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Abstract
A simplified model for the prediction of the steady-state outflow through a breach in an inland

dike is presented. It consists in the application of the mass and momentum conservation principles
to a macroscopic control volume. A proper definition of the shape of the control volume enables
to take into account the main characteristics of the flow and thus to compensate for the extreme
simplification of the space discretisation of the model. At the breach, a relation derived from the
shallow-water equations is used to determine the directions of the flow. Developments have been
guided by numerical simulations and results have been compared to experimental data. Both the
precision and the application domain of the simplified model are found satisfactory.

1 Introduction

Dikes and (mobile) protection walls are essential parts of flood protection measures and considerable
damage to people and property can arise from their breaking. A distinction between a dynamic and a
static impact is useful to define the focus of a study of dike-break induced flows [1] [2]. As the dynamic
impact is related to high flow velocities and water depths within the flood wave initiated by the collapse,
it is restricted to the first transient phase of the flow and to the neighbourhood of the breach. On the
other hand, the static impact, which is considered in this paper, refers to the slow increase of the water
level in the floodplain and affects a wider area and a longer period. Its extent depends on the discharge
that leaves the river through the breach, i.e. on a quantity that tends to a steady value for a constant
hydrograph, on the supposition that the breach size remains constant.

Over the past few years, a scale model, built at IWW-RWTH Aachen University, has been used to
study the transient phase [1] and steady state [2] [3] of dike-break induced flows in a hybrid approach that
compared numerical simulations with experimental data. These studies showed that numerical models
based on the Shallow-Water Equations (SWE) are able to reproduce the main flow characteristics, yet
with some discrepancies. As far as the computation of the steady-state discharge through the breach is
concerned, underestimations of experimental data by 5 to 10% were observed.

Dike breaks are characterized by uncertainties about the flow conditions in the river, the position
and the size of the breach. A risk assesment should therefore follow a probabilistic approach and take
many scenarios into account, which would result in high computation costs unless a simplified model is
used for the computation of the discharge through the breach. Empirical formulae as the one presented
in Reference [4] obviously depend on the sites for which they were established. Purpose of this work,
instead, has been to develop a physically based model whose validity in different situations can better
be comprehended. It is an attempt to reproduce the flow split at a dike breach without any discretisation
in space.

The simplified model has been developed in the frame of a scale model (presented in Section 2) and
with the help of numerical simulations (Section 3) that have been used to identify useful characteristics of
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the flows (Section 4). The model has been devised as a control volume to which the mass and momentum
conservation principles have been applied together with the relevant boundary conditions (Section 5).
Developments have mainly consisted in the definition of an appropriate shape for the control volume and
in the derivation of a relation giving the flow direction through the breach (Sections 6-7). The numerical
implementation of the model has been based on a pseudo-unsteady scheme (Section 8) and the results
compare well with experimental data (errors up to 15% - Section 9).

2 Experimental data

Experimental data consist in steady-state discharges measured on a scale model built at IWW [5] [2].
The scale model set-up is presented in Figure 1. It takes into account the boundary conditions of a dike
break, yet with a simple geometry, without bottom slope and with low friction so as to focus on the
influence of three parameters: the breach width (30, 50 or 70 cm), the inflow discharge (100, 200 or 300
l/s) and the initial water depth in the channel (25 to 50 cm – the initial state refers to the steady state with
a closed breach). In the following, a generic notation is used to identify the different test configurations
with reference to these three parameters. For instance, B70-Q300-h50 refers to a configuration with a
70 cm-wide breach, an inflow discharge of 300 l/s and an initial water depth of 50 cm. In equations and
figures, following notations are used: Bc and Bb (m) for the channel and breach widths respectively,
Qi and Qb (m3/s) for the discharges in the upstream reach of the channel and through the breach
respectively. The whole experimental set-up is comprehensively described in References [5] and [2].

Figure 1: Scale model set-up (adapted from [5])

3 Numerical simulations

In Reference [2], numerical simulations were run to reproduce experimental data measured on the scale
model described above. One of the software involved in this hybrid approach was the finite volume
model WOLF 2D (HACH) which is also used here to expand the set of simulated configurations.

WOLF 2D solves the SWE, which are obtained by depth-averaging the equations of mass and mo-
mentum conservation. The derivation of the standard form of the SWE relies on two main assumptions,
i.e. low vertical velocity (leading to hydrostatic pressure) and uniform flow velocities over the depth.
This mathematical model is solved by a finite volume scheme dealing with multi-block Cartesian grids
and limited linear variable reconstruction at cell interfaces to achieve second-order accuracy in space.
The computation of fluxes at cell interfaces is based on a flux vector splitting method developed at
HACH [6] [7]. The time integration is performed by means of a dissipative three-step first-order accu-
rate explicit Runge-Kutta algorithm, suitable for the computation of steady flows [2].

In accordance with Reference [2], the Cartesian grid involved 0.02 m by 0.02 m cells. However,
for configurations with breach widths of 50 and 30 cm, a mesh refinement with 0.01 m by 0.01 m cells
was used near the breach. The boundary conditions (inflow discharge, weir and free overfall) matched
the actual ones described in Figure 1. Notably, the weir equation at the downstream end of the channel
required appropriate calibrations [2].



In the specific case of the scale model described in Section 2, it was showed that neither bed and wall
friction nor turbulence models have a substantial impact on the permanent discharge through the breach
[2]. As a consequence and in accordance with the “base simulations” in Reference [2], the present
simulations involved a Manning model for bed friction (Manning coefficient of 0.015 s/m1/3) but no
wall friction and no turbulence model.

4 Characteristics of the flow near the breach

The set-up of the scale model ensures that the flow in the channel is subcritical (i.e. Froude number
F < 1), while it becomes supercritical (F > 1) when passing through the breach [2]. Figure 2a sketches
the streamline between the two flows that separate at the breach (as deduced from numerical results).
It can be seen that the deviated flow undergoes first a lateral contraction in the channel, then a lateral
expansion in the propagation area. Maximum contraction is situated at the breach, where the flow regime
is critical in the considered configurations [8]. This behaviour is only possible provided that the breach
width is not too large compared to the channel width and the percentage of flow deviated through the
breach is not too small. The later condition corresponds to a flow regime in the channel characterized
by a Froude number not exceeding a given threshold, as discussed below (Section 9).

As mentioned in Reference [2], the computed critical section across the breach takes a distinctive
S-shape. Figure 2b shows that this shape is influenced by the momentum of the main flow in the channel,
i.e. by the Froude number of this flow. At low Froude numbers, the critical section is nearly symmetrical
and its basic feature is a curve pointing towards the propagation area. For higher Froude numbers, the
momentum of the flow reaching the upstream edge of the breach prevents an immediate deviation, which
leads to a S-shape with an important upstream part pointing towards the channel.

(a) (b)

Figure 2: Characteristics of the flow near the breach - a) Schematic view of the streamline between the
two flows that separate at the breach (dotted line) and main flow directions (arrows) - b) Critical sections
obtained by interpolation of numerical results in different configurations

5 Conceptual model

We suggest a conceptual model based on the application of mass and momentum conservation to a
properly defined control volume. When considering only the advective fluxes of the SWE, this approach
leads to three equations, in which the unknowns are water depths and discharges along the boundaries
of the control volume: ∫∫

A
(∂xf + ∂yg) dA = 0 ⇔

∮
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The coordinate system used throughout this paper is indicated in Figure 2a. In Equation (1), A is the
domain of the control volume in the (x y) plane and F+ its boundary oriented anticlockwise. The
advective fluxes f and g are defined by Equation (2), where h (m) is the water depth, q (m2/s) is the
magnitude of the unit discharge and θ ∈ ] − π;π] is the flow direction defined by Equation (3), qx and
qy being the unit discharges in x- and y-directions respectively:{

qx = q cos θ
qy = q sin θ

(3)

In accordance with the characteristics of the scale model and the conclusions drawn in Reference
[2], Equations (1-2) involve no bottom slope and no friction term. For real-life applications of the model,
these terms could however be added to the equations, since their effects would be more significant.

The control volume is defined so as to contain the zone in which the flow split occurs, i.e. the zone
in the channel where the flow regime is subcritical and the flow parameters are not uniform across the
channel width due to the presence of the breach. The use of such a macroscopic control volume requires
an appropriate definition of its shape, as shown in following paragraphs.

A flow runs through three of the control volume boundaries, which are used to define the unknowns
of the problem (table 1). These unknowns are mean values of water depths and unit discharges along a
given boundary. As Equations (1-2) include non linear terms, the use of such mean values is only relevant
if the distributions of water depths and unit discharges along the different boundaries are constant. This
can be achieved by an adequate definition of the control volume.

Taking into account the three boundary conditions that must be imposed according to the flow regime
(table 1), a closed problem is obtained with six equations and six unknowns provided that the shape
of the control volume is defined in such a way that flow directions (θ) through the three boundaries
are known. For the “inflow” and “outflow” boundaries, this condition is fulfilled by setting them far
enough upstream and downstream from the breach respectively; for the “breach” boundary, specific
developments are presented in the following.

Boundary Place Unknowns Boundary condition

“Inflow” Across upstream reach hi, qi qi imposed
“Outflow” Across downstream reach ho, qo ho = ho(qo)

“Breach” Across breach hb, qb hb = hb(qb)

Table 1: Unknowns and boundary conditions

Further developments have therefore consisted in the definition of a proper shape for the control vol-
ume so as to simplify the distributions of water depths and unit discharges along the “inflow”, “outflow”
and “breach” boundaries and to be able to determine the flow directions along them. This shape has
been deduced from flow characteristics as disclosed by the results of the 2D numerical simulations.

6 Flow through the breach

The distributions of the flow parameters across the breach section are rather complex and the flow regime
is partly supercritical, partly subcritical, as can be deduced from Figure 2b. Along this section, the
definition of the critical regime, F = 1, can thus not be used as a boundary condition linking an average
water depth and an average unit discharge. For these reasons, the use of the S-shaped critical section
as a boundary of the control volume appears far more appropriate, as the distributions of the unknowns
along this curve are simpler and the relation F = 1 is valid at any point.



6.1 Modelling of the critical section

The use of the critical section as a boundary of the control volume enables number of simplifications,
as will be seen in the following subsections, but it requires the definition of a model for this curve.
According to the numerical results, flow configurations that differ only by the width Bb of the breach
display the same non-dimensional critical section shape if coordinates x and y are both scaled with Bb
(Figure 3a). For the purpose of the computational model presented in this paper, only the main features
of this non-dimensional shape need to be modelled and a definition using two parabolae is sufficient.
As shown in Figure 3a, this definition requires only three parameters: ξint, ηmin and ηmax, where the
non-dimensional coordinates ξ and η are defined by{

ξ = x/Bb
η = y/Bb

(4)

Figure 3: Modelling of the critical section (solid line) and comparison with numerical results (markers)

Parameters ξint, ηmin and ηmax are not independent. There are two relations between them defining
the set of possible shapes of the critical section. In this approach, parameters ηmin and ηmax are expressed
as concise functions of ξint:

ηmin = ξ2int (5)

ηmax =
1

4

(
1− ξ2int

)
(6)

Parameter ξint is left as a degree of freedom of the S-shape: it must thus be related to the Froude
number of the main flow in the channel, according to section 4. The Froude number used here is defined
as the mean of the Froude numbers at the “inflow” and “outflow” boundaries:

Fm =
1

2
(Fi + Fo) =

1

2

( qi√
gh3ı

+
qo√
gh3o

)
(7)

The proposed relation is:
ξint = Fm (8)

6.2 Distribution of water depths and unit discharges along the critical section

As the S-shape of the critical section is used as a boundary of the control volume, the basics of the
dynamic behaviour of the flow across the breach are already included in the model, which therefore
makes the best of some simplifications on the water depth and unit discharge distributions along that
section. Assuming constant distributions (i.e. constant specific energy along the critical section), the
computation of the curvilinear integrals of Equations (1-2) on the critical section F+

b gives

• for the continuity equation: ∫
F+

b

q cos θ dy − q sin θ dx = χbqbBb (9)



• for the momentum equations in x and y-directions:∫
F+

b

(q2
h

cos2 θ +
gh2

2

)
dy − q2

h
sin θ cos θ dx = χbx

q2b
hb
Bb (10)∫

F+
b

q2

h
sin θ cos θ dy −

(q2
h

sin2 θ +
gh2

2

)
dx = χby

q2b
hb
Bb +

gh2b
2
Bb (11)

In these equations, coefficients χb, χbx and χby take into account the curved shape of the boundary
(angle φ ∈ ]− π/2;π/2[ that gives the direction of the tangent of the curve - Figure 3) and the direction
of the flow that passes through it (angle θ). Using the coordinate ξ defined by Equation (4), leads to:

χb =

∫ 1

0

sin (θ − φ)
cosφ

dξ (12)

χbx =

∫ 1

0
cos θ

sin (θ − φ)
cosφ

dξ (13)

χby =

∫ 1

0
sin θ

sin (θ − φ)
cosφ

dξ (14)

The hypothesis of constant specific energy along the critical section is found to be valid when friction
is low: numerical simulations performed with a Manning coefficient of 0.015 s/m1/3 indicate that
relative standard deviations of water depths and unit discharges along the critical section are less than
1%. When friction effects do influence the flow split, Expressions (12-14) are less precise. However, as
these effects can be taken into account by adding terms in Equations (1-2), the assumption of constant
water depths and unit discharges along the critical section could be kept as a working hypothesis.

6.3 Distribution of flow directions along the critical section

The assumption of constant specific energy along the critical section provides useful information on the
flow parameters in its neighbourhood. The derivation of Bernoulli’s specific energy H gives

~∇H = ~∇
(
h+

q2

2gh2

)
=
(
1− F2

)
~∇h+

q

gh2
~∇q , (15)

which indicates that assuming ~∇H = 0 on the critical section implies ~∇q = 0. The magnitude ‖~∇h‖
of gradient ~∇h remains undefined, but as q is constant along the critical section, it can be deduced from
F = 1 that the direction of ~∇h is locally perpendicular to this curve:{

∂xh = ‖~∇h‖ cos
(
φ− π

2

)
∂yh = ‖~∇h‖ sin

(
φ− π

2

) (16)

This information can be used to simplify the SWE on the critical section and thus to establish a
relation between the shape of this section and the flow directions. Expressing ~∇q = 0 in the SWE gives:

− sin θ ∂xθ + cos θ ∂yθ = 0 (17)

gh ∂xh−
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h2
(
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)
− q2 sin θ
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(
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)
+
q2 cos θ

h

(
cos θ ∂xθ + sin θ ∂yθ
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Equation (17) indicates that gradient ~∇θ is perpendicular to the flow direction:{
∂xθ = ‖~∇θ‖ cos θ
∂yθ = ‖~∇θ‖ sin θ

(20)



Inserting Expressions (16) and (20) in Equations (18-19) finally leads to Equation (21) which gives, in
addition to Equation (20), the desired relation between the distributions of φ and θ. In this equation,
‖~∇h‖/h appears to be the only unknown.

‖~∇θ‖ = ‖
~∇h‖
h

cos (θ − φ) (21)

Assuming a constant ‖~∇h‖ along the critical section enables the construction of different distribu-
tions of angle θ, as illustrated in Figure 4a. For this purpose, Equations (20-21) have been projected
in the local direction of the critical section, which results in Equation (22), formulated based on the
non-dimensional coordinate ξ. Notation K has been used for ‖~∇h‖Bb/h.

dξθ = ‖~∇h‖
Bb
h

cos2 (θ − φ)
cosφ

= K
cos2 (θ − φ)

cosφ
(22)

(a) (b)

Figure 4: Parametrical study of the influence of parameter K on - a) the distribution of angle θ along the
critical section - b) coefficient χb (configuration B70-Q300-h50)

Figure 4a shows that the different θ-profiles which can be computed thanks to Equation (22) mostly
involve some points where Equation (23) is not verified:

φ(ξ) ≤ θ(ξ) ≤ φ(ξ) + π (23)

The effectiveness of the critical section in evacuating a discharge Qb for a given head Hb is reduced by
these points at which flow doesn’t leave the channel but (re-)enters it. Equation (24), derived from (9)
and the definition of critical regime, shows that this effectiveness is indicated by coefficient χb:

Qb = χbqbBb =
2

3

χb√
3

√
2g H

3/2
b Bb (24)

For a given critical section, it therefore seems rational to choose the distribution of θ that gives maximum
χb (Figure 4b) for the computation of coefficients χb, χbx and χby.

7 Flow in the channel

Purpose of this section is to define the distances from the breach at which the “inflow” and “outflow”
boundaries should be placed in order to ensure uniform water depths and unit discharges distributions
across the channel and flow directions parallel to the x-axis. These distances obviously depend on the
width Bc.

However, placing these sections far enough from the breach is not enough: their position should
make the definition of coefficients expressing the uneven distribution of pressure fluxes along the wall



boundaries of the control volume as simple as possible. Such coefficients, named χk, appear when
deriving Equation (1). They are defined by∫

Bk

gh2

2
dx = χk

gh2ref,k
2

Bk , (25)

where subscript k refers to a given wall boundary, Bk is the length of the boundary and h2ref,k can be
h2i , h

2
o or a combination of both. Figure 5 shows that the pressure fluxes on the right wall of the channel

are almost symmetric with respect to abscissa xint = ξintBb. Making use of this result and giving the
control volume a length L = 2Bc+2xint leads to the simple and constant coefficients given in Table 2.

Figure 5: Distribution of gh2/2 along the walls of the channel (configuration B70-Q300-h50)

Wall Subscript k h2ref,k Bk χk

Right r (h2i + h2o)/2 2Bc + 2xint 1,00
Left - upstream lu h2i Bc 0,95
Left - downstream ld h2o Bc + 2xint −Bb 1,00

Table 2: Definition of coefficients χk

8 System of equations and numerical scheme

Writing out in full Equation (1) for the control volume defined in Sections 6 and 7 leads to:

∂thi =
1

A

[
qiBc − qoBc − χbqbBb

]
(26)
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2

+
(
χr
Br
2
− χldBld

)gh2o
2
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q2b
hb
Bb −

gh2b
2
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]
(28)

Left-hand sides of these equations, that are zero for the steady state flows of interest, have been intro-
duced for the sake of computation. According to the SWE, these three terms should respectively be the
integrals of ∂th, ∂tqx and ∂tqy over the domain A ≈ 2B2

c of the control volume. In a pseudo-unsteady
approach computing the steady-state solution starting from an arbitrary initial condition, these integrals
can be supposed to be proportional to the time-derivatives of three of the six unknowns of the problem.

The system of Equations (26-28), expressing mass and momentum conservation, must be closed by
following boundary conditions, which are algebraic relations to be solved at each pseudo-time step to
give the values of the unknowns qi, ho and hb:

qi =
Qi
Bc

(29)

qo =
2

3

(
0.657 + 0.084

ho − hw
hw

)√
2g (ho − hw)3/2 (30)

qb =
√
gh3b (31)



In this case, Qi is a given parameter of the problem. Equation (30) is the weir relation calibrated for
the weir at the end of the channel as given in Reference [5] (hw is the crest heigth). A more rigorous
relation would imply a 1D computation of water depths along the downstream reach of the channel but
this proved to be unnecessary in the present case (low friction and short reach) and Equation (30) is kept
here for clarity.

The suggested time-integration algorithm is a three-step first-order accurate Runge-Kutta scheme.
A Courant-Friedrichs-Lewy number is introduced in Equations (26-28) for stability reasons. It can
generally be set to unity, except when qo approaches zero.

9 Results

In Figure 6a, the ratio Qb/Qi is plotted against the initial Froude number F0, which can be obtained
thanks to qi and Equation (30). The simplified model shows good agreement with WOLF 2D simulations,
from which it derives: the absolute difference between results is less or equal to 5% (the corresponding
relative difference is less or equal to 15%). The consistency with the experimental data is less (absolute
error up to 15% and relative error up to 17%), which is to be put down to the inherent hypotheses of the
SWE according to References [2] and [3].

(a) (b)

Figure 6: Comparison of results given by the simplified model with experimental data and/or results
given by WOLF 2D: - a) Qb/Qi ratio as a function of the initial Froude number F0 for different breach
widths - b) χb, χbx and χby coefficients as functions of ξint

The validity of the model is linked to the contraction effect of the deviated flow at the breach (see
Section 4): when this effect is not reproduced by the model (i.e. qb ≤ qi), the corresponding solution
is not valid. Figure 6b compares χb, χbx and χby coefficients as defined in Section 6 with their values
given by the interpolation of WOLF 2D results. At low ξint (i.e. low Fm), these three coefficients are
underestimated by the present model, while they are overestimated for ξint > 0.4 − 0.5. The later
behaviour results in a reduced flow contraction effect, which reduces the application domain of the
simplified model.

Solid lines giving the results of the model in Figure 6a have been replaced by dotted lines for config-
urations with Fm > 0.5, i.e. when χb, χbx and χby coefficients are significantly overestimated. Figure 6a
also shows the domain where the application of the simplified model is not relevant because the hypoth-
esis of a critical section across the breach is not valid (hatched area). This domain has been computed
thanks to the simplified model, which means that its extend is slightly overestimated as the condition
Fm < 0.5 is not fulfilled in this zone. For configurations with Bb/Bc ≤ 1, the application of the present



model is possible for initial Froude numbers lower than 0.3. For lower Bb/Bc ratios, flows with higher
initial Froude numbers can be computed.

10 Conclusion

A simplified model, based on a macroscopic control volume, has been developed for the prediction of
the steady-state outflow through a dike breach. The absence of space discretisation has required the
definition of a proper shape for the control volume so as to take advantage of the main characteristics
of the flow, as disclosed by 2D numerical simulations, and of simplifications of the Shallow-Water
Equations on the critical section.

In view of its simplification, this model has been found to compare well with numerical simulations
and experimental data. Its application domain has also been investigated focusing on its main hypoth-
esis, i.e. a critical section crossing the breach, and appears to be large enough to cover many fluvial
conditions.

The scale model set-up has been well-suited for the study of the advective terms of the simplified
model. For real-life applications however, friction and bottom slope terms should be added in the system
of equations, as their effects would be more significant. Similarly, it is worth verifying the behaviour of
the simplified model in configurations with larger Bc/Bb and Bb/h ratios.
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