second gradi-
ent method avoids the limitations caused by theofisenon-local definition of the equivalent
strain used in the non-local damage theory.

These results are encouraging and represent #testigps toward a wider use of the local
second gradient method for concrete structures.
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