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ABSTRACT:

This paper studies the specific hygrothermal behavior of Lime-Hemp concretes through analysis of non-linear
coupled heat and moisture transfer using a research model. Three compositions were studied, varying the type of
binder. First Moisture Buffer Value determination tests are lead experimentally using the NORDTEST protocol.
These dynamic experiments, which reveal the moisture storage and exchange capacity together with latent heat
effects, are then modeled using a set of partial differential equations. The reduction of humidity buffering capacity
induced by hydraulic binder incorporation is properly evaluated and the hygrothermal parameters can be assessed by

inverse modeling.
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1. INTRODUCTION

Lime-Hemp Concretes (LHC) gained success in the last
decade in the context of sustainability achievement
objectives in the building sector. These hygroscopic
construction materials are generally made of a
lime-based binder and hemp particles mixed in different
proportions according to final usage [1] (Figure 1).
They are stated to offer a good regulation capacity of
the indoor humidity [2], improving comfort for
occupants [3]. The way to put this particular regulation
behavior into evidence is to evaluate the moisture
buffer capacity, i.e. the moisture exchange capacity
under a dynamic exposure to relative humidity (RH)
cycle. The relative humidity variations can be caused
either by temperature change of the ambient air or
through adding of moisture to it.
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Fig.1 X-Ray Tomography slice of a Lime-Hemp
bloc, a "wall-mix"

The NORDTEST project [4] has been one of the first
attempt to find a consensus for an experimental
protocol able to characterize adequately this buffer
capacity through the definition of a global parameter
called the Moisture Buffer Value (MBV). Beside the
direct humidity regulation that is evaluated by the MBYV,
the buffer performance of hygroscopic materials also
causes latent heat effects whose impact on energy
balance is still not well understood.

Along with the will to characterize porous hygroscopic
materials like LHC experimentally, the modeling of
their behavior has progressed substantially in the last
decades [5-8]. Indeed, Heat Air and Moisture (HAM)
models which deal with detailed hygrothermal analysis
of porous materials have gained a lot of accuracy
through the development of computer power and a
better knowledge of the involved phenomena. Till today,
many HAM computer software's were developed for
building applications and some commercialized [9-10].
Their main difference is to be found in the description
of the moisture flows that can have several levels of
complexity, ranging from diffusivity models using
moisture content as driving potential to conductivity
model using the actual thermodynamic driving potential
and separated liquid and vapor flows [11]. All these
models rely however on materials and boundary
conditions parameters, most of them being time
consuming to obtain.

The computation of temperature and moisture content
fields in building materials, from the known parameters
and boundary conditions forms a direct HAM problem
[12]. There exist however several methods that allow



parameters estimation from temperature and moisture
content fields measurements, which constitutes an
inverse HAM problem. Among these inverse modeling
methods, the Bayesian approaches are becoming more
and more popular in environmental models. In
Bayesian optimization, parameters are not unknowns
with fixed values but stochastic variables whose
distributions have to be specified. The distribution
given before estimation is called "prior" and the
distribution given after integration of the experimental
data is called "posterior". Historically, the emergence of
the Markov Chain Monte Carlo (MCMC) simulations
with the Random Walk Metropolis algorithm as first
widely used approach [13] have greatly simplified the
estimation of posterior distribution of parameters.
Recently, [14] developed  the Differential
Evolution-Markov Chain (DE-MC) method, able to run
simultaneously several Markov chains, for global
parameter space exploration, and using a so called
"genetic” algorithm for parameter estimation evolution.
The Differential Evolution Adaptive Metropolis
(DREAM) algorithm [15-16] is an evolution of the
DE-MC, able to automatically tunes the scale and
orientation of the proposal distribution during the
evolution of posterior distribution.

The goal of this paper is (1) to measure the moisture
buffer value of samples with different binder
compositions and more particularly assess the impact of
hydraulic binder dosage on moisture exchange capacity
and latent heat effects, (2) Confront a HAM model to
the data acquired experimentally through an inverse
modeling approach using DREAM algorithm.

2. THE MOISTURE BUFFER VALUE

The need for a standardized parameter to characterize
the moisture buffering capacity of materials led to the
definition of the Moisture Buffer Value (MBV) during
the NORDTEST project [4] together with the proposal
of a dynamic experimental protocol for materials
classification. The practical MBV is defined as :“the
amount of water that is transported in or out of a
material per open surface area, during a certain period
of time, when it is subjected to variations in relative
humidity of the surrounding air” [4]. Concretely, the
samples are subjected to cyclic step changes in relative
humidity (RH) at a constant temperature of 23 °C and
are weighted regularly. The cycle is composed by
moisture uptake during 8 hours at 75% RH followed by
moisture release 16 hours at 33% RH and is repeated
until constant mass variation between 2 consecutive

cycles is reached. The practical MBV in kg/
(m? - %RH) is then given by Eq.1.
A
MBY, i )

practical = A-ARH

where Am is the mass variation during the 8 hours
absorption phase or the 16 hours desorption phase in
one complete cycle, A[m?] is the total exchange
surface and ARH is the difference between the high

and low relative humidity of the cycle. This
experimental value is a direct measurement of the
amount of moisture transported to and from the
material for the given exposure cycle.

A theoretical value of the MBYV, called the ideal MBV,
can be computed analytically using semi-infinite solid
theory and Fourier series without transfer resistance at
exchange surface [4] :

MBVgoq1 75-33 = 0.00568 * Pggr * by - V24 - 3600 (2

with the saturation vapour pressure equal to 3145 Pa
at 23 °C. As one can see, this value is proportional to
the moisture effusivity b, [kg/(m?-Pa-s®%)], a
parameter based on standard steady-state hygric
material parameters :

a0
8y pr % 3
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where 6, [kg/Pa.m.s] is the vapor permeability of the
material. The slope of the moisture storage curve,
d0/0¢, is generally called the moisture capacity ¢,
expressed here in [m3/m3]. There is always a
disagreement between measured and analytically
calculated MBV,;,,; due to the dynamic nature of the
experimental protocol, film resistance on specimen
exchange surface and deviations from the typical step
transitions.

For LHC, the MBV;4.,; Can be evaluated using hygric
parameters measured by A. Evrard [1]. The result is
given in table 1 for a sample made of preformulated
lime (Tradical PF70) and hemp particles mixed in
"wall-mix" proportions.

Table 1 Hygric parameters for a LHC wall-mix
(Evrard, 2010)

61} fSo—SO%RH bm MBVL'deal
kg 37,3 kg g/ (m?
P—a.m.s m*/m /(mz.so's.pa) - %RH)
3.77E-11 0.040 6.92E-7 3.61

3. TEST PROGRAMS

3.1 Samples

The MBV determination is led on 3 different blocs with
typical mass proportions of constituents corresponding
to a wall-mix. The binder of the first sample is made of
35% Portland cement and 65% calcic lime, 65%
Portland cement and 35% calcic lime for the second,
and 100% quick setting cement for the last one. The
hemp is produced in France and commercialized under
the name Chanvribat. The mix proportions used for the
3 samples are summarized in Table 2, expressed in
terms of mass of the different components to produce
1m? of final material.



Table 2 Samples and mix proportions (for 1m3)
Water C?IIC'C Cement QS He_mp Total
lime Cement | shivs
unit kg kg kg kg kg kg
LH 302.4 | 163.8 | 88.2 0 120 | 674.4
CH 3024 | 88.2 | 163.8 0 120 | 674.4
QSH | 296 0 0 216 120 | 632

RH

23°C

t

The LHC sample blocs have all three an unique
moisture exchange surface of approximately 0.0225m?
and a thickness of 0.150m, which is stated sufficient
given the theoretical moisture penetration depth during
the MBV experiment. Lateral and back faces are
isolated from water exchange with polyethylene film
and tape. Before the test, the samples are maintained in
a constant relative humidity chamber at 50% RH for 4
days. Table 3 gives the volume of the samples, their
true exchange surface area, their dry density and the
water content before the test for the 3 tested samples.

Table 3 Properties of the tested samples

Exchange . Water
Vggﬁ:;?em surface Dry density content
area before test
unit m3 m? kg/m? m3/m3
LH 3.51E-3 0.02265 383.5 31.9
CH 3.63E-3 0.0234 4229 40.2
QSH| 3.53E-3 0.02295 396.9 39.1

3.2 Test platform

A HPP749 (Memmert) climatic chamber was used to
carry out the humidity cycles in an isothermal closed
environment. As the average air velocity in the chamber
is necessary to estimate the vapour diffusion resistance
factor at the surface of the material, it was measured in
the horizontal direction with an hot-wire anemometer
8465-300 (TSI). It showed an average value of
0.135 £ 0.03m/s.

Three SHT75 (Sensirion) sensors are implemented, 5,
10 and 15 c¢m above the sample in order to monitor the
evolution of humidity and temperature in the chamber.
Finally, a thermocouple is placed on the surface of the

material with a small thermal insulation cap on top of it.

This sensor is dedicated to highlight latent heat effects.
The insulation cap is stated necessary to monitor the
actual surface temperature, avoiding the influence of
the surrounding air. Once instrumented, the sample is
placed inside the chamber on a M-Power (Sartorius)
laboratory scale with a 0-3100 g range and 0.01
g resolution. This scale is monitored every 5 minutes
trough its RS232 output via a LabVIEW acquisition
program. The experimental set-up is shown on Figure
2.
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Fig.2 Experimental set-up

Figure 3 shows the measured ambient relative humidity
and temperature in the chamber during a typical
experiment. The indicated values for humidity and
temperature are the means of the measurements of the
three Sensirion sensors. Number are assigned to each of
the 24h cycles to facilitate the subsequent analyzes. For
each cycle, the climatic chamber is performing a
33-70% RH transition in 60 minutes and 75-50% RH in
150 minutes. The ends of the two transitions are really
slow. The humidity cycle needs further improvement to
get closer to a step solicitation. The actual humidity
values are also higher than excepted, with an average of
40% during the low humidity phase (16 hrs) and 75.3%
during the high humidity phase (8 hrs). This is partly
due to poor calibration of the humidity sensors
regulating the chamber. It is then necessary to take into
account these conditions during the computer
simulation and the MBV determination. Therefore the
choice has been made to use the actual RH and
temperature values as input for boundary conditions
during the modelling phase instead of ideal step
transitions for humidity and constant value for
temperature.
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Fig.3 Ambient conditions in the chamber



4. THE HYGROTHERMAL MODEL

Modeling the hygrothermal behavior of the LHC
sample during the MBV determination experiment is
considered here a tool for parameter estimation through
an inverse modeling approach. The HAM model is
developed in COMSOL Multiphysics and interoperable
with the inverse modeling tool that is encoded in
Matlab and presented in the next section.

The following hypothesis are taken for the
mathematical description of heat and mass transfer :

(1) The material is non-deformable and isotropic; (2)
the fluid phases do not chemically react with the solid
matrix; (3) The dry air pressure is constant (no air
advection) and the total gas pressure gradients are
considered negligible; (4) no liquid transport is
considered and vapor pressure is the only driving
potential for moisture movement; (5) there is a local
thermodynamic equilibrium between the different
phases; (6) There is no thermal effects due to friction or
compression; (7) thermal diffusion (Soret effect) is

neglected; (8) no hysteresis phenomena is accounted for.

The two descriptive variables chosen for this problem
are temperature T [K] and relative humidity ¢ [—]
and it will be solved in 1D.

Even if the experiment is conducted in isothermal
conditions, the heat balance equation is necessary to
account for latent heat effects in the material. No source
terms are necessary is this study case and water is
consider as pure water with liquid density p, =
1000 kg/m* and latent heat of vaporization L=
2257 k] [kg.

The mass and energy conservation equations are in
consequence encoded as follow :

dp 0% Psar) 4
6T€ pfla Ea; * a(x2 )
I _9 (3% L5 08P Psat) ©)
pcat_ax( x T T ox L)
where,
A @ Thermal conductivity [W/(mK)] considered
constant

& : The moisture capacity [m3/m3] considered
constant for the given RH interval.

c . Material heat capacity [//kgK] considered
constant

Psar . Vapor saturation
temperature-dependent

pressure [Pa] ,

T=Ts
P=¢s § v
N A |
T=T= 2 1
p=p= [ T=T0 for t=0 |
L ¢=¢0 fort=0 !
L4 il
LA *
/ x=0 x=L

Boundary layer
Z a

Fig.4 1D representation of sample bloc with
boundary layer

Referring to Figure 4, we can write the following
boundary and initial conditions for moisture transport :

S ((poopsat,oo - (pspsat,s)

(g% = - x=0 (@
% _, x=1 @)
0x

@(x,0) = @q 0<x<lL (8)
where,

v : The moisture flux density [kg/m? s]

®or Psato - Ambient relative humidity and
saturation pressure

®s,Dsars - Relative humidity and saturaition
pressure at the exchange surface

Zs . Vapor diffusion resistance factor [Pa/(kg -
m? - s)]

The vapour diffusion resistance factor characterizes the
moisture transfer resistance that exists on the material
surface and slows down the moisture exchange. Its
value is generally fixed to 5E7 Pa/(kg-m?-s) which
is the usually accepted value for environments with an
ambient air velocity around 0.1m/s [Rode et al.,
2005]. It's similar to a value of Z, = 360 s/m when
the surface flux density is written in terms of absolute
humidity :

(1700 - 175)

(gy) %= 7oy (9)

To calculate the accumulated moisture, Eq. 10 is used.

t

Gy(t) = f gudt (10)

0

The resulting relative weight of the sample is given by :
m(t) —my = G,(t) * A (12)

where,
m(t) is the weight of the sample at time ¢ [kg]
my is the initial weight of the sample [kg]
A is the exchange surface area of the sample
[m?]



For heat transport, the boundary and initial conditions
are given by :

@ X=a (To—-T)+pB-L-

((poopsat,oo - (Pspsat,s)/Zs x=0 (12)
(@ X=a (To—T) x=L  (13)
T(x,0) =To 0<x<L (14)

where,
G : heat flux density [W/m?]
T, :Ambient temperature
T, : Temperature at exchange surface
T, : Temperature at the bottom of the sample
a : Convective heat transfer coefficient
[W/m?K]

The convective heat transfer coefficient fixed to
1,44E8/Z, according to [4].

The input data T, and ¢, for ambient air variations
used as boundary solicitation in the model are the
measured RH and temperature from the experimental
cycles, which as mentioned before are quite different
from the ideal step cycle (Figure 3).

5. INVERSE MODELLING

The recently developed DREAM algorithm [16] will be
used in order to get an estimation of different
parameters of the HAM model, so that the simulation is
as close as possible to the experimental data sets. The
surface temperature, that was monitored during MBV
determination, is governed mainly by latent heat effects.
The thermal conductivity and capacity were proven to
be impossible to estimate from this temperature data set.
In consequence, we will use the values measured by
Evrard [1] for these 2 thermal parameters during the
simulation. Furthermore, the optimization will be led
using only the relative weight variation data set. The
optimized parameters are thus all linked to moisture
transfer :

e Hygric parameters : the vapor permeability of
the sample &, and its hygric capacity &

e Boundary and initial conditions : the vapor
diffusion resistance factor at exchange surface
Zs and the initial equilibrium RH in the
sample ¢,

Table 4 gives the prior distribution of these parameters,
consisting of uniform distribution limited by values
defined as "realistic" knowing previous studies on LHC
and experimental conditions. The vapor permeability of
the sample is expressed here in terms of vapor

resistance factor ,u=§—” [-] where §, is the vapor

permeability of dry air.

DREAM algorithm will output the posterior
distribution of parameters, i.e. the probability
distribution of tested parameters values during the
evolution of the optimization. On this basis, it's possible
to get the final estimation for each parameter by

computing the mean value of last elements of all
Markov chains.

Table 4 Prior uniform distribution of parameters

Z u $ ®o
unit ?5/(kg -m? _ m?/m? _
[1E7-1ES8] [1-10] [0.01-0.1] [0.5-0.65]
6. RESULTS

6.1 Experimental phase

The relative weight variation of the samples during the
MBV characterization and for the 3 first complete
humidity cycles are given on Figure 5. The surface
temperature of the samples during the same cycles is
shown on Figure 6. At first glance, it seems that the
different mixes behave in a similar way in terms of
moisture transfers.
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Fig.5 Relative weight evolution of the samples
during 3 full RH cycles
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Fig.6 Surface temperature of the samples during 3
full RH cycles

Table 4 shows the comparison between the different
samples in terms of MBVraciical (EQ. 1). The results are
expressed for the three cycles on Fig. 3, with a value for
absorption phase, another for desorption phase and the
mean on the cycle. The practical buffer value measured
for the LH sample, with a global mean on 3 cycles of
3.06 g/(m?>%RH) , is close to the ideal MBV
calculated from [1]. In fact the samples used in Evrard
[1] and the LH sample are very similar, since the
preformulated lime Tradical PF70 is made of 75%
calcic lime, 15% ordinary Portland cement and 10%
pouzzolanic additives. The surface resistance effects
can explain why the ideal MBV is higher than the



measured MBV. The CH sample shows a practical
MBV of 271g/(m*%RH) , a reduction of
approximately 11% in comparison to LH sample.
Finally, the measured mean practical MBV of the QSH

sample is 3.20 g/(m? %RH), 5% more the LH sample.

However, referring to Table 2, this bloc has
proportionally more hemp that the two others. This
could explain why the MBV is lightly greater.

Table 4 MBV pacical [g/m? - %RH] results for the experimental data sets

Cycle 1 Cycle 2 Cycle 3
ARH

Abs. Des. Mean Abs. Des. Mean Abs. Des. Mean

LH ~35.3% 291 321 3.06 2.86 3.40 8.3 2.84 3.13 2.98

CH ~35.3% 243 2.95 2.69 2.40 3.04 2.72 2.35 3.11 2.73

QSH ~35.3% 2.96 3.60 3.28 2.83 3.47 3.15 2.94 3.42 3.18
6.2 Modeling phase surface resistance factor have really compact
The Figure 7 presents the posterior probability distribution function and it seems they can be evaluated

distribution function of the 4 optimized parameters for
4000 evaluations of the COMSOL model with 10
Markov chains. Because of similarity between the
tested samples we will focus only on the LH
experiment data set.
It's immediately striking that vapor resistance factor of
the sample is strongly correlated to its moisture
capacity. It can be understood clearly by looking at Eq.
4, where the two constant parameters can be combined
in one unique value, the moisture diffusivity. As a result,
the estimated values for these 2 parameters are arbitrary
and only the ratio binding them can be evaluated
accurately. The correlation between the moisture
capacity and the vapor resistance factor of the sample
can be evaluation by linear regression. The relation
obtained is :

& =0.0093-u+0.0016 (15)
A further step of the research would be to measure
experimentally the two parameters on the 33-75%RH
range in order to validate this relation.
On the other hand, the initial RH in the sample and the

precisely.

Table 5 gives the mean estimates for all 4 parameters,
i.e. the mean of the 20 last estimated parameter values
of the 10 Markov chains.

Table 5 Mean best estimate of optimized

parameters
Z u $ ®o
unit .P;u)/(kg -m? _ m3 jm? _
LH 4.43E7 3.37 0.033 0.5964

The comparison between measurement data and the
model with the mean best estimates of parameters is
shown on Figure 8. The HAM seems able to describe
adequately the moisture behavior of the LH bloc during
a MBV experiment. Figure 9 shows the surface
temperature predicted by the model with the optimized
parameters for hygric transfers and approximated
constant values for heat tranfer parameters (A=
0.1W/(mK), ¢ =1560]/(kgK) and a = 1,44E8/Z, ).
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Fig.7 Marginal distributions and two-dimensional correlation plots of posterior parameter samples
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7. CONCLUSIONS

(1)

The hydraulic binder dosage (Portland cement)
seems to have only little influence on hygric
properties of LHC in the range 33-75%RH. In fact,
the ratio binder/hemp seems to have a larger
impact, as the sample with little more hemp in
mass proportion (QSH) seems to have a relatively
better MBVqcticar- Below 90%RH the surface
adsorption of water plays the main role in water
storage and the dosage in cement seems to affect
only slightly the adsorption potential of LHC.
Only the use of a highly hygroscopic binder with
high specific area, as clay, could enhance
significantly the MBV of such mixes. Concerning
water transport, the vapor permeability is
influenced mainly by macro-porosity that is also
little influenced by the binder itself.

Regarding the thermal properties of the tested
bloc, the MBV protocol is unable to give
information neither about thermal conductivity
nor about thermal capacity. Nevertheless, the
proposed protocol shows accurately latent heat
effects produced by moisture transfers. Again, the
difference between the different binders is not
significant here, as they behave all three in a
similar way in terms of moisture transfers. It's
necessary to find a way of evaluating the impact
of such latent effect on the thermal efficiency of
such hygroscopic materials

The next step in the research on binder influence

O]

on hygric properties would be to explore other
relative humidity range to activate other
mechanisms  (capillary  condensation, liquid
transport etc.) that could differentiate the different
mixes.

The DREAM algorithm showed its efficiency in
predicting parameters values for an inverse HAM
approach. The model itself proved to be accurate
in the MBV cycles prediction and its flexible
nature makes it applicable to a large set of
building physics problems. As it was shown, the
moisture storage and transport parameters are
correlated when considered constant but could be
replaced by more complex function of the
moisture content. Thermal cycles could be also
modeled in order to estimate heat transfer
parameters like thermal conductivity or capacity.
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