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ABSTRACT

Context. The unprecedented photometric quality reached by the CoRoT and Kepler space missions opens new prospects for studying
stellar rotation. Information about the rotation rate is contained on the one hand in the low frequency part of the power spectra, where
signatures of nonuniform surface rotation are expected, and on the other hand in the frequency splittings induced by the internal
rotation rate.
Aims. We wish to figure out whether the differences between the seismic rotation period determined by a mean rotational splitting,
and the rotation period measured from the low frequency peak in the Fourier spectrum – observed for some of CoRoT’s targets – can
provide constraints on the rotation profile.
Methods. For uniform moderate rotators,perturbative corrections to second and third order in terms of the rotation angular velocity Ω,
must not be neglected. These effects, in particular, may mimic differential rotation. We apply our perturbation method to evaluate
mode frequencies that are accurate up to Ω3 for uniform rotation. The effects of latitudinal dependence are calculated in the linear
approximation. Numerical results were obtained for selected models of the upper and lower parts of the main sequence. For the
latitudinal dependence, we adopt two types of rotation profile: one with rotation uniform in depth, and one with a solar-like tachocline.
Results. Deviations from the first-order splitting for a uniformly rotating star can be due to both cubic-order effects of rotation and
latitudinal differential rotation. In models of β Cephei pulsators, which represent upper main sequence stars, third order effects become
comparable to that of a horizontal shear similar to the solar one at rotation rates well below the breakup values. These nonlinear
effects are strongly mode-dependent. We show how a clean signature of the latitudinal shear may be extracted. Our models of two
CoRoT target HD 181906 and HD 181420, which are solar-like pulsators, represent lower main sequence objects. These are slow
rotators and nonlinear effects in splittings are accordingly small. We use data for one low frequency peak and one splitting of a dipolar
mode to constrain the rotation profile in HD 181420 and HD 181906.
Conclusions. The relative influences of the two effects strongly depend on the type of oscillation modes excited in the star and the
magnitude of the rotation rate. Given the mean rotational splitting and the frequency of a spot signature, it is possible to distinguish
between the two hypotheses. In the case of differential rotation in latitude, we propose a method to determine the type of rotation
profile and a range of values for the shear.
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1. Introduction

The CoRoT and Kepler space-borne missions with their unin-
terrupted observations spanning a long time interval promise a
wealth of data suitable for studying stellar rotation. Information
about internal rotation is contained in the characteristic spac-
ings (known as the rotational splittings), which appear in the
power spectra of light curves. Mean values of the rotational
splitting have already been determined for a number of stars,
namely HD 181420 (Barban et al. 2009), HD 49933 (Benomar
et al. 2009), V1449 Aql (Belkacem et al. 2009), and HD 181906
(García et al. 2009), observed by CoRoT. These values yield
some information about the average rotation rates sampled by
modes detected in these objects. Since all the data concern
p-modes, the mean values mostly reflect the rotation rate in
the outer layers. To probe deeper layers, we need splittings
for gravity modes. In three Fourier spectra analyzed so far
(HD 181420, HD 181906 and V1449 Aql), low frequency peaks

were found but were attributed to the effects of spots on the rotat-
ing stellar surfaces (for a complete review on spot modeling, see
Collier Cameron 2002; Mosser et al. 2009). Rotation periods de-
duced this way were found to be different from those determined
from the splittings. This is not surprising. The spots only give ac-
cess to the surface rotation rate at the latitude of their location,
whereas the splittings yield a mode-dependent mean value of the
interior profile.

The linear relation between the splittings and the rotation
rate,Ω, follows from the first-order perturbative treatment of the
Coriolis acceleration (Ledoux 1945). At moderate rotation rates,
the perturbative formalism may still be applicable but we have
to go beyond the first order (Reese et al. 2006; Ouazzani et al.
2009; Suárez et al. 2010; Burke et al. 2011). Saio (1981), Gough
& Thompson (1990), and Dziembowski & Goode (1992, here-
after DG92) derived oscillation frequencies including second or-
der corrections inΩ. Such corrections arise from the higher order
effects of the Coriolis acceleration and the lowest order effects
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of the centrifugal acceleration, which causes a distortion of the
stellar structure. The oscillation frequencies no longer depend
on Ω in a linear way but the linear rotational splittings may still
be recovered from the frequency differences between prograde
and retrograde modes of the same degree and order. This simple
property is lost when rotation couples modes with frequencies
close in value. The formalism must then be modified (DG92,
Soufi et al. 1998) and the recovery is more difficult. The cubic-
order effects in Ω even complicate this recovery. The resulting
difference between prograde and retrograde modes becomes de-
pendent on the mode’s azimuthal order, m, in such a way that it
may be misinterpreted as the effects of a latitudinal dependence
of the rotation rate.

The question arises of whether in the presence of significant
nonlinear effects it is still possible to extract the values of lin-
ear splittings, which provide integral constraints on differential
rotation in the interior. The next question that we ask in this pa-
per is what may be learnt by combining these constraints with
data on low frequency peaks that are attributed to spots and
yield information on the surface rotation rate. We expect that the
answers depend on the type of pulsator, and the characteristics
of its observed modes. Here, we specifically consider two very
different types of main sequence objects, β Cephei, and solar-
like pulsators. In the first case, we study a massive star whose
low order p- and g-modes are unstable, and in the second case
two low-mass stars whose high order p-modes are damped but
stochastically driven.

The paper is organized as follows. Section 2 gives the ba-
sic theoretical framework for this study. In Sect. 3, we focus
on the effects of cubic order and near degeneracy contributions
to pulsation frequencies and present numerical results for a se-
lected model of a β Cephei star. Explicit expressions for the ro-
tational splitting in the case of latitude dependent rotation pro-
file are given in Sect. 4. Departures from a linear dependence
on m are then compared with those connected to the nonlinear
effects inΩ. Prospects for disentangling these two effects are dis-
cussed in Sect. 5, using the case of a β Cephei star as an example.
Section 6 is devoted to two CoRoT targets, the solar-type stars
HD 181906 and HD 181420, for which we combine the splitting
with the low frequency peak and make some inference about the
rotation profiles. Section 7 is dedicated to our conclusions.

2. Perturbational treatment of uniform rotation:
effects on pulsation frequencies

In the presence of rotation, both centrifugal and Coriolis acceler-
ations come into play. The centrifugal force affects the structure
of the star and distorts its shape. The resonant cavity changes and
with it the oscillation frequencies. The Coriolis force enters the
equation of motion and affects the motion of the waves, hence
the frequencies of normal modes. As rotation breaks the spher-
ical symmetry, it lifts the frequency degeneracy, introducing a
dependence on the azimuthal order, m. Without rotation, mode
frequencies depend only on the radial order, n, and the angular
degree, �, and are 2� + 1-fold degenerated.

To first order in the rotation rate, Ω, the normal mode fre-
quencies in the inertial frame are given by ωn,�,m = ωn,�,0 +
mΩ βn,�. The explicit form of the last coefficient is provided in
Eq. (B.5). Here, we only note that Cn,� = 1− βn,� is known as the
Ledoux constant (Ledoux 1945).

Characteristic spacings appear in the spectrum, such as the
rotational splitting that we define here as

sn,�,m = ωn,�,m − ωn,�,−m / 2m. (1)

This provides the basis for determining the rotation rate. From
now on, we drop the subscripts (n, �,m) for ω and the splitting,
unless there is an ambiguity. We also use σ = ω/Ωk (where
Ωk =

√
GM/R3 is the break-up frequency) instead of ω.

2.1. Equilibrium configuration

We consider here the case of uniform rotation. The stationary
equation of motion in an inertial frame of reference is

(u0 · ∇)u0 = −∇P
ρ
− ∇φ = F, (2)

where in the left hand side u0 = Ω ∧ r = Ω0 r sin θ eφ in the
spherical basis is the velocity field due to rotation at the angular
velocity Ω0, θ being the colatitude (see e.g. Unno et al. 1989)
and P, ρ, and φ are the pressure, density, and gravitational po-
tential, respectively. For a rotating star, the left hand side corre-
sponds to the centrifugal acceleration F = −Ω × (Ω × r), whose
effect on the equilibrium structure is twofold, on the one hand,
producing a spherically symmetric perturbation,which mainly
modifies the gravity, and on the other, θ-dependent perturbations,
which are responsible for oblateness. Hence, all the equilibrium
quantities, X, are well-approximated by

X(r, θ) � X̃(r) + X22(r)P2(cos θ). (3)

The spherically symmetric part is then obtained by (see
for example Kippenhahn & Weigert 1994)

d p̃
dr
= −ρ̃ geff, where geff =

GMr

r2
− 2

3
rΩ2.

The non-spherically symmetric part is obtained by (see DG92)

p22 = −ρ̃ r2Ω2

(
φ22

r2
Ω2 +

1
3

)
, (4)

ρ22 =
ρ̃ rΩ2

g̃

(
d ln ρ̃
d ln r

) (
φ22

r2
Ω2 +

1
3

)
, (5)

where

1
r2

d
dr

(
r2 dφ22

dr

)
− 6

r2
φ22 = 4 πG ρ22. (6)

The boundary conditions can be found in Soufi et al. (1998,
hereafter S98).

2.2. Oscillation frequencies up to cubic order in Ω

Using expansions of the type given in Eq. (3) for the oscillation
quantities, i.e., p′ = p̃′ + p′2, the oscillation system is then ex-
panded up to the cubic order. According to S98 (see also Karami
2008), the oscillation equation then becomes

Lξ = (A + ε B) ξ + ε2 (D + ε C) ξ + O(ε4) = 0, (7)

ε being equal to Ω/Ωk, where Ωk =
√

GM/R3 is the break-
up frequency. The operator A represents the basic linear oscil-
lation operator including the spherically symmetric perturbation
caused by rotation (through geff). The operators B and D, re-
spectively, contain the effects of the Coriolis force and the non-
spherically symmetric distortion. The operator C shows that a
coupling between the non-spherically symmetric distortion and
the Coriolis force exists.
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As in S98 and Karami (2008), parts of the Coriolis and
centrifugal distortion effects are included in the pseudo-zeroth-
order eigenvalue system. In this way, we are able to solve the
eigenvalue problem up to cubic order without having to solve
the successive equations for the eigenfunctions at each order.
The solution yields eigenfrequencies σ0, which include parts of
the frequency shifts induced by rotation. To single out the vari-
ous contributions and emphasize the m-dependence, we write σ0
in the form

σ0,m = σ
(0)
0 + σ

(0)
2 + σ1,m + σ

eigen
2,m + σ

eigen
3,m , (8)

where σ(0)
0 is the classical zeroth order frequency ignoring all ef-

fects of rotation, σ(0)
2 is the correction resulting from the spher-

ically symmetric part of the centrifugal distortion, and the next
three terms give the contributions of consecutive orders in Ω re-
sulting from the Coriolis acceleration. The linear term, σ1,m =
mΩ βΩk, is complete. The higher order terms only include the
parts resulting from the poloidal component of ξ. The remain-
ing contributions to frequency shifts to O(Ω3) are calculated as
integrals involving the eigenvectors ξ0 (see S98). To this accu-
racy, the complete expression for eigenfrequencies in uniformly
rotating star is given by

σm = σ0,m + σc,m (9)

with σc,m = σ
T
2,m + σ

D
2,m + σ

T
3,m + σ

D
3,m + σ

C
3,m, (10)

where the exponent T denotes the contributions from the
Coriolis force acting on the toroidal component of ξ, the expo-
nent D those arising from the non-spherically symmetric distor-
tion, and C those resulting from the coupling of the two effects.

2.3. Near degeneracy

The standard perturbation approach is invalid if rotation couples
modes with close frequencies. The treatment of these cases re-
quires modification, which in the context of stellar pulsations
was first used by Chandrasekhar & Lebovitz (1962) and devel-
oped later by DG92. In the case of latitude-independent rotation
profiles, only modes with the same m and �s of the same par-
ity are coupled. In the present work, we study the coupling of
two resonant modes denoted k j for (n j, � j,m), j = 1, 2 with fre-
quencies σ1 ≥ σ2. For the range of stellar models we are inter-
ested in, our calculations reveal that near degeneracy occurs for
quite a large number of modes.

Near degeneracy is taken into account by searching for
solutions to Eq. (7) in the form

ξ =
∑

k j

Ak j ξ0,kj + ξc j = 1, 2

with ξc =
∑
k�k j

αk ξ0,k k = 1,N,

where the eigenfunction correction ξc is composed of all non-
resonant modes. The standard procedure leads to a linear system
of equations for Ak j and the following condition for a non-zero
solution

(σk1 − σdeg
m ) (σk2 − σdeg

m ) − H2
m = 0, (11)

where the frequencies σk1 and σk2 are given by Eq. (9). The
coupling term Hm corresponds to integrals containing second
and third order contributions (see S98 for more details). The

Table 1. Stellar parameters of the ZAMS model (Sects. 2 and 3).

M = 8.5 M� R = 3.96 R�
L = 13 × 103 L� X0 = 0.7
Pc = 8.8 × 103 dyn cm−2 ρc = 3.6 × 10−9 g cm−3

σrot = 15%Ωk vrot = 95 km s−1

solutions of Eq. (11), denoted by σdeg, provide the desired
eigenfrequencies

σ
deg
m = σ̄m ±

√
Δ2

m + H2
m

where σ̄m =
σk1 + σk2

2
and Δm =

σk1 − σk2

2
, (12)

where the sign +(resp.-) corresponds to mode k1 (resp. k2). Note
that if |Hm| 	 |Δm|, the effects of coupling are small and mode
frequencies are approximately described by Eq. (9).

3. Relative magnitude of the different contributions
for uniform rotators

As an example, we adopt a stellar model with a simple equilib-
rium structure for which uniform rotation in depth is assumed.
All the results presented in this section were performed for an
8.5 M� ZAMS stellar model described in Table 1 rotating at
Ω � 15%Ωk (vΩ = RΩ = 95 km s−1), which is representative
of this type of star (Stankov & Handler 2005).

Stellar models and adiabatic oscillation frequencies are com-
puted with the evolution code CESAM2k (Morel 1997; Morel
& Lebreton 2008) and the WarM (Warsaw Meudon) oscilla-
tion code, respectively (see S98). All numerical results presented
here and in the rest of this paper concern dipolar (� = 1) modes.

3.1. Frequency contributions up to cubic order

Here we quantify the implicit contributions (σeigen
2,m and σeigen

3,m
from Eq. (8)), and compare them with the corrective terms of the
same orders given in Eq. (10). To extract these implicit contribu-
tions from the pseudo-zeroth-order eigenfrequencies, we make
use of their symmetry properties in m. Thus, we get

σ
eigen
2,m =

(σ0,m + σ0,−m)
2

− σ(0)
0 , (13)

and

σ
eigen
3,m =

(σ0,m − σ0,−m)
2

− m
Ω

Ωk
β. (14)

Figure 1 shows all the contributions of different orders to the
rotational frequency corrections for g-modes (g14 to g1) and
p-modes (p1 to p16). We note the significantly different pattern
for p- and g-modes. In the latter case, the second order correction
due to the Coriolis acceleration dominates over the rest. It grows
linearly with the radial order (in absolute value) as was already
stated in Ballot et al. (2010) for polytropic models. The Coriolis
effect remains dominant at the third order, whereas distortion
seems to have no effect. The coupling between the Coriolis ac-
celaration and distortion (σ3C) is negative, thereby reducing the
impact of the former.

For p-modes, the dominant second-order term isσD
2 , as could

be expected for modes that are mostly confined to superficial
layers where the role of centrifugal acceleration is highest. In
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Fig. 1. Contributions of different approximation orders to l = 1,m = 0 mode frequencies:σ2eigen (σ3eigen) represent the implicit second (third respec-
tively) order contribution to the eigenfrequency; σ2T and σ3T denote second and third order frequency corrections due to the Coriolis acceleration;
σ2D and σ3D represent 2nd and 3rd order frequency corrections due to the centrifugal distorsion; σ3C comes from the coupling of the distorsion
and Coriolis effects. The contributions are plotted as a function of the radial order n for an 8.5 M� ZAMS model rotating uniformly at 15%Ωk,
i.e. around 95 km s−1 (see stellar parameters in Table 1). The frequencies are scaled by Ωk =

√
GM/R3, so that σ = ω/Ωk. We use a negative radial

order n for gravity modes and a positive one for acoustic modes.

this case too, the dominant term grows linearly with the ra-
dial order, as noted in Goupil (2009) and Reese et al. (2006)
for polytropic models. To third order, σeigen

3 and σD
3 are of

the same magnitude but opposite signs, canceling each other
to some extent.

To sum up, as expected, for g-modes the most important con-
tributions are those related to the effects of the Coriolis accel-
eration, whereas for p-modes we must take into account both
the implicit eigenfrequency terms (related to the part of Coriolis
force included in the pseudo-zeroth eigen-system) and the ef-
fects of centrifugal distortion. In Table D.3, numerical values of
the different contributions are listed.

3.2. Near degeneracy corrections

Here we consider the same sequence of � = 1 modes as in the
previous section but we now take into account the coupling of
each mode with the nearest � = 3 partner. The coupled pairs
must be of the same azimuthal order m. We use Eq. (12) here to
calculate the frequency shift caused by such a coupling.

To compare the magnitude of this near degeneracy effect
with the second and third order contributions shown in Fig. 1, we
depict in Fig. 2 the frequency differences between computations
with and without near degeneracy being accounted for. Figure 2
shows that near degeneracy primarily affects the p-modes
(n > 0). This is not surprising as they are more sensitive to the
outer regions that are more affected by distortion, a dominant
factor in the coupling coefficientH . Moreover, this correction is
found to be of the same magnitude as the other second-order cor-
rections (see Fig. 1) but of an opposite sign. Hence, the overall
effect of the distortion is reduced. However, this is not a universal
property. As we may see in Eq. (12), the coupling always causes
an increase in the frequency separation between modes but the
sign of the shift is mode-dependent. In any case, rotational mode
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( σ
de

g  −
 σ

no
 d

eg
 )

 ×
10

2  

radial order n

l = 1 mode,  m  =   1
 m  =   0
m = − 1

Fig. 2. Frequency differences between degenerate σdeg and non-
degenerate σno deg solutions scaled by Ωk =

√
GM/R3 (σ = ω/Ωk) as

a function of the radial order, n, for � = 1, m = −1, 0, 1 modes. The
computations were made for the same model as in Fig. 1.

coupling is an important effect, especially for p-modes. Taking it
into account (as shown in Suárez et al. 2010) extends the validity
domain of perturbative methods.

Finally, we note that the sectorial components of the � =
1 triplet are modified by roughly the same amount, which im-
plies that the rotational splitting should not be strongly affected
by near degeneracy (see Sect. 4.2). This is expected because in
this case it enters as a third order effect.

4. Rotational splitting for uniform rotators

The rotational splitting can be defined as S m = (σm − σ0)/m.
One also uses S m = σm − σm−1. In this work, we use a scaled
expression of the rotational splitting given in Eq. (1)

S m = σm − σ−m/2m. (15)
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Fig. 3. Scaled contributions to the splittings due to the implicit third-order terms in the eigenfrequencies (T eigen
3 ), the Coriolis effect (T T

3 ), distor-
sion (T D

3 ), the coupling of the two (T C
3 ), and near degeneracy. Left: for � = 1 g-modes. Right: for � = 1 p-modes, divided by the square of the central

frequency. Computations were made for an 8.5 M� ZAMS model uniformly rotating at 15%Ωk, i.e. 95 km s−1 (see stellar parameters in Table 1).

These various definitions are equivalent only to first order in the
rotation rate, Ω, and equal to the linear splitting

S m =
1
Ωk

∫ R

0

∫ π

0
Km(r, θ) Ω(r, θ) dθdr, (16)

where the analytical expression for the kernels Km is given
in Goupil (2011) and references therein. At higher orders in
terms of Ω, the two first definitions are contaminated by the
effect of asphericity, which introduces an antisymmetric com-
ponent in the frequency as a function of m. We choose to re-
move this second order contribution using the splitting expressed
in Eq. (15).

4.1. Cubic-order effects on the splitting

Assuming a uniform rotationΩ = Ω0, the splitting including the
frequency corrections to cubic order is given by:

S cubic
m =

Ω0

Ωk
β +
Ω0

σ0

(
Ω0

Ωk

)2

T3,m, (17)

T3,m = T eigen
3,m + T T

3,m + T D
3,m + T C

3,m, (18)

where σ0 = ω0/Ωk is the normalized frequency of the cor-
responding axisymmetric mode, Ω0 is the uniform rotation
rate, and β is the integral of the kernel Km over the star
(see Appendix B, Eq. (B.5)).

The term T3,m incorporates the implicit third-order contribu-
tion as well as the effects of the Coriolis acceleration, the distor-
sion, and the coupling of the two. From now on, we define the
departure from a linear splitting as follows

δS cubic
m ≡ S cubic

m −
(
Ω0

Ωk

)
β =
Ω0

σ0

(
Ω0

Ωk

)2

T3,m. (19)

4.2. Near degeneracy correction

According to the formalism explained in Sect. 2.3, if we con-
sider the coupling of the � = 1 and � = 3 modes, we define the
degenerate frequency of � = 1 modes by

σ
deg
�=1,m =

σ�=1,m + σ�=3,m

2
+

√
Δ2

m + H2
m, (20)

= σ�=1,m − Δm +

√
Δ2

m + H2
m,

where σ�=1,m and σ�=3,m are non-degenerate frequencies given
by Eq. (9), and Δm is defined in Eq. (12). The splitting
accounting for near degeneracy is then given by

S deg
�=1,m=1 = S ND

�=1,m=1 −
1
2

(Δ1 − Δ−1)

+
1
2

(√
Δ2

1 + H2
1 −

√
Δ2
−1 + H2

−1

)
, (21)

where

S ND
�=1,m=1 =

σ1,+1 − σ1,−1

2
(22)

with ND standing for non-degenerate. We note that S ND
�=1,m=±1

contains cubic-order contributions mentioned in the previous
section. The contribution of near degeneracy to the splitting is
then given by S deg

�=1,m=1 − S ND
�=1,m=1.

It is worth recalling that neglecting all cubic-order contri-
butions in Eqs. (9), (10), and (12) results in Δ1 = Δ−1 and
H1 = H−1. In that particular case, degeneracy does not con-
tribute to the rotational splitting, and the rotational splitting is
linear in Ω up to second order, satisfying

S m =
Ω0

Ωk
β. (23)

4.3. Sensitivity to the nature of the eigenmode

Figure 3 displays the near degenerate contributions to the split-
ting of p- and g-modes together with the cubic ones for a
ZAMS stellar model (Table 1). The values of these different
contributions are given mode by mode in Table D.2.

In Fig. 3 (left), the Coriolis correction T T
3 dominates for

g-modes (by roughly a factor of 102 over other contributions)
and decreases with the radial order to a roughly constant value
for low |n|. The scale is too large in this figure to see the be-
havior of T eigen

3 , T D
3 and T C

3 , and the near degeneracy contri-
bution to the splitting, but we refer to Table D.1, where it is
shown that there is no asymptotic behavior for these four con-
tributions. Near degeneracy is fully negligible for all g-modes
except for the n = −1 mode that is actually a mixed mode. The
g-mode spectrum is much denser than the p-mode one but as
shown in Fig. C.2 of Appendix C, the coupling term Hm is much
smaller than Δm. This is because the distorsion effects are small
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for g-modes and therefore the overall (second and third order)
contribution to Hm remains small.

To emphasize possible asymptotic behavior, the contribu-
tions to p-modes have been divided by σ2

0. In Fig. 3 (right),
the implicit cubic order and the near-degenerate contributions
dominate for p-modes but with opposite signs and therefore
roughly compensate each other. Hence, as in the case of the
pulsation frequencies, the near degeneracy correction tends to
reduce the over-estimated contributions to rotational splittings.
The contributions dominated by centrifugal distorsion, and in
particular the near degeneracy one, scale as σ2

0. In Appendix A,
it is shown that near degeneracy contributes to the rotational
splitting only if third order effects are taken into account
(see Eq. (A.5)). However, it is also shown that second order
effects (H2) – dominated by distorsion (H2) for p modes –
are involved. This explains why the near degeneracy frequency
variation follows a σ2

0 behavior for p-modes.
Similar conclusions for more evolved models with more

complex structures are found for pure p-modes and pure
g-modes. However, these complex structures also give rise to
mixed modes for which all effects contribute equally, and a
precise investigation, mode by mode, has to be done for each
equilibrium model. This is investigated in detail in Sect. 6.

5. Effects of latitudinal shear on the splitting

Hansen et al. (1977) derived the expression for the rotational
splitting of adiabatic nonradial oscillations for slow differen-
tial (steady, axially symmetric) rotation Ω(r, θ) and applied it to
numerical models of white dwarfs and massive main sequence
stars assuming a cylindrically symmetric rotation law. In the so-
lar case, the effects of latitudinal differential rotation on theo-
retical frequencies were investigated by Gough & Thompson
(1990), Dziembowski & Goode (1991), and Dziembowski &
Goode (1992).

To be able to compute the splittings from Eq. (16), one must
specify a rotation law. It is convenient to assume the form

Ω(r, θ) =
smax∑
s=0

Ω2s(r) (cos θ)2s, (24)

where θ is the colatitude. The surface rotation rate at the equator
is Ω(r = R, θ = π/2) = Ω0(r = R).

We note that in the solar case, Ω2 and Ω4 are negative and
the equator rotates faster than the poles.

For the splitting, inserting Eqs. (24) into (16) yields
the expression:

S m =
1
Ωk

∫ R

0
Ω0(r) K(r) dr +

1
Ωk

s=2∑
s=0

m2s Hm,s(Ω). (25)

The expression for Hm,s(Ω) can be found in Appendix B.

5.1. Latitudinally differential rotation only Ω(θ)

In this case, for which rotation is assumed to be uniform in depth,
the splitting becomes: (Goupil 2011)

S m =
Ω0

Ωk
β +

1
Ωk

s=2∑
s=0

m2s (Rs(Ω) β + Qs(Ω) γ). (26)

Expressions for Rs and Qs can be found in Appendix B. Both β
and γ depend on the radial and horizontal components of
the mode

β =
1
I

∫ R

0

[
ξ2r − 2ξrξh + (Λ − 1)ξ2h

]
ρ0r2dr, (27)

γ = −1/I
∫ R

0
ξ2h ρ0r2 dr, (28)

I being the inertia of the mode

I =
∫ R

0
(ξ2r + Λξ

2
h) ρ0r2 dr. (29)

For the sake of simplicity, we restrict our study to s = 1 in
Eq. (25). The rotation law can then be expressed as

Ω(θ) = Ω0 − ΔΩ cos2 θ, (30)

where Ω0 = Ω(r = R, θ = π/2), Ω2 = −ΔΩ and Ω4 = 0.
After some calculations provided in Appendix B, we are able
to express the splittings of several (�,m) combinations:

(1) (�,m) = (1,±1) modes

S lat
�=1,m=1 =

Ω0

Ωk
β

(
1 − 1

5
ΔΩ

Ω0

)
(31)

(2) (�,m) = (2,±1) modes

S lat
�=2,m=1 =

Ω0

Ωk

(
β +

1
7
ΔΩ

Ω0
(8 γ − 3 β)

)
(32)

(3) (�,m) = (2,±2) modes

S lat
�=2,m=2 =

Ω0

Ωk

(
2 β − 1

7
ΔΩ

Ω0
(2 γ + β)

)
. (33)

In the solar case, β ∼ 1 and β � |γ| for the excited high
frequency p-modes. Then the (� = 1,m = 1) splitting is

S lat
�=1,m=1 ≈

Ω0

Ωk

[
1 +

1
5

(Ω2/Ω0 + 3/7 Ω4/Ω0)

]
. (34)

With Ω2/Ω0 = −0.127, Ω4/Ω0 = −0.159, one obtains a depar-
ture of |S 1/Ω0−1| � 0.04 from a linear splitting, i.e. a 4% change
in the solar case.

For upper main sequence stars, excited modes are around the
fundamental radial mode and may be mixed modes with |β| ∼
|γ| ∼ 1/2. This leads for instance to |S 1,1/Ω0−1| ∼ 1% forΩ2/Ω0
and Ω4/Ω0 equal to a half of the solar values. We recall that
for the stars treated in this article, we have taken Ω2 = −ΔΩ
and Ω4 = 0.

As shown in Eqs. (26) to (29), the additional term due to
the latitudinal shear strongly depends on the eigenfunction of
the mode, through the radial and horizontal components of the
displacement, therefore, we investigate the scaled contributions
for different types of modes. The plots presented in Fig. 4 were
again generated for an 8.5 M�, 4 R� ZAMS model, rotating
at Ω � 15%Ωk (vΩ = RΩ = 95 km s−1). Once again,
computations for more evolved stellar models give similar re-
sults – except for mixed modes around n = 1 – even for highier
rotation rates.

Figure 4 shows the dependence of the β and γ integrals on
the p or g nature of the mode. Globally, for g-modes, at a given
rotation rate, we expect a small contribution of the latitudinal
shear to the splittings, smaller for S 1,1 than for S 2,1 and S 2,2,
whereas for p-modes, the contribution is quite important for S 2,1.

For the sake of simplicity, we focus from now on on � =
1 splittings. We note that the investigations presented in the next
two sections have also been addressed for � = 2 splittings and
led to the same conclusions.
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Fig. 4. Behavior of left: the scaled integrals β and γ (Eq. (27)), right: the scaled contributions to the splitting, as a function of the radial order n
(Eqs. (31) to (33)). Computations were made for an 8.5 M� ZAMS model uniformly rotating at 15%Ωk, i.e. 95 km s−1 (see stellar parameters
in Table 1).

5.2. A tachocline-like rotation profile: Ω(r , θ)

We refine the modeling of the rotation profile, assuming a rota-
tion profile in depth as in the solar case. The rotation is uniform
(Ω = Ω0) in the inner layers and differential latitudinally – as ex-
pressed in Eq. (30) – in the convective envelope. The rotation
profile can be written in the form

for r < rcz, Ω(r, θ) = Ω0

r ≥ rcz, Ω(r, θ) = Ω0 − ΔΩ cos2 θ, (35)

where rcz is the radius of the inner stable layer. Therefore, af-
ter some calculations similar to those presented in Appendix B,
Eq. (40) is no longer relevant, and should be replaced by

S lat
�=1,m=1 =

Ω0

Ωk

(
β − ΔΩ

Ω0

1
5
βcz

)
(36)

where βcz =
1
I

∫ R

rcz

[
ξ2r − 2ξrξh + (Λ − 1)ξ2h

]
ρ0r2dr. (37)

We note that for p modes for instance, βcz is smaller than βwithin
the whole star – βcz ∼ 0.45, whereas β ∼ 1 −. Therefore, in
the case of a tachocline-like profile, the effect of a same lati-
tudinal shear ΔΩ is smaller than in the case where rotation is
uniform in depth.

6. The case of a β Cephei on the main sequence

Massive stars on the main sequence are usually rapid rotators
and their fast rotation affects their internal structure as well as
their evolution. The rotation of β Cephei stars extends from slow
rotational velocities (v < 50 km s−1) to extremely rapid ones
(v > 250 km s−1) (Stankov & Handler 2005). These stars usually
have a radiative envelope, which may or may not be in latitudi-
nal differential rotation. For these rapid rotators, one can wonder
whether cubic order or near degeneracy contributions dominate
over the effects of latitudinal shear.

Here we investigate the importance of deviations from a lin-
ear splitting for an evolved main sequence model of an 8.5 M�
star with a 5.07 R� radius (see Table 2 for the stellar parameters
of the model).

6.1. Departure from linear splitting as a function of frequency

According to the region to which a mode belongs, very different
types of behavior are observed for the different contributions to
the splitting, as illustrated in Fig. 5.

Table 2. Stellar parameters of the β Cephei model in Sect. 5.

M = 8.50 M� R = 5.07 R�
L = 2 × 1037 erg s−1 age = 20 My
X0 = 0.713 Z0 = 0.014
α = 1.76

Figure 5 displays the departure from a linear splitting caused
by cubic-order effects with and without near degeneracy correc-
tions, and to latitudinal differential rotation (uniform in depth).
It has been computed for � = 1 modes with radial orders ranging
from −10 to 5. The parameters of the stellar model considered
here are given in Table 2. It rotates at 20%Ωk (left) and 30%Ωk
(right). In these plots, we can distinguish three regions for the
behavior of δS �,m.

In the g-mode region (n ≤ −2), as the cubic-order effect is

proportional to
(
Ω
Ωk

)2
Ω
σ0

(see Eq. (19)), the lower the frequency,
the higher cubic-order terms, and this effect increases with the
rotation rate. In this region, cubic-order effects overtake those
from latitudinally differential rotation.

In the p-mode region (n > 2), latitudinal shear effects are
larger than for the g-modes. Cubic-order effects are of the same
order of magnitude as the contribution from latitudinally differ-
ential rotation with a shear of only 12.7%.

In between, in the mixed mode region, cubic-order effects
with degeneracy corrections are of the same order of magni-
tude as effects from latitudinally differential rotation for all the
considered shears.

To get a clearer understanding of these different types of
behavior, one can look at Fig. C.1 in Appendix C. Figure C.1
displays mode inertia (defined in Eq. (29)) as a function of the
radial order, for the model described in Table 2, that rotates
uniformly at 30%Ωk. From this figure, the three frequency do-
mains related to the nature of modes are clearly visible: below g3
(n ∈ [−10,−3]) are pure g-modes, above p2 are pure p-modes,
and in between we find the mixed mode region.

Figure C.2, which has been computed for the model de-
scribed in Table 2, that rotates uniformly at 30%Ωk, shows that
near degeneracy has a very small effect on g-mode splittings.
Although the frequency differences (Δm) between the � = 1 and
� = 3 modes are small for g-modes (the y axis is in a logarith-
mic scale), near degeneracy is more or less negligible, sinceHm
(which quantifies near degeneracy) is dominated by second order
terms (due to distorsion) and takes small values.

In the mixed mode region, although Hm increases, the
frequency differences between the � = 1 and � = 3 modes Δm
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Fig. 5. Departure from linear splitting for (� = 1,m = 1) triplets. Left: for Ω = 20%Ωk. Right: for Ω = 30%Ωk, as a function of the radial
order. Different contributions result from: cubic-order effects (dark blue), cubic-order effects with near degeneracy (purple, these two contributions
overlap for all g-modes), and latitudinally differential rotation with ΔΩ/Ω = 0.127 (light blue), 0.2 (in green), 0.3 (in orange), and 0.4 (in red).
These results were computed for the uniformly rotating evolved 8.5 M� β Cephei model described in Sect. 5.1 (Table 2).

Fig. 6. Departure from linear splitting for (� = 1,m = 1) triplets due to cubic-order effects (dark blue), to cubic-order effects including near-
degeneracy corrections (purple, these two contributions overlap for g5 and g2) and to latitudinally differential rotation with ΔΩ/Ω = 0.127 (light
blue), 0.2 (green), 0.3 (orange), and 0.4 (red). These departures are plotted as a function of the rotation rate for a g5 mode (left), a g2 mode (center),
and a p1 mode (right). These results were computed for the uniformly rotating evolved 8.5 M� β Cephei model described in Sect. 5.1 (Table 2).

also increase. Consequently, near degeneracy should also be neg-
ligible in this range either. Once again, as mixed modes are very
sensitive to the evolutionary stage, it is diffucult to make general
statements for all the stellar models.

In the p-mode domain, Δm decreases, while Hm increases
causing the near degeneracy contribution to the splitting to in-
crease. The near degeneracy effect is therefore larger in the pure
p-mode region. This causes the departure from a linear splitting
due to cubic-order effects including near degeneracy to be of
the same order of magnitude as the latitudinal shear contribution
(Fig. 5).

6.2. Departure from a linear splitting as a function
of the rotation rate

We studied the relative values of the third order, near degener-
acy, and latitudinal shear contributions to the splitting as a func-
tion of the rotation rate mode by mode. Figure 6 shows three
different cases:

– The mode g5 illustrates the case of high order g-modes
(or pure g-modes) where the cubic-order contribution over-
takes the latitudinal shear contribution as soon as the
mean rotation rate exceeds 15%Ωk (which corresponds to
a rotation velocity of around 80 km s1).

– The mode g2 is located in the mixed mode region where
cubic-order effects are larger than latitudinal differential
rotation ones.

– The mode p1 is still a mixed mode but with a nature closer
to a pure p-mode for which near degeneracy is no longer
negligible. As a result, the total cubic contribution includ-
ing degeneracy is of the same order as a latitudinal shear
of 12.7%.

6.3. How do we distinguish between the two effects?

In the previous subsection, we have shown that for a massive star
on the main sequence, in the frequency range where we expect
pulsation modes, it is not easy to conclude whether a departure
from a linear splitting is due to latitudinally differential rotation
or cubic-order effects. Here we propose a method for disentan-
gling the two effects.

We consider the two modes g2 and p1 to be representa-
tive of a mixed mode close to the g-modes and a mixed mode
close to the p-modes, respectively, as seen in the previous sec-
tion. In Fig. 7, S 1(p1) versus S 1(g2) is plotted for the two dif-
ferent assumptions (latitudinal shear or cubic-order effects with
near degeneracy corrections) for different rotation rates (Ω ≤
35%Ωk). We note that for g-modes, β is roughly equal to one-
half, and for p-modes β approaches one. Accordingly, the ratio
of S lat

1 (p1) to S lat
1 (g2) does not depend on ΔΩ and is approxima-

tively equal to 2. On the other hand, the curve S 1(p1) as a func-
tion of S 1(g2) for splittings including cubic-order effects with
near degeneracy corrections starts to deviate from a slope of two
when the rotation rate is high enough. The deviation increases
with the rotation rate as expected.
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We now define S obs
1 as the observed splittings for l =

1 modes for a rapid rotator with a uniform rotation profile Ωtrue
0 .

Their values are then assumed to be given by S obs
1 = S D

1 (Ωtrue
0 )

(Eq. (21)) i.e. rotational splittings computed up to cubic order,
including near degeneracy corrections.

If one misinterprets S obs
1 as being caused by a latitudinal

shear, S obs
1 is assumed to obey Eq. (31). The point represent-

ing S obs
m (p1) as a function of S obs

m (g2) ought to lie on the straight
line of slope 2 in Fig. 7. We represent this point by the split-
tings S obs

m (p1) and S obs
m (g2) computed according to Eq. (21) as-

suming a rotation rate of 15%Ωk, v = 80 km s−1. As the observed
point is not located on the straight line given by S lat

m (p1) =
2S lat

m (g2), we can then conclude that the deviation from a linear
splitting is not due to a latitudinal shear.

In the case of massive stars on the main sequence, the ef-
fects of latitudinal differential rotation and cubic order or near
degeneracy are of the same order of magnitude in the fre-
quency domain where we expect to observe oscillation modes.
This is mostly caused by the mixed nature of modes around
the fundamental frequency, and should therefore depend on the
evolutionary stage of the star. However if two individual ro-
tational splittings are available (one g-mode under the mixed
mode region, and one p-mode above it), this method helps us
to determine whether a departure from a linear splitting is due
to cubic-order contributions including accidental degeneracy,
or latitudinal shear.

7. The case of solar type stars

Low-mass main sequence stars are known to be slow rotators.
Owing to their outer convection zone, they undergo magnetic
braking during their evolution (Kawaler 1988). Observational
evidence has been found of surface latitudinal differential ro-
tation (coming from stellar spots occurring again in their outer
convection zone). Hence, for these stars, the average surface ro-
tation rate Ω is much lower then for more massive stars, such
as β Cephei stars, and ΔΩ = Ωequa − Ωpole, the difference be-
tween the rotation rates at the equator and the poles, can be large
(25% for the Sun, between 1% and 45% for a star like Procyon,
Bonanno et al. 2007). One therefore expects latitudinal correc-
tions to the splittings to dominate over cubic-order effects, which
are negligible. As illustrative examples, we studied the case of

Table 3. Stellar parameters of the model of HD 181420 (Sect. 6).

M = 1.36 M� R = 1.63 R�
L = 4.4 L� X0 = 0.7
Pc = 183 dyn cm−2 ρc = 5.1 × 10−10 g cm−3

HD 181906 and HD 181420, which are two solar-like stars ob-
served by CoRoT during the first long run, and which lightcurves
have been analyzed by García et al. (2009) and Barban et al.
(2009) respectively.

Before comparing the different contributions to the rotational
splitting, one might wonder whether a perturbative approach up
to the cubic order accounting for near degeneracy effects is valid
for interpretation of seismic observations of this type of star.
To answer this issue, we rely on the validity study of Suárez
et al. (2010), which performed for a polytropic model of 1.3 M�,
representative of HD 181420. We therefore consider this study
adaptedto determine the validity of our approach for computing
high-order pressure pulsation modes that propagate in the outer
layers of a solar-like star. Suárez et al. (2010) show that for ro-
tational velocities under approximately 40 km s−1, the structures
of the frequency spectra computed with a non-perturbative and
their perturbative method are very similar. Here, we study the
rotational splitting, which is a frequency difference that removes
some of the second-order effects, by adopting a cubic-order per-
turbative approach accounting for the effect of near degeneracy.
We then consider our approach as valid for the rotation velocities
at stake in the stars we study in this article.

7.1. Competition between the three effects

Here we investigate the order of magnitude of deviations from
Eq. (23) for an M = 1.36 M�, R = 1.63 R� main sequence
stellar model (see Table 3 for the stellar parameters taken as a
model representative of HD 181420).

In Fig. 8, we plot the three kinds of contributions, i.e. cubic
order, cubic order with near degeneracy, and latitudinal shear,
for (� = 1,±1) splittings as a function of the central mode fre-
quency for two different rotational angular velocities (3.7%Ωk
and 7.4%Ωk, which correspond to 15 km s−1 and 30 km s−1, re-
spectively, for the model described in Table 3). Once again, these
contributions show a peculiar behavior in the mixed mode re-
gion, where the two types of contributions can be of the same
order. We focus here on higher frequencies, since the oscillation
modes of HD 181420 are detected in the 1.5−2 mHz frequency
range (Barban et al. 2009). Therefore, these plots show that even
for rotation rates that are high for this type of star (7.4%Ωk),
cubic-order contributions (with or without near degeneracy) can
be neglected compared to additional terms related to latitudinal
shear. This leads to the conclusion that for HD 181420 in particu-
lar – as we expect for solar-like stars in general – the cubic-order
contributions to the splitting can safely be neglected in compar-
ison with potential latitudinal shear contributions. We have per-
formed the same computations for a 1.2 M� 1.4 R� stellar model
representative of HD 181906, and derive the same conclusions.

7.2. Determination of a latitudinal shear from seismic
observations

The results of the seismic analysis provided in Barban et al.
(2009) and García et al. (2009) both find significantly different
values for the low frequency peak in the Fourier spectrum and
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Fig. 8. Departure from a linear splitting as a function of the radial order for (� = 1,m = 1) triplets. Left: for Ω = 3.7%Ωk. Right: Ω = 7.4%Ωk –
due to cubic-order effects (blue), cubic-order effects with near degeneracy (purple, the two of them overlap for most of the modes except g2) and
to a latitudinally differential rotation of 12.7% (light blue) and 20% (green). Computations were made for a model of HD 181420 (M = 1.36 M�,
see Table 3).

what is interpreted as the rotational splitting. If a uniform sur-
face rotation is assumed, it is impossible to reproduce these
differences between these observables.

We assume a rotation profile of the form

Ω(θ) = Ω0 − ΔΩ cos2 θ, (38)

where Ω0 is the rotation surface angular velocity at the equa-
tor,Ωequator, and ΔΩ = Ωequator −Ωpole. The rotation frequency is
then given by

νrot(θ) = νeq

(
1 − ΔΩ
Ω0

cos2 θ

)
, (39)

where νeq and νrot correspond to the equatorial rotation rate
(i.e. Ω0) and the rotation frequency at the colatitude θ in μHz,
respectively.

Using again the rotation law Eq. (38) to derive the rotational
splitting from Eq. (26) we obtain for � = 1,m = ±1

S lat
1,1 =

Ω0

Ωk
β

(
1 − 1

5
ΔΩ

Ω0

)
, (40)

which can be written in the form

νsplit = νeq β

(
1 − ΔΩ

Ω0

)
, (41)

where νsplit corresponds to S 1,1.
Equations (39) and (41) are then two equations with three

unknowns: νeq, cos θ, and ΔΩ/Ω0. Dividing Eqs. (41) by (39)
leads to

ΔΩ

Ω0
=

1 − βd
cos θ2 − 1

5 β d
, (42)

where we have introduced the parameter

d =
νrot

νsplit
· (43)

We then determine ΔΩ/Ω0 as a function of cos θ, along with
the constraints

θ ∈
[
0;
π

2

]
⇒ cos θ ∈ [0; 1] , (44)

ΔΩ

Ω0
∈ [−1; 1] . (45)
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Fig. 9. Possible values for ΔΩ/Ω0, depending on the parameter d in
Eq. (43) and the value of the integral β Eq. (B.5). The line colors cor-
responds to the value of (d × β), which ranges here from 0.3 (in blue)
to 1.5 (in red). In gray, we indicate the acceptable domain of values
for the latitudinal gradient (Eq. (45)). This plot was produced for high
order p modes.

As illustrated in Fig. 9, the latitudinal shear is a hyperbolic func-
tion of cos θ, centered on

√
βd/5. Depending of the values of

the product βd of the observational parameter d and the inte-
gral β, we find graphically different possible ranges of values
for ΔΩ/Ω0 and cos θ.

7.3. The case of HD 181906

HD 181906 is an F8 dwarf for which fundamental parameters
have been determined by Bruntt (2009), considering the pres-
ence of a background star: mv = 7.65, L/L� = 3.32± 0.45, Teff =
(6300±150) K, [Fe/H] = −0.11± 0.14, M/M� = 1.144± 0.119,
v sin i = (10 ± 1) km s−1. Note that Nordström et al. (2004) had
found v sin i = (16 ± 1) km s−1 considering HD 181906 as sin-
gle, with no background star. It has been observed during the
first long run of CoRoT, and its light curve has been analyzed by
García et al. (2009). They find two possible interpretations for
the mode identification, as listed in Table 4.

Considering the uncertainties attached to the seismic
observables, the result obtained for the latitudinal shear is
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Table 4. Results concerning rotation from the analysis of HD 181906
performed in García et al. (2009).

Scenario A Scenario B
νrot1 (μHz) = 4.0 ± 0.15
νrot2 (μHz) = 4.45 ± 0.15
νsplit (μHz) = 5.8 ± 0.14 6.1 ± 0.14

Notes. νrot1 and νrot2 stand for the two low frequency peaks attributed
to the rotation of two different spots on the star surface. These values
correspond to a product βd ranging from 0.65 ± 0.03 to 0.70 ± 0.03.

Table 5. Latitudinal shear, equatorial velocity and inclination angle
obtained for HD 181906, using models with rotation uniform in depth.

Scenario A Scenario B
ΔΩ/Ω0 = 0.55 ± 0.21 0.59 ± 0.18
veq (km s−1) = 41.3 ± 2.5 43.8 ± 1.6
i (Bruntt 2009) (◦) = 26 ± 2 24 ± 2
i (Nordstrom 2004) (◦) = 23 ± 3 21 ± 2

Notes. The two last lines correspond to i = arcsin
(
v sin i/veq

)
with

v sin i = (10± 1) km s−1 (Bruntt 2009), or with v sin i = (16± 1) km s−1

(Nordström et al. 2004). Note that the two spots give hardly the same
results, we present here mean values computed for the two surface
rotation velocities.

presented in Table 5. These results show that the hypothesis of
latitudinal differential rotation is consistent with the available
observables. Therefore, the latitudinal differential rotation pro-
file is a reliable assumption concerning HD 181906. Moreover,
The results define a range of possible values for different charac-
teristics of the rotation profile: the latitudinal shear, the rotation
surface velocity at the equator, as well the inclination angle. The
correspondant error bars are discussed in Sect. 7.5. Both scenarii
give the same conclusionsvery similar results.

7.4. Solar or anti-solar latitudinal shear for HD 181420?

HD 181420 is an F2 main sequence star whose fundamental pa-
rameters were determined by Bruntt (2009) to be mv = 6.57,
L/L� = 4.28 ± 0.28, Teff = (6580 ± 105) K, [Fe/H] =
0.00± 0.06, M/M� = 1.31± 0.063 and v sin i = (18 ± 1) km s−1.
The star was observed during the first long run of CoRoT,
and its light curve has been analyzed by Barban et al. (2009).
They found two possible interpretations depending on the mode
identification, as listed in Table 6. Later Bedding & Kjeldsen
(2010) used some empirical scaling method that seemed to favor
scenario 1.

Concerning HD 181420, our model gives unexpected re-
sults: in both scenarii, the latitudinal shear is found to be neg-
ative, i.e. the pole rotates faster than the equator, which is the
opposite of what is known for the Sun. To appreciate the relia-
bility of this result, one should refer to the work of Käpylä et al.
(2011), who study the impact of rotation on both the turbulent
angular momentum and heat transport in the convective zone of
solar-like stars, by mean of direct numerical simulations of tur-
bulent convection in spherical geometry. According to the au-
thors, the rotation profile varies from an anti-solar profile (equa-
tor rotates slower than poles) for low Coriolis numbers to a solar
profile (equator rotates faster), with a transition around Co = 3.

Table 6. Results concerning rotation from the analysis of HD 181420
performed in Barban et al. (2009).

Scenario 1 Scenario 2
νrot (μHz) = 4.5 ± 1.5
νsplit (μHz) = 2.59 ± 0.38 3.29 ± 0.17

Table 7. Latitudinal shear, equatorial velocity, and inclination an-
gle obtained for HD 181420, using models with a tachocline-like
rotation profile.

Scenario 1 Scenario 2
ΔΩ/Ω0 = 0.50 ± 0.45 0.66 ± 0.11
νeq (μHz) = 1.0 ± 0.2 1.3 ± 0.1
veq (km s−1) = 45.6 ± 8.7 60.1 ± 3.5
i (Bruntt 2009) (◦) = 23.2 ± 7.4 17.4 ± 2.0

Notes. The last line corresponds to i = arcsin(v sin i/veq) with v sin i =
(18 ± 1) km s−1 (Bruntt 2009).

The Coriolis number, which measures the impact of rotation on
turbulent motion is given by

Co = 2Ω0 τc, (46)

Where τc is the convective overturning timescale, computed
in the stellar evolution code CESAM (Morel & Lebreton
2008), and Ω0 is taken as the angular velocity at the equator.
For HD 181420, when rotation is supposed to be uniform in
depth, the Coriolis number is (3.2 ± 0.5) for scenario 1 and
(4.0 ± 0.3), i.e. both values are only slightly above the tran-
sition threshold between anti-solar and solar surface rotation
(see Fig. 17 of Käpylä et al. 2011). Therefore, it is difficult
to confirm that the physics at stake in the convective enve-
lope of HD 181420 can lead to an anti-solar rotation profile
for HD 181420.

We refine the modeling of HD 181420 by taking a
tachocline-like profile. As explained in Sect. 5.2, this profile con-
sists in assuming uniform rotation (Ω = Ω0) in the inner layers,
and latitudinal differential rotation (Ω(θ)) in the convective en-
velope. The rotational splitting given by Eq. (40) is no longer
relevant, and should be replaced by Eq. (36).

In this case, we found different values for Ω0 than in
the former case, as a consequence, the Coriolis number
reaches (8.9 ± 1.7) for scenario 1 and (11.8± 0.7) for scenario 2,
i.e. high above the transition limit between the anti-solar and so-
lar rotational shears. The integral βcz reaches a constant value
of 0.45 for high order p-modes, which changes the relationship
between the colatitude of the spot and the latitudinal shear (42),
and as a consequence changes the domain of possible shear.
Positive latitudinal shear corresponding to solar-type latitudinal
rotation is predicted for the two scenarii, which is this time fully
consistent with the Coriolis number values. The results obtained
with this tachocline-like model are listed in Table 7.

The case of HD 181420 is particularly interesting as a sim-
ple model of rotation uniform in depth and differential in lati-
tude leads to non-physical latitudinal shear. Only a little more
sophisticated model, where rotation varies in depth according to
a tachocline-like profile, is fully coherent with the physics of
the convective zone as well as the observables. We also give a
range of possible values for the rotation profile parameters: the
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latitudinal shear in the convective zone, the rotation surface ve-
locity at the equator, and the incination angle. To conclude, for
this star, we find that rotation profile inside the star is likely to
be a tachocline-like profile, with a solar-type latitudinal differ-
ential rotation. Moreover, these results, when compared to those
of Mosser et al. (2009), seem to favor scenario 1 since the ro-
tational frequency at the equator in the hypothesis of scenario 1
of (5.14 ± 0.07) × 10−6 rad s−1 is closest to the one found in
Mosser et al. (2009) by spot modeling.

7.5. Discussion

As mentioned at the beginning of this section, Suárez et al.
(2010) found that second order perturbative methods includ-
ing near-degenaracy corrections are valid for rotation velocities
up to approximately 40 km s−1. In this study, third order per-
turbative methods have been used for the computation of ro-
tational splittings in Sect. 7.1. In Sect. 7.2, we provide a sim-
ple recipe that allows us to compute the latitudinal shear given
the seismic observables. This formulation relies on the validity
of the third-order perturbative method, but the only quantities
provided by the modeling are β (Eq. (B.5)) and βcz, i.e. quan-
tities computed from first-order eigenfunctions. The question is
then: do eigenfunctions vary suffitiently widely with rotation rate
(under 60 km s−1 i.e. 15%Ωk), to impact the value of β? After
verifications, it appears that for high-order acoustic modes in
moderately rotating stars (under 15%Ωk) β � 1, and βcz � 0.45
are satisfying evaluations. Therefore, the recipe is valid for the
rotation rates at stake in Sects. 7.3 and 7.4. We note the con-
venience of the proposed recipe, which requires only seismic
observables and the values of β.

The large error bars obtained in particular for the values of
latitudinal shears (Tables 5, 7) is not only due to the observa-
tional uncertainties, but can also be attributed to the simplicity
of the spot model used. This model does not account for spot pa-
rameters, such as for example a spot lifetime, or the spot distri-
bution on the observed stellar disc (for more sophisticated mod-
eling, see Mosser et al. 2009). We only consider a unique spot of
infinite lifetime. Note that the use of a more complicated model
would require more observational constraints than only one spot
rotation signature. When only mean values of rotationnal split-
tings are available, and the observational error bars on the low
frequency signature of a spot rotation are large (Barban et al.
2009), we are able to give general conclusions concerning the
rotation profile – i.e. uniform in depth or tachocline-like, solar,
or anti-solar −, but no reliable numerical values characterising it.

8. Conclusions

With the help of the perturbative approach established in Soufi
et al. (1998), we have investigated the second and third-order
contributions of the Coriolis and the centrifugal accelerations to
the p and g-mode frequencies, as well as near degeneracy effects
on the rotational splittings. Their effects were then compared
with those of a latitudinal shear. We have studied two types of
oscillating stars.

For an evolved model of a β Cephei, the effects of near de-
generacy, cubic-order perturbations, and latitudinal shear are of
the same order of magnitude in the frequency range, relevant to
these stars – i.e. low order p- and g-modes – and for reasonable
rotation rates ranging from 15%Ωk to 30%Ωk. Nevertheless,
when two individual splittings for modes of a different nature

(for example a pure g and a mixed mode) are available, a method
is proposed to distinguish between a latitudinal shear and
other effects.

For solar-like stars such as HD 181420 and HD 181906,
which are mostly moderate rotators and oscillate with high-order
p modes, cubic-order effects on frequency splittings are shown
to be small compared to the effects of latitudinally differential
rotation. Therefore, given a splitting and a rotation period signa-
ture, it is possible to infer a range for the latitudinal shear coef-
ficient ΔΩ/Ω0. Although no precise determination of latitudinal
shear is possible unless the spot latitude is fully determined, we
have been able to determine the most reliable rotation profile for
each of the two stars. Moreover, the determination of the latitu-
dinal shear by our seismic method can be taken as a constraint to
be added to other observational constraints, such as those com-
ing from spectropolarimetric results (e.g. Donati et al. 2010) or
spot modeling (e.g. Mosser et al. 2009).
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Appendix A: Near degeneracy corrections
to the splittings of high order p-modes

This section is dedicated to a qualitative estimation of the near
degeneracy corrections to rotational splittings

S deg
�=1,m=1 − S ND

�=1,m=1 =

√
Δ2

1 + H2
1 −

√
Δ2
−1 + H2

−1

2

− 1
2

(Δ1 − Δ−1), (A.1)

where Δ1 andH1 are normalized by the break-up frequencyΩk.
The oscillation frequency given in Eq. (8) can be rewritten in the
generic form

σn,�,m = σ
0
0,n,� + m

Ω

Ωk
βn,� + m2 dn,�,|m| + m, tn,�,|m|

where dn,�,|m| and tn,�,|m| represent the second and third order con-
tributions. Thus the term Δ1 and Δ−1 appearing in Eq. (21), for
the coupling of an � = 1, n and an � = 3, n′ mode, can be
written as:

Δ1=Δ
0+
Ω

Ωk
(βn,1−βn′,3)+(dn,1,1−dn′,3,1)+(tn,1,1−tn′,3,1), (A.2)

where Δ0 stands for σ0
0,n,1 − σ0

0,n′ ,3, the difference between the
eigenfrequencies without rotation.

For high frequency p-modes, the radial contributions are
concentrated in the outer layers and are then nearly the same
for (n, � = 1) and (n′, � = 3). It is then legitimate to neglect the
differences in their radial contributions. We then omit the radial
order subscripts n, n′. For the same reason, the Ledoux constants
are also quite similar β1 ∼ β3. We then find that

Δ1 ≈ Δ0 + (d1,1 − d3,1) + (t1,1 − t3,1).

Similarly,

Δ−1 ≈ Δ0 + (dn,1,1 − d3,1) − (t1,1 − t3,1).
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Hence, the quantity (Δ1 − Δ−1) in Eq. (A.1)

Δ−1 − Δ1 ≈2 (t1,1 − t3,1) (A.3)

is of third order. One can then approximate Δ−1 ∼ Δ1 in the
square root of Eq. (A.1), and the correction of near degeneracy
is given by

S deg
�=1 − S ND

�=1 ≈ (t1,1 − t3,1)

+

√
Δ2

1 + H2
1 −

√
Δ2

1 + H2
−1

2
· (A.4)

For the coupling term, one can separate the secondH2 and third
H3 order terms as Hm = H2 + mH3. Thus,H1 = H2 + H3,
and H−1 = H2 − H3. With |H3| 	 |H2|, the near degeneracy
correction to the splitting becomes

S deg
�=1 − S ND

�=1 ≈ (t1,1 − t3,1) +
2H2H3√
Δ2

1 + H2
2

(A.5)

which shows that for slow rotators, such as HD 181420, when
cubic-order effects are neglected, the near degeneracy contri-
bution is zero, and the splitting is a linear function of rotation.
If cubic-order effects are included, then near degeneracy correc-
tions affect the splitting, and the departure from a linear splitting
is dominated by distorsion (predominantly inH2).

Appendix B: Contribution of the latitudinal shear
to the splittings

To be able to compute the splittings from Eqs. (1) and (16),
one must specify a rotation law. It is convenient to assume
the form

Ω(r, θ) =
smax∑
s=0

Ω2s(r) (cos θ)2s, (B.1)

where θ is the colatitude and we have limited our investigation to
smax = 1. The surface rotation rate at the equator is Ω(r = R, θ =
π/2) = Ω0(r = R).

Inserting Eqs. (24) into (16) yields the expression for the
generalized splitting

S m =
1
Ωk

∫ R

0
Ω0(r) K(r) dr +

1
Ωk

s=2∑
s=0

m2s Hm,s(Ω), (B.2)

where (see Goupil 2011),

Hm,s(Ω) = −1/I
∫ R

0

[
Rs

(
ξ2r − 2ξrξh + ξ2h(Λ− 1)

)
+Qs ξ

2
h

)]
ρ0r2dr

and Rs and Qs depend on Ω2,Ω4 and Λ = �(� + 1).
For example, if shellular rotation is expected, then Ω(r, θ) =

Ω0(r) and smax = 0. Moreover,Ω2, Ω4 = 0, i.e. R j = Q j = 0 for
j = 0, 2, and

S m = −1/I
∫ R

0

Ω0(r)
Ωk

[
ξ2r − 2ξrξh + Λ ξ2h

]
ρ0r2dr. (B.3)

If we consider latitudinally differential rotation only, Ω2 j,
j = 0, 2 are depth independent, Ω0 = Ωequator, Ω2 = −ΔΩ, and
Ω4 = 0. Rs and Qs are constant and

S m =
Ω0

Ωk
β +

1
Ωk

s=1∑
s=0

m2s (Rs(Ω) β + Qs(Ω) γ) (B.4)

where β and γ are defined as

β =
1
I

∫ R

0

[
ξ2r − 2ξrξh + (Λ − 1)ξ2h

]
ρ0r2dr (B.5)

γ = −1
I

∫ R

0
ξ2h ρ0r2 dr (B.6)

and I is the inertia of the mode

I =
∫ R

0
(ξ2r + Λξ

2
h) ρ0r2 dr. (B.7)

The rotational splitting of a {n, �,m} mode is then given by

S �,m =
1
Ωk

[
Ω0 β + R�0 β + Q�0 γ + m2

(
R�1 β + Q�1 γ

)]
. (B.8)

In Goupil (2011), Qs and Rs are given for s = 0, 1, 2

R�0 = −ΔΩΩ0

2Λ−1
4Λ−3 , (B.9)

R�1 =
ΔΩ
Ω0

2
4Λ−3 , (B.10)

Q�0 =−ΔΩΩ0

2(1−3Λ)
4Λ−3 , (B.11)

Q�1 = −ΔΩΩ0

10
4Λ−3 · (B.12)

For � = 1 and � = 2 modes, this yields:

(1) For � = 1, m = ±1 (i.e. Λ = 2)

S 1,1 =
Ω0

Ωk
β

[
1 − 1

5
ΔΩ

Ω0

]
(B.13)

(2) For � = 2, m = ±1 (i.e. Λ = 6)

S 2,1 =
Ω0

Ωk

[
β +

1
7
ΔΩ

Ω0
(8 γ − 3 β)

]
(B.14)

(3) For � = 2, m = ±2 (i.e. Λ = 6)

S 2,2 =
Ω0

Ωk

[
2 β − 1

7
ΔΩ

Ω0
(2 γ + β)

]
. (B.15)

Appendix C: Conditions for significant
near degeneracy

As already mentionned, near degeneracy between two modes
occurs whenever their frequencies are close, their azimuthal
numbers are equal, and their angular degrees differ by 2.
However, the magnitude of the near-degenerate corrections for
both frequencies also depends on the magnitude of the coupling
term Hm. In turn, the magnitude of Hm depends on the nature of
the involved modes, namely whether they are g-modes, p-modes
or mixed modes with a dominant p or g nature.

The g-mode spectrum is much denser than the p-mode one.
Hence, as shown in Fig. C.2, Δm is much smaller than for the
p-modes. This ought to favor near degeneracy. However, the cou-
pling term Hm for g-modes is much smaller than for p-modes.
This is because distorsion effects are small for g-modes and
therefore the overall (second and third order) contribution to Hm
remains small. As a result, the coupling term is much smaller
than Δm for g-modes, which are then hardly coupled.
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Fig. C.1. Inertia of axisymmetric � = 1 modes as a function of the radial
order, n, for an evolved 8.5 M� β Cephei model, uniformly rotating
at 30%Ωk, i.e. 160 km s−1 (see Table 2, Sect. 4.1).
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Fig. C.2. The terms Δm andHm involved in near degeneracy corrections
(see Eq. (12)) for � = 1 modes computed for the same β Cephei model
as in Fig. C.1. A logscale is used for the y axis.

Appendix D: Values for third order contributions to the frequencies and to the splittings

Table D.1. Scaled contributions to the splittings of � = 1 g-modes due to: implicit third order terms in the eigenfrequency (T eigen), Coriolis
effects (T T), distorsion (T D), and coupling of the two (T C).

n σ0 T eigen
3 T T

3 T D
3 T C

3

−8 0.25 0.672E + 02 0.529E + 04 −0.390E + 01 −0.557E + 03
−7 0.29 0.705E + 02 0.391E + 04 0.214E + 02 −0.424E + 03
−6 0.34 0.770E + 02 0.285E + 04 0.379E + 02 −0.362E + 03
−5 0.41 0.943E + 02 0.208E + 04 0.518E + 02 −0.354E + 03
−4 0.52 0.123E + 03 0.153E + 04 0.683E + 02 −0.371E + 03
−3 0.70 0.155E + 03 0.111E + 04 0.905E + 02 −0.374E + 03
−2 1.06 0.850E + 02 0.776E + 03 0.116E + 03 −0.318E + 03
−1 3.52 −0.269E + 04 0.833E + 03 −0.439E + 03 0.851E + 03

Notes. The impact of near degeneracy is so small that its contribution is fully negligible and therefore not listed. The first row lists the radial order
and the second row the centroid mode m = 0 frequency.

Table D.2. Scaled contributions to the splittings of � = 1 p-modes due to third order effects divided by the square of the central mode frequency.

n σ0 T eigen
3 /σ2

0 T T
3 /σ

2
0 T D

3 /σ
2
0 T C

3 /σ
2
0 T deg

3 /σ
2
0

−1 3.52 −0.217E + 03 0.672E + 02 −0.355E + 02 0.687E + 02 −0.782E − 05
1 4.73 −0.140E + 03 0.409E + 02 −0.181E + 02 0.433E + 02 0.697E + 00
2 5.78 −0.106E + 03 0.285E + 02 −0.115E + 02 0.343E + 02 0.174E + 02
3 6.85 −0.862E + 02 0.181E + 02 −0.554E + 01 0.264E + 02 0.318E + 02
4 7.96 −0.727E + 02 0.112E + 02 −0.666E + 00 0.192E + 02 0.380E + 02
5 9.11 −0.636E + 02 0.767E + 01 0.217E + 01 0.145E + 02 0.435E + 02
6 10.30 −0.566E + 02 0.581E + 01 0.384E + 01 0.110E + 02 0.447E + 02
7 11.49 −0.514E + 02 0.494E + 01 0.456E + 01 0.884E + 01 0.472E + 02
8 12.67 −0.477E + 02 0.440E + 01 0.472E + 01 0.762E + 01 0.503E + 02
9 13.82 −0.447E + 02 0.374E + 01 0.471E + 01 0.688E + 01 0.540E + 02
10 14.96 −0.417E + 02 0.290E + 01 0.489E + 01 0.601E + 01 0.555E + 02
11 16.11 −0.387E + 02 0.221E + 01 0.523E + 01 0.494E + 01 0.543E + 02
12 17.28 −0.360E + 02 0.181E + 01 0.552E + 01 0.395E + 01 0.527E + 02
13 18.46 −0.338E + 02 0.161E + 01 0.570E + 01 0.316E + 01 0.516E + 02
14 19.63 −0.318E + 02 0.149E + 01 0.580E + 01 0.252E + 01 0.508E + 02
15 20.81 −0.301E + 02 0.140E + 01 0.585E + 01 0.196E + 01 0.498E + 02

Notes. The first row lists the radial order and the second row the centroid mode m = 0 frequency.
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Table D.3. Different order contributions to the mode frequencies for various radial orders, n. All contributions are scaled by Ωk.

n σ0 σ1 σ
eigen
2 σT

2 σD
2

−8 0.25 0.777E − 01 0.989E − 02 0.268E − 01 −0.167E − 03
−7 0.29 0.782E − 01 0.857E − 02 0.238E − 01 −0.189E − 03
−6 0.34 0.790E − 01 0.713E − 02 0.206E − 01 −0.228E − 03
−5 0.41 0.802E − 01 0.562E − 02 0.173E − 01 −0.293E − 03
−4 0.52 0.819E − 01 0.407E − 02 0.141E − 01 −0.392E − 03
−3 0.70 0.839E − 01 0.252E − 02 0.108E − 01 −0.529E − 03
−2 1.06 0.859E − 01 0.954E − 03 0.737E − 02 −0.729E − 03
−1 3.52 0.142E + 00 0.677E − 02 0.325E − 02 −0.101E − 01
1 4.73 0.141E + 00 0.497E − 02 0.247E − 02 −0.143E − 01
2 5.78 0.141E + 00 0.401E − 02 0.205E − 02 −0.188E − 01
3 6.85 0.142E + 00 0.337E − 02 0.176E − 02 −0.224E − 01
4 7.96 0.142E + 00 0.288E − 02 0.153E − 02 −0.253E − 01
5 9.11 0.143E + 00 0.251E − 02 0.135E − 02 −0.286E − 01
6 10.30 0.144E + 00 0.221E − 02 0.121E − 02 −0.319E − 01
7 11.49 0.145E + 00 0.197E − 02 0.109E − 02 −0.356E − 01
8 12.67 0.145E + 00 0.178E − 02 0.997E − 03 −0.397E − 01
9 13.82 0.146E + 00 0.163E − 02 0.919E − 03 −0.438E − 01
10 14.96 0.146E + 00 0.150E − 02 0.852E − 03 −0.471E − 01
11 16.11 0.146E + 00 0.139E − 02 0.794E − 03 −0.499E − 01
12 17.28 0.147E + 00 0.129E − 02 0.743E − 03 −0.526E − 01
13 18.46 0.147E + 00 0.121E − 02 0.697E − 03 −0.557E − 01
14 19.63 0.147E + 00 0.114E − 02 0.657E − 03 −0.588E − 01
15 20.81 0.147E + 00 0.107E − 02 0.621E − 03 −0.619E − 01

n σ
eigen
3 σT

3 σD
3 σC

3 σdeg − σno deg

−8 0.186E − 04 0.193E − 02 0.199E − 04 −0.528E − 03 <10−5

−7 0.259E − 04 0.172E − 02 0.325E − 04 −0.439E − 03 <10−5

−6 0.185E − 04 0.151E − 02 0.423E − 04 −0.394E − 03 <10−5

−5 0.582E − 05 0.130E − 02 0.515E − 04 −0.378E − 03 <10−5

−4 −0.205E − 04 0.105E − 02 0.607E − 04 −0.362E − 03 <10−5

−3 −0.696E − 04 0.767E − 03 0.677E − 04 −0.313E − 03 <10−5

−2 −0.178E − 03 0.429E − 03 0.640E − 04 −0.207E − 03 <10−5

−1 0.139E − 03 0.173E − 03 −0.960E − 04 0.187E − 03 0.507E − 03
1 0.883E − 04 0.144E − 03 −0.655E − 04 0.156E − 03 0.100E − 02
2 0.635E − 04 0.123E − 03 −0.506E − 04 0.151E − 03 0.262E − 02
3 0.352E − 04 0.930E − 04 −0.288E − 04 0.137E − 03 0.447E − 02
4 0.496E − 05 0.670E − 04 −0.402E − 05 0.116E − 03 0.596E − 02
5 −0.192E − 04 0.526E − 04 0.149E − 04 0.998E − 04 0.203E − 02
6 −0.359E − 04 0.450E − 04 0.299E − 04 0.854E − 04 0.299E − 02
7 −0.489E − 04 0.428E − 04 0.395E − 04 0.767E − 04 0.415E − 02
8 −0.595E − 04 0.420E − 04 0.452E − 04 0.729E − 04 0.187E − 01
9 −0.713E − 04 0.390E − 04 0.492E − 04 0.718E − 04 0.244E − 01
10 −0.830E − 04 0.327E − 04 0.553E − 04 0.679E − 04 0.295E − 01
11 −0.906E − 04 0.269E − 04 0.637E − 04 0.601E − 04 0.336E − 01
12 −0.964E − 04 0.237E − 04 0.721E − 04 0.516E − 04 0.379E − 01
13 −0.101E − 03 0.225E − 04 0.796E − 04 0.441E − 04 0.434E − 01
14 −0.105E − 03 0.222E − 04 0.862E − 04 0.374E − 04 0.497E − 01
15 −0.110E − 03 0.221E − 04 0.922E − 04 0.309E − 04 0.564E − 01
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