Reliability: Hypothesis testing

Maarten Arnst and Marco Lucio Cerquaglia

December 6, 2017
Statistical inference
Stochastic model (random variable, stochastic process, ...)

Theory

Probabilistic characterization (PDF, quantiles, ...) of "test statistics" (sample mean, sample variance, ...).

Hypothesis tests: can we go in the opposite direction? Can we use "test statistics" to infer conclusions about the stochastic model?
Suppose that we observe ν statistically independent trajectories up to time t of a failure counting process. Then, the setting is as

- **data:** the numbers of failures in each interval $[0, t]$ and the time instants at which the failures occurred,

- **candidate stochastic model:** Poisson process.

In this case, the **goodness of fit of the Poisson distribution** can be tested:

- **Null hypothesis:** Poisson distribution is suitable,

- **Alternative hypothesis:** Poisson distribution is not suitable.

The **chi-squared test** is a particular goodness-of-fit test in which under the null hypothesis, the test statistic is a sample of a chi-squared distribution.
Chi-squared hypothesis test:

- **The chi-squared test statistic** measures the goodness of fit in terms of the sum of the squares of the differences between the observed and calculated outcome frequencies, divided by the calculated outcome frequencies:

\[
d = \sum_{i=1}^{k} \frac{(f_i - e_i)^2}{e_i}
\]

with \(f_i\) : observed frequency for i-th value/bin, \(e_i\) : calculated frequency for i-th value/bin.

- Under the null hypothesis, the chi-squared test statistic is a sample from, approximately, the **chi-squared distribution** with \(k - 2\) degrees of freedom.

- **Accept** the null hypothesis if the test statistic lies within the acceptance region and **reject** the null hypothesis otherwise.
Let us consider an example involving failures of 66 machines over one day:

- 20 with zero failure, 23 with 1 failure, 15 with 2 failures, 6 with 3 failures, and 2 with 4 failures.

- Parameter estimation:

\[
\hat{m} = 0 \times \frac{20}{66} + 1 \times \frac{23}{66} + 2 \times \frac{15}{66} + 3 \times \frac{6}{66} + 4 \times \frac{2}{66} = 1.197 \text{ failure/day}.
\]

- Chi-squared test statistic:

<table>
<thead>
<tr>
<th>Number of failures</th>
<th>(f_i)</th>
<th>(e_i)</th>
<th>(\frac{(f_i - e_i)^2}{e_i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>19.94</td>
<td>1.18e^{-4}</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>23.86</td>
<td>0.0310</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>14.29</td>
<td>0.0353</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>5.69</td>
<td>0.0169</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1.70</td>
<td>0.0528</td>
</tr>
<tr>
<td>>4</td>
<td>0</td>
<td>0.52</td>
<td>0.52</td>
</tr>
</tbody>
</table>

\[
d = 0.65
\]

- Since \(d = 0.65 < c^{-1}_{\chi^2} (0.95; 4) = 9.48 \), we accept null hypothesis at \(\gamma = 95\% \) significance.
Suppose that we observe a trajectory up to time t of a Poisson process. Then, the setting is as:

- **data:** n, the number of failures in the interval $[0, t]$, and t_1, \ldots, t_n, the time instants at which the failures occurred,

- **candidate stochastic model:** Poisson process.

In this case, the homogeneity of the Poisson process can be tested:

- **Null hypothesis:** the Poisson process is homogeneous.

- **Alternative hypothesis:** the rate of occurrence of failures decreases (increases).

The **logarithm test** is a particular **trend test** in which under the null hypothesis, the test statistic is a sample of a chi-squared distribution.
Hypothesis testing

- Logarithm hypothesis test:
 - The **logarithm test statistic** measures homogeneity by
 \[
 \nu = -2 \sum_{i=1}^{n} \log \frac{t_i}{t}.
 \]
 - Under the null hypothesis, the logarithm test statistic is a sample from the **chi-squared distribution** with \(n \) degrees of freedom.

Indeed, under the null hypothesis, the time instants at which the failure occurred are statistically independent and uniformly distributed in the interval \([0, t]\). It can be shown that the sign-reversed double of the sum of the logarithms of \(n \) statistically independent uniform random variables with values in \([0, 1]\) is a chi-squared random variable with \(n \) degrees of freedom.

- **Accept** the null hypothesis if the test statistic lies in the acceptance region \([0, c_{\chi^2}(\gamma, n)]\)
 \[
 \left(\left[c_{\chi^2}(1 - \gamma, n), +\infty\right]\right)
 \]
 and **reject** otherwise.
References

Suggested reading material

Additional references also consulted to prepare this lecture

