

# How to introduce « geography » into database ?

Jean-Paul Donnay

Unit of Geomatics - University of Liège

Institute of Physics, 17 Allée du 6 Août, Sart Tilman, 4000 Liège

<http://www.geo.ulg.ac.be>



## How to introduce « geography » into database?

1

### Outline of the seminar

JP Donnay – 2004

1. **Geographic or spatial data**
  - Form and content
2. **Geographic versus cartographic data:**
  - A simple semantic difference or two distinct realities?
3. **Mapping software solutions:**
  - CAD format + spreadsheet
4. **Desktop GIS solutions:**
  - FMS + DBMS
5. **Enterprise GIS solutions:**
  - FMS + Geo-relational
6. **First DBMS companies' solutions:**
  - Flat relational
7. **The good use of BLOB:**
  - “Spatial-enabled” database
8. **Present issues:**
  - Standards required !
  - GIS architecture of today



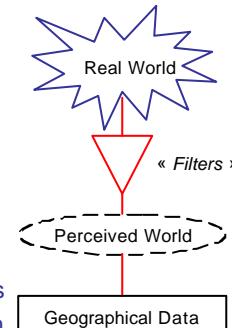
- For the man of the street, geographic data are :
  - Names of **places** (« toponyms »)
  - Descriptive characteristics of **places** (figures...)
    - Place : some part of the Earth !
    - Names : geographical identifier
    - Descriptive characteristics: geographical **attributes**
    - Attributes which could be attached to some identified part of the Earth !

- **It's a part of the geographical information... but incomplete**
- **Not suitable for geographical analysis, but for e.g. demographic or economic studies**

|    |               |          |
|----|---------------|----------|
| 1  | Monaco        | 16,428.2 |
| 2  | Singapour     | 5,390.5  |
| 3  | Malte         | 1,200.0  |
| 4  | Maldives      | 973.9    |
| 5  | Bahrein       | 872.3    |
| 6  | Bangladesh    | 864.5    |
| 7  | La Barbade    | 602.4    |
| 8  | Maurice       | 572.7    |
| 9  | Nauru         | 495.3    |
| 10 | Corée du Sud  | 467.6    |
| 11 | Saint-Marin   | 411.5    |
| 12 | Tuvalu        | 401.7    |
| 13 | Pays-Bas      | 378.8    |
| 14 | Îles Marshall | 348.2    |
| 15 | Liban         | 335.4    |
| 16 | Belgique      | 333.3    |
| 17 | Japon         | 333.3    |
| 18 | Inde          | 310.8    |



- The specific part of the information required to perform geographical analysis is the « geometry » of the places
- **Geometry :**
  - Geometrical description of the footprint of the geographical entities
  - **Requiring :**
    - A surface of reference
      - Ellipsoid, sphere or plane
    - A coordinate system
      - 3D or 2D, rectangular or polar (jobs for geodesy and cartographic projections)




- **Geographical data = Geometry + Identifier + Attributes**



- How to obtain geographical data ?

- Several techniques working on the field – or a “snapshot” of the field (e.g. aerial photos, satellite image)
  - Record of the “Real World”
  - No scale, but **accuracy** and **precision**
- Selection of the technique according to:
  - Hardware and its precision
  - The kind of geographical entities to delineate and the required accuracy
- All techniques:
  - Can always provide planimetric (X, Y) coordinates
  - Can often provide height (elevation), possibly with a different precision
  - Can only observe **materialized entities** (buildings, parcels, roads...)
  - Are limited by some physical restrictions (distance, clouds, shade...)
  - Provide information in **digital** format



- Topographic surveying

- Precise and accurate (< 1 cm)
- Local coverage



- Aerial photogrammetry

- Precise and accurate (~ 10 cm)
- Regional to national coverage

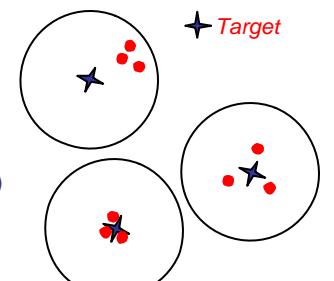


- Satellite remote sensing

- Various accuracies and precisions
  - Resolution from 60 cm to > 1 km
- From local to worldwide coverage

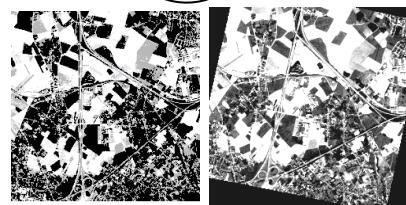


- All are supported for a decade by GNSS


- Global & Navigation Satellite Systems (e.g. Navstar GPS)



- Geometric precision & accuracy

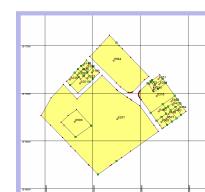

- Precision:

- One measure: number of significant digits
    - Several measures of one quantity:
      - Dispersion index (standard deviation)
    - Largely due to the hardware and the measurement process



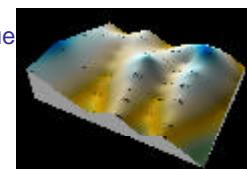
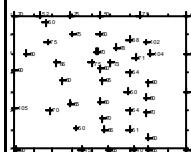
- Accuracy:

- Difference between the “real” position and the recorded position
    - Root mean square error (RMSE) in the various dimensions
    - Depends on the precision, the quality of the reference, the geometric correction process




Same precision  
different accuracies

- Geographic data types



- Materialized versus abstract geographic entities

- Abstract entities are not visible on the field or photo (ex. **Boundaries**)
      - Abstract entities must be located by computation / interpolation between materialized entities
      - Lower accuracy



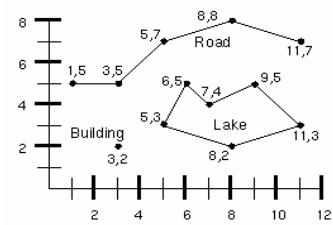
- Discrete versus continuous geographic data

- Discrete entity:
      - Occupies a finite part of the territory
    - Continuous phenomenon (ex. **Relief**):
      - Occupies the whole territory
      - Infinity of points (ex. infinity of elevation value)
        - Survey limited to a sample of points
        - Surface reconstituted by interpolation



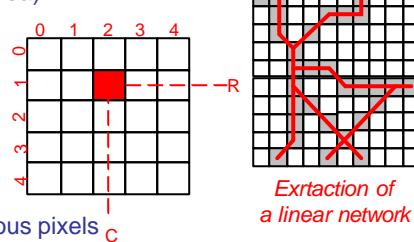


- Geometric footprint of geographic data


- All materialized entity has an area, delineated by a polygon
  - Ex. Parcel, building, river, electricity pole, etc.
  - Footprint defined by a 2-D geometric primitive
- According to the required accuracy, the footprint of the entities can be simplified:
  - A river or a road can be simplified to its central axis
    - Definition and record of a linear geographic entity
    - Footprint defined by a 1-D geometric primitive
  - A pole or a manhole can be simplified to its center
    - Definition and record of a punctual geographic entity
    - Footprint defined by a 0-D geometric primitive
  - This reduction of dimensionality – so called “conceptual generalization” – modifies the qualities of data and the kind of process which are supposed to be applied on these data



- Digital format for the geometries


- Vector format

- Primitive = point (x,y)
- Coordinates: floating numbers
- Precision: possibly high
- Geometries:
  - Point
  - Polyline (connected segments)
  - Polygon (closed polyline + area)



- Raster format

- Primitive = pixel (area)
- Coordinates: integer (image row & col indices)
- Precision = resolution
- Geometries: extracted from specific arrangements of contiguous pixels

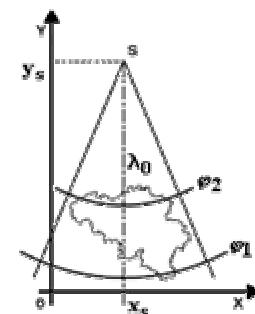


**• Mapping = a representation process****– Plane :**

- Cartographic projection
- From geodetic coordinates to rectangular (x, y) coordinates in km

**– At scale :**

- From (x, y) in km to (x, y) in mm
- Not possible to draw all geographic entities at true scale


– Limits of visual capacities

**– Cartographic processes include :**

- Cartographic generalization
- Cartographic symbolization

**Cartographic data ? Geographic data !**

« the map is not the territory »

**• Cartographic generalization****– Selection**

- Point data : kept or withdrawn (functionally based)
- Line / polygon data : kept if larger than minimum length / area + functional aspect

**– Simplification (various algorithms)**

- Deletion of small curves and small details along the lines and boundaries
- Enlargement of small details functionally important
- Change of dimensionality (e.g. polygon – axis)

**– Moving**

- Required to keep consistency in the location of objects after selection and simplification

**– Caricature, merging, fusion, classification, etc.****– Mainly depending on the final scale**



- **Cartographic symbolization**

- **Graphical variables & rules (semiology)**

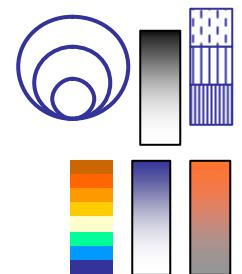
- Selection of the graphic variable matching the characteristics of the portrayed attribute

- Nominal scale

- Ordinal scale

- Quantitative scale

- Enlargement of the symbols in order to perceive the variations of the graphics (e.g. colour)


- Use of **pictograms** instead of footprints of the features
      - Conventional pictograms imposed for some categories of objects

- **Visualization device**

- Graphical parameters depending on **device capabilities**

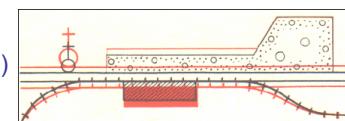
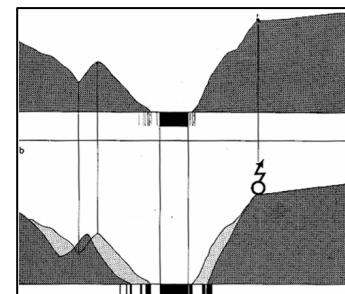
- Resolution (display, printer, image setter...)

- Colour rendering (screen, inks...)



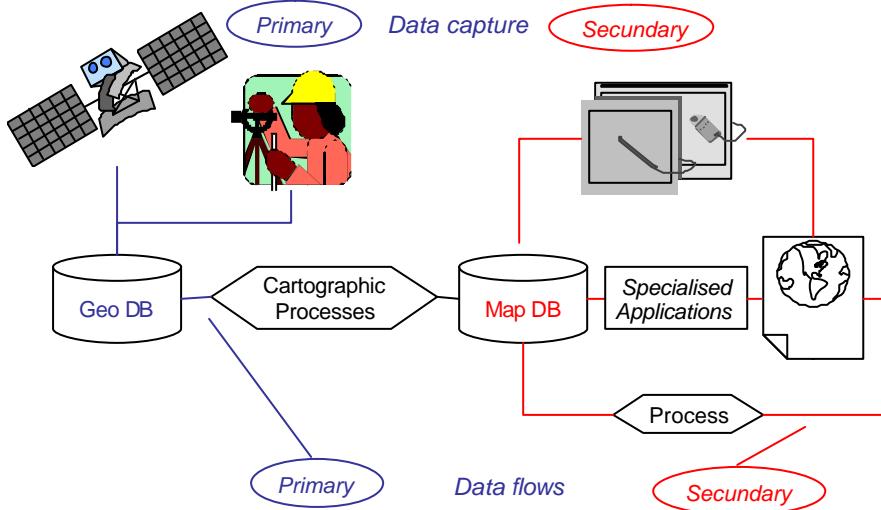
- **Quality of cartographic data**

- **Generalization + symbolization**



- Change size of features
    - Change shape of features
    - Move position of features
    - Change dimensionality of features
    - Add graphical attributes to features
    - Change semantic of features

- **Alterations cannot be propagated through the whole map**

- Must be minimized on most important features (rivers, road axis & junctions...)
    - Must be get over on least important features (crops & forest areas, inside city blocks, etc.)

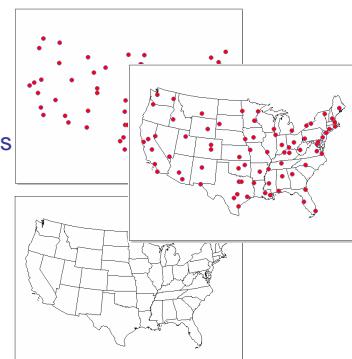

- **Cartographic data**

- Have **positional & semantic qualities** different from geographic data





### Cartographic data




### Mapping software

- Hybrid / Dual Data Model

- Geometric data :

- Position :
      - Geodetic or rectangular coordinates
      - CAD (vector) format (ASCII)
      - Sequential organization



- Separate layers :

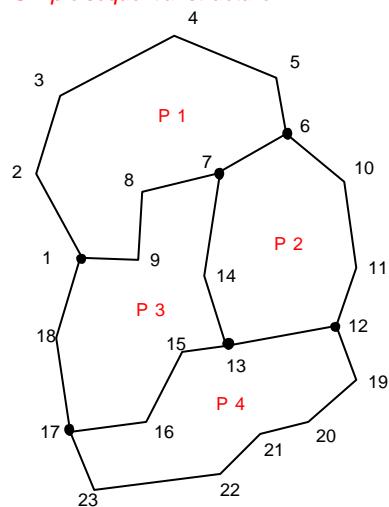
- Different geometries
    - Map layers + Map layout

- Logical relationship :

- Composition
    - No geometric relationship

- Attribute data :

- ASCII files or spreadsheet files
    - One file or one sheet / One geometric layer
    - Sequential organization

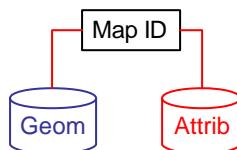



```

P1
x1, y1
x2, y2
x3, y3
x4, y4
x5, y5
x6, y6
x7, y7
x8, y8
x9, y9
x10, y10
x11, y11
x12, y12
x13, y13
x14, y14
x15, y15
x16, y16
x17, y17
x18, y18
x19, y19
x20, y20
x21, y21
x22, y22
x23, y23
x24, y24
x25, y25
x26, y26
x27, y27
x28, y28
x29, y29
x30, y30
x31, y31
x32, y32
x33, y33
x34, y34
x35, y35
x36, y36
x37, y37
x38, y38
x39, y39
x40, y40
x41, y41
x42, y42
x43, y43
x44, y44
x45, y45
x46, y46
x47, y47
x48, y48
x49, y49
x50, y50
Separator
P4
x12, y12
x19, y19
x20, y20
x21, y21
x22, y22
x23, y23
x24, y24
x25, y25
x26, y26
x27, y27
x28, y28
x29, y29
x30, y30
x31, y31
x32, y32
x33, y33
x34, y34
x35, y35
x36, y36
x37, y37
x38, y38
x39, y39
x40, y40
x41, y41
x42, y42
x43, y43
x44, y44
x45, y45
x46, y46
x47, y47
x48, y48
x49, y49
x50, y50
Separator
P3
x7, y7
x14, y14
Separator
P2
x6, y6
x10, y10
x11, y11
x12, y12
x13, y13
x14, y14
x15, y15
x16, y16
x17, y17
x18, y18
x19, y19
x20, y20
x21, y21
x22, y22
x23, y23
x24, y24
x25, y25
x26, y26
x27, y27
x28, y28
x29, y29
x30, y30
x31, y31
x32, y32
x33, y33
x34, y34
x35, y35
x36, y36
x37, y37
x38, y38
x39, y39
x40, y40
x41, y41
x42, y42
x43, y43
x44, y44
x45, y45
x46, y46
x47, y47
x48, y48
x49, y49
x50, y50
Separator
P1
x1, y1
x2, y2
x3, y3
x4, y4
x5, y5
x6, y6
x7, y7
x8, y8
x9, y9
x10, y10
x11, y11
x12, y12
x13, y13
x14, y14
x15, y15
x16, y16
x17, y17
x18, y18
x19, y19
x20, y20
x21, y21
x22, y22
x23, y23
x24, y24
x25, y25
x26, y26
x27, y27
x28, y28
x29, y29
x30, y30
x31, y31
x32, y32
x33, y33
x34, y34
x35, y35
x36, y36
x37, y37
x38, y38
x39, y39
x40, y40
x41, y41
x42, y42
x43, y43
x44, y44
x45, y45
x46, y46
x47, y47
x48, y48
x49, y49
x50, y50

```

Simple sequential structure




&lt; End of File &gt;



## – Cartographic ID :

- Separate access to geometry vs. attributes
- 1 to 1 relationship between geometry and attribute thanks to the cartographic ID (number)





- **GIS or GI-S or G-IS ?**

- **Ambiguity about Geographical Information Systems**

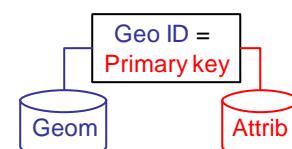
- Vendors and laymen viewpoint : GI Software (+ hardware + data)
    - US academic viewpoint : GI Science (geographic processes & analysis)
    - **Computer science** viewpoint (French-speaking literature) : specialized Information System (cf. multimedia Information Systems)

- **Information System**

- Connected to the theory of **organization modeling**
      - Processing System – Information System – Decision System
    - Connected to **database** theory
      - System made of (one or) several databases managed by one or several DBMS, using similar or distinct models and languages

- **Question at issue : how to put geometry into the database ?**

- In vector format ? In raster format ? With positions and geometric relationships ? Keeping connection with attributes ?
    - No operational solution before the mid of the '90 !




- **Hybrid / Dual Data Model**

- **Very similar to mapping software solutions**

- **The main difference : the management of the attributes**

- Attribute values are managed by a **DBMS** (desktop : Access, Dbase...)
      - One **main table** (relation) where the primary key = geographic ID
      - Possibility to join other tables with SQL jointure
    - Transactions and requests on attributes are performed thanks to **SQL interface** :
      - If the result of the SQL select instruction contains geographic IDs :
        - » The corresponding geometries are **displayed** in a map
      - Extended SQL statements often implemented to support simple spatial requests
        - » Distance, buffer, area, etc.





- **Geometries in vector or raster format**

- **Vector based GIS**

- Geometries managed by a File Management System (FMS)

- » CAD format or ASCII files

- » Generally **proprietary binary format** to improve efficiency

- Position : geodetic or rectangular coordinates

- Logical relationships :

- » Composition

- » No geometric relationship


- **Raster based GIS**

- Spatial information stored in **image files**

- » Spatial requests performed by image processing facilities

- Attributes managed by **DBMS**

- » Attribute requests performed by SQL statements



- **ArcView : an example of desktop vector based GIS software**

- **Shapefile :**

- Proprietary format of data files used by ArcView

- One **shapefile** is made of 3 files : 2 for geometries – 1 for attributes

- **Main file** (suffix **shp**) :

- » Collection of coordinates in 2 ( $x, y$ ), 3 ( $x, y, z/m$ ) or 4-D ( $x, y, z, m$ )

- » Sequential presentation of the geographic entities

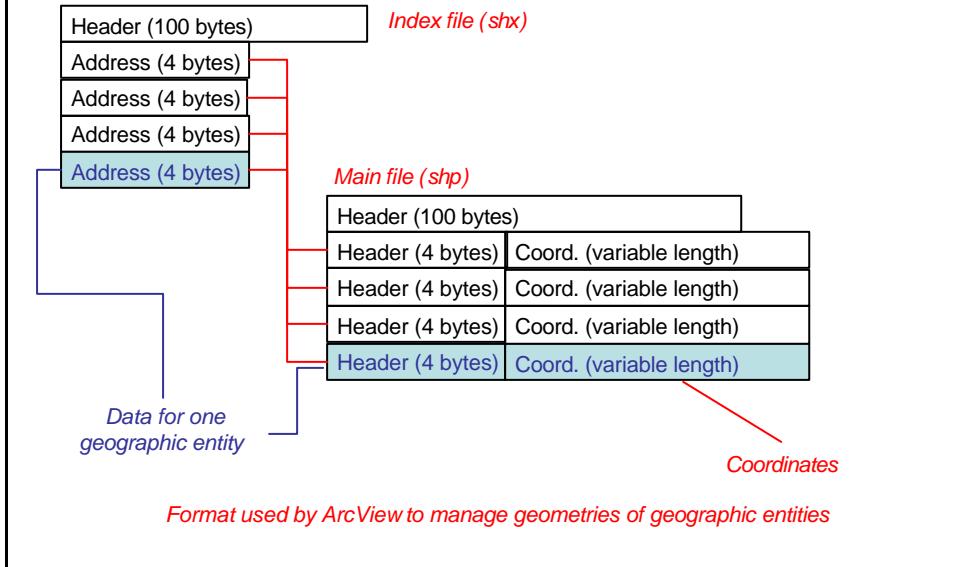
- » One type of geometry / file (but many types are available)

- **Index file** (suffix **shx**) : addresses of the beginning of each geographic entity in the main file (pointers for direct access)

- **dBase file** (suffix **dbf**) : main table of attribute values

- » One tuple = one geographic entity

- » Sequential number = geographic ID (= sequential number of geometries in the Main file)


- » Transactions and requests : interactive SQL interfaces



## How to introduce « geography » into database? Desktop GIS

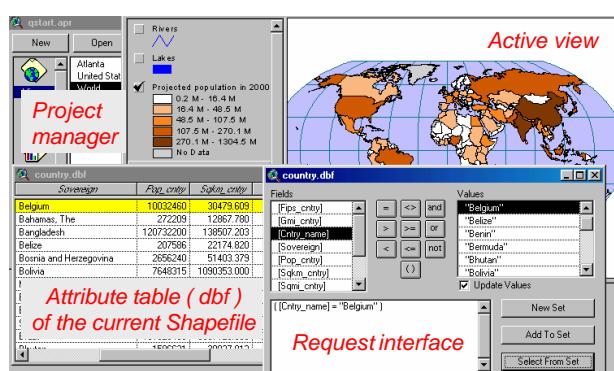
22

JP Donnay – 2004



## How to introduce « geography » into database? Desktop GIS

23


JP Donnay – 2004

### – Structure of the application

- **Project :**
  - Collections of *themes* (one theme = one Shapefile) selected by the user
- **View** (in the sense given by database theory) : view of the data contained in one theme of the project :
  - Attribute table
  - Map of the geographic entities
  - Attached layout (legend)

### – Interfaces

- Project manager
- Interactive request interface





- Idrisi : an example of desktop raster based GIS software

- Reference image :

- Image of the geometries of the geographic entities
    - Any geographic entity has an area (min = 1 pixel)
    - **Mandatory** for all operations (cannot be altered)
    - **Pixel value = geographic ID**
      - Integer ( $\geq 0$ )
      - Same pixel value = same geographic entity
        - » True for neighbor or **not** neighbor pixels
      - Number of distinctive pixel values = number of geographic entities
      - **Pixel value = primary key of the attribute table**

Reference image  
Pixel # = Geographic ID

|   |   |   |   |
|---|---|---|---|
| 2 | 2 | 3 | 3 |
| 2 | 2 | 3 | 5 |
| 1 | 2 | 2 | 5 |
| 6 | 6 | 1 | 5 |

| Id. | Fréquence | Attribut 1 | ... | Attribut n |
|-----|-----------|------------|-----|------------|
| 1   | 2         | ...        | ... | ...        |
| 2   | 6         | ...        | ... | ...        |
| 3   | 3         | ...        | ... | ...        |
| 4   | 0         | ...        | ... | ...        |
| 5   | 3         | ...        | ... | ...        |
| 6   | 2         | ...        | ... | ...        |

Attribute table  
connected to  
the reference  
image

- Attribute management

- Attribute values managed by DBMS Access
    - One **main table** containing :
      - One tuple = one geographic entity
        - » At least as many tuples as pixel values in the reference image
      - One field = geographic ID (integer)
    - SQL interface

Attribute table

| Id. | Fréq. | Population | ... |
|-----|-------|------------|-----|
| 1   | 2     | 140        |     |
| 2   | 6     | 120        |     |
| 3   | 3     | 60         |     |
| 4   | 0     | 45         |     |
| 5   | 3     | 90         |     |
| 6   | 2     | 180        |     |

Reference image

|   |   |   |   |
|---|---|---|---|
| 2 | 2 | 3 | 3 |
| 2 | 2 | 3 | 5 |
| 1 | 2 | 2 | 5 |
| 6 | 6 | 1 | 5 |

Population  
Frequency

| Population | Frequency |
|------------|-----------|
| 20         | 20        |
| 20         | 20        |
| 70         | 20        |
| 90         | 70        |

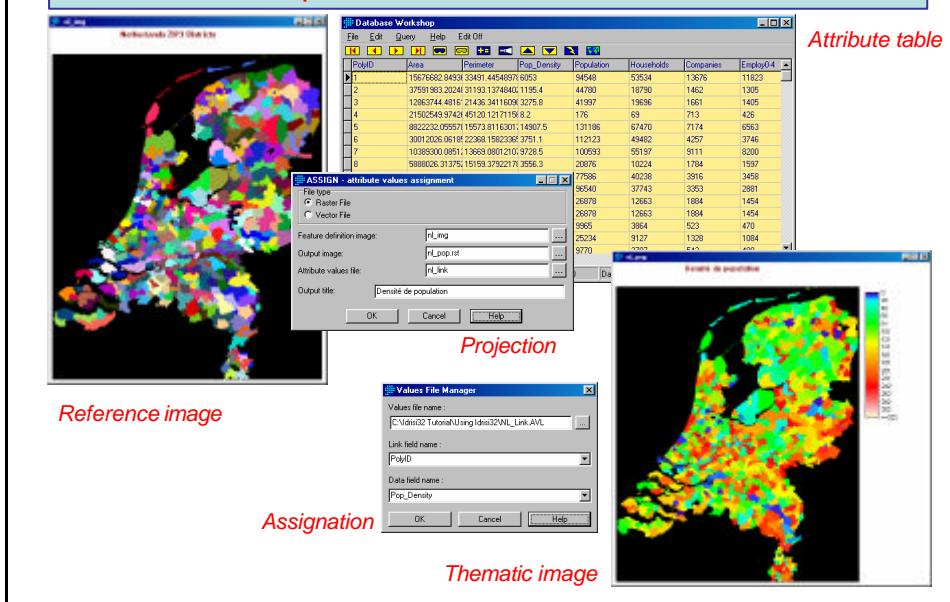
SQL instruction

| Id. | Population |
|-----|------------|
| 1   | 70         |
| 2   | 20         |
| 3   | 20         |
| 5   | 30         |
| 6   | 90         |

|    |    |    |    |
|----|----|----|----|
| 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 30 |
| 70 | 20 | 20 | 30 |
| 90 | 90 | 70 | 30 |

LUT

Thematic image

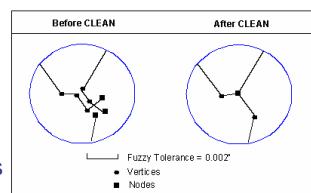
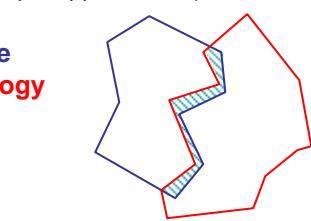

- The result of a SQL request is visualized in a thematic image in 2 steps:
      - Creation of a 2 columns **Look Up Table** by the **projection** of
        - » The ID attribute
        - » The thematic attribute **converted in number**
      - **Assignation** of the LUT to the reference image **Thematic image** to carry out the thematic image



## How to introduce « geography » into database? Desktop GIS

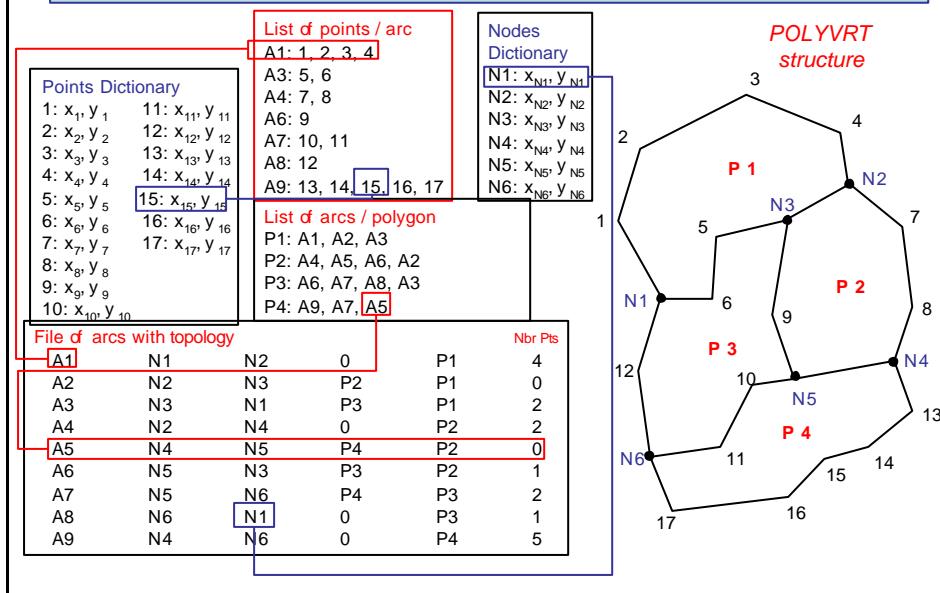
26

JP Donnay – 2004

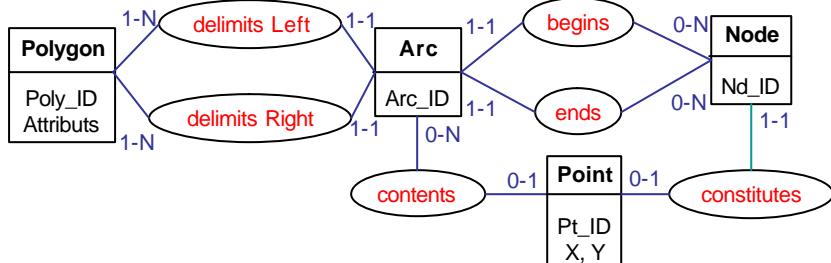

## How to introduce « geography » into database? Topology

27


JP Donnay – 2004

- Extended spatial requests
  - Until now, geometries are limited to position and logical relationships (coordinates, composition)
    - These elements limit spatial requests to simple applications (in vector format)
  - Extended spatial requests require more information about geometry : the **topology**
    - Neighbourhood
    - Superposition
  - **Topology of a map can be extracted automatically provided that:**
    - Layer contains only one kind of geometry (polylines or polygons)
    - Positions are **cleaned** to avoid dangling nodes and sliver polygons
    - Geometric primitives are seen as elements of the **graph theory** (node, arc, path)





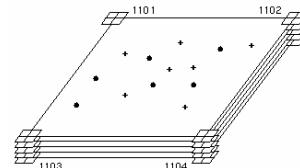

## Topology



## Geo-relational

- Relational schema
  - Topology (node, arc, polygon) can be formalized in E/R schema

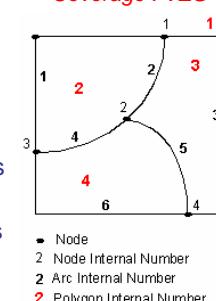



- This schema can be implemented in a Relational DB
  - However the positional data (nodes and points coordinates) are only retrieved through a huge number of jointures !
- The **Geo-Relational** solutions
  - Only conserve topologic information in a relational DB
  - Let positional information in binary files (direct access, proprietary format)



- Arc-Info (until vers. 7) : an example of enterprise GIS using a geo-relational implementation

- **Geometries :**


- **Topologic primitives** : isolated nodes, arcs & polygons
  - Identified by internal numbers
  - Contain positional data (nodes & arcs) & topologic information (arcs)
  - Stored in dedicated files (**proprietary format**)
- **User's geometries = feature classes**
  - Nodes, arcs, polygons + composed features (regions...)
  - Receive User IDs
  - IDs (internal + user), topologic info (if any) & computed geometric attributes of feature classes are stored in **tables** (**proprietary format**)
- **Coverage :**
  - Portion of space, referenced by tic points and MBR coordinates
  - All geometries (collection of files) concerning one theme are gathered in one coverage

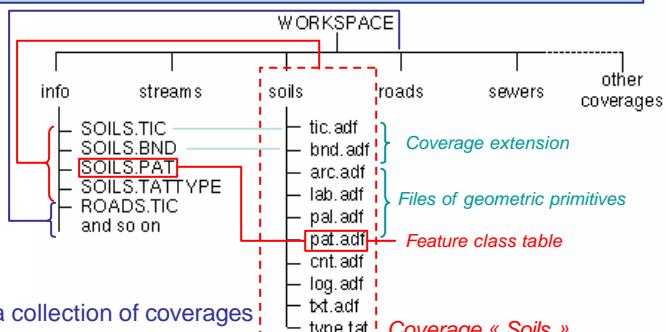


- **Attributes & topology :**

- **Info** : R-DBMS managing tables of feature classes
- **Feature class table** : automatically generated table
  - **View** of the corresponding table contained in the coverage
    - » IDs, topologic info, geometric attributes
  - Generation of one table for every feature class contained in every coverage
- User's attributes can be added to any feature class table

**Coverage : VEG**



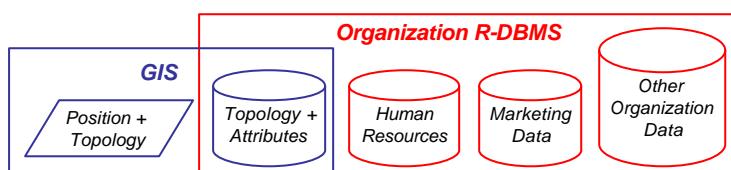

**Feature class table (arc)**  
available in « Info »

All these attributes are  
generated by the system

| FNODE | TNODE | LPOLY | RPOLY | LENGTH | VEG# | VEG-ID |
|-------|-------|-------|-------|--------|------|--------|
| 1     | 3     | 2     | 1     | 5.0    | 1    | 1      |
| 1     | 2     | 3     | 2     | 2.0    | 2    | 2      |
| 1     | 4     | 1     | 3     | 10.0   | 3    | 3      |
| 2     | 3     | 4     | 2     | 1.9    | 4    | 4      |
| 4     | 2     | 4     | 3     | 3.9    | 5    | 5      |
| 3     | 4     | 4     | 1     | 5.1    | 6    | 6      |



### – Structure of the GIS :




- **Workspace** : a collection of coverages (themes) concerning one application constitutes a workspace
- **Directories** : every coverage is a directory in a workspace
  - The views of all tables are gathered in one directory **Info**, the only directory “open” to the user for SQL transactions
- **Application modules** : Arc-Info offers a complete collection of software modules able to exploit both coverage and info directories, in order to perform extended spatial requests (notably based on topology relationship)



### • Hybrid GIS

- e.g. **Geo-relational**
  - FMS (position + topology) + R-DBMS (topology + attributes)
- **Problems for the organization :**
  - A part of data are **out** of the DBMS
    - **No guarantee** about : security, daily data management, archive & back-up, etc.
  - Depending on a **dedicated** software
    - Hardware & software compatibility
    - Organization data are stored in proprietary formats
    - **No guarantee** about extended maintenance and viability





- Integrated model

- Required by organizations
- R-DBMS : position + topology + attributes ?
- (see E/R schema p. 29)

```
Polygon (Poly_ID, Attribute_1, ..., Attribute_n)
TablePolArc (Poly_ID, Arc_ID, N°_Order_Arc)
Arc (Arc_ID, #Nd_Begin, #Nd_End, #Poly_Left,
#Poly_Right)
TableArcPt (Arc_ID, Pt_ID, N°_Order_Pt)
Node (Nd_ID, #Pt_ID)
Point (Pt_ID, X, Y)
```

- Drawback : number of jointures to obtain the coordinates of any point
  - Due to the topology !
- Topology requested for extended spatial analysis (a few % of requests !)
  - Topology can be automatically extracted from clean geo-data
- Flat relational : R-DBMS : position + attributes
  - Topology on the fly if requested !



- Oracle Spatial Cartridge

- « *Spatial Data Option* » (SDO) of Oracle R-DBMS (mid of '90s)
- **Spatial cartridge concept covers :**
  - A strictly relational implementation (*normalized schema*)
  - Vector data model : simple & composed features, **without topology**
    - Compatible with the future OGC standard (see below)
  - A method for spatial indexing (based on quadtrees)
  - An extension of SQL statements, in order to allow spatial requests and geometric processes
- **Data model (3 levels)**
  - **Element** (primitive) : point data (1), line data (2) & polygon data (3)
  - **Geometry** (user feature) : made of one or several elements, assigned to only one user ID (main key for the jointure with attribute tables)
  - **Layer** : geo-referenced support of one or several geometries, supporting the spatial index
  - 4 tables generated by specific SQL instructions
    - Spatial indexation is automatically achieved by the system



## – Structure of the tables

## • SDO-LAYER

| OrdCnt | Level  | NumTiles | CoordSys |
|--------|--------|----------|----------|
| number | number | number   | varchar  |

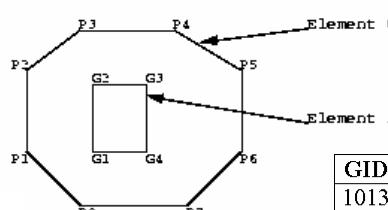
– **OrdCnt** : nbr of columns for coordinate data in the table SDO-GEOM– **Level** : quadtree tessellation level– **NumTiles** : option for variable size tessellation– **CoordSys** : name of the reference coordinate system

## • SDO-GEOM

| GID    | ESeq   | ETYPE  | Seq    | X1     | Y1     | ... | Xn     | Yn     |
|--------|--------|--------|--------|--------|--------|-----|--------|--------|
| number | number | number | number | number | number | ... | number | number |

– **GID** : Geometry ID– **ESeq** : order n° of the current element in the geometry (0,...)– **ETYPE** : element type (1, 2 or 3)– **Seq** : order n° of the current tuple in the element (0,...)

## • SDO-DIM


– Table documenting the dimensions used to define the layer

## • SDO-INDEX

– Table concerning the quadtree spatial index



Geometry 1013:



Record of a composed polygon  
(2 elements)  
in Spatial Cartridge

Tables :  
SDO-LAYER  
SDO-DIM  
SDO-GEOM

| OrdCnt | Level | NumTiles | CoordSys |
|--------|-------|----------|----------|
| 4      | 1     | NULL     |          |

| DimNum | LB | UB  | Tolerance | DimName |
|--------|----|-----|-----------|---------|
| 1      | 0  | 100 | 0.05      | X axis  |
| 2      | 0  | 100 | 0.05      | Y axis  |

| GID  | ESeq | ETYPE | Seq | X1    | Y1    | X2    | Y2    |
|------|------|-------|-----|-------|-------|-------|-------|
| 1013 | 0    | 3     | 0   | P1(X) | P1(Y) | P2(X) | P2(Y) |
| 1013 | 0    | 3     | 1   | P2(X) | P2(Y) | P3(X) | P3(Y) |
| 1013 | 0    | 3     | 2   | P3(X) | P3(Y) | P4(X) | P4(Y) |
| 1013 | 0    | 3     | 3   | P4(X) | P4(Y) | P5(X) | P5(Y) |
| 1013 | 0    | 3     | 4   | P5(X) | P5(Y) | P6(X) | P6(Y) |
| 1013 | 0    | 3     | 5   | P6(X) | P6(Y) | P7(X) | P7(Y) |
| 1013 | 0    | 3     | 6   | P7(X) | P7(Y) | P8(X) | P8(Y) |
| 1013 | 0    | 3     | 7   | P8(X) | P8(Y) | P1(X) | P1(Y) |
| 1013 | 1    | 3     | 0   | G1(X) | G1(Y) | G2(X) | G2(Y) |
| 1013 | 1    | 3     | 1   | G2(X) | G2(Y) | G3(X) | G3(Y) |
| 1013 | 1    | 3     | 2   | G3(X) | G3(Y) | G4(X) | G4(Y) |
| 1013 | 1    | 3     | 3   | G4(X) | G4(Y) | G1(X) | G1(Y) |



- Success of Oracle SDO

- Wishes of the organizations

- To keep their “costly” data in standard and reliable DBMS
    - To have access to transparent schemas

- Limits of SDO

- Large redundancy (coordinates)
    - Limited features types (versus e.g. geo-relational capabilities)
    - Poor efficiency of spatial indexing
    - Very limited spatial analysis and geometric processing

- Evolution of the relational model and R-DBMS

- BLOB (*Binary Long OBject*)
  - Object-relational extensions
  - SQL 3 / MM
  - Stored procedures



- Examples of object-relational statements

- Abstract types & reference sharing :

- (TYPE) **Point** (Pt-ID Int, X Float, Y Float)
    - (TYPE) **Node** (Nd-ID Int, Position REF(Point) )
    - (TYPE) **Polyline** (Pli-ID Int, List (Point), Attribute-1 ... )

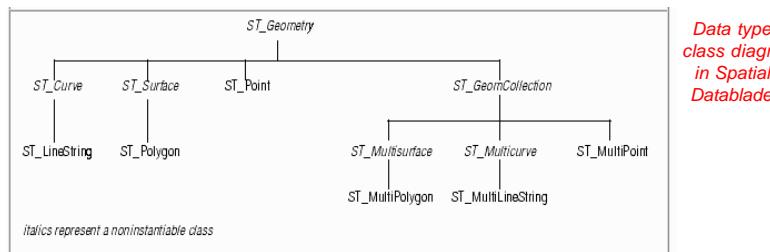
- Methods :

- (TYPE) **Segment** (Seg-ID Int, Pt1 REF (Point), Pt2 REF (Point),  
FUNCTION Compute\_Length (S Segment) RETURNS (Float)  
...END FUNCTION

- Example of request :

```
SELECT Compute_Length(S)  
FROM TableSegment S
```

- Heritage & specialization :


- (TYPE) **Polyline** (PLL-ID Int, List (Point) )
    - (TYPE) **RoadAxis** UNDER Polylign (Nom String)



- Advantages for geographic data
  - Multiplication of geographic features
    - Definition of any kind of feature thanks to **abstract types**
      - So called “extended data types”
    - O-O design of the database (UML + dedicated spatial extensions)
      - Geographic features (class & objects) close to the users’ concerns
  - Storage of complex features in **BLOB**
    - Including Images !
  - Number of jointures dramatically reduced
    - Thanks to the **sharing by reference**
  - Definition of spatial and geometric procedures
    - Written in dedicated languages based on SQL (or C or Java)
    - Stored on the server
- Emergence of “spatial enabled” databases
  - From the leader companies of DBMS : Oracle, Informix, IBM...
  - Repositioning of the standard GIS companies : ESRI, MapInfo...



- **Informix Spatial DataBlade Module**
  - Extension to Informix DBMS (IDS or IIF) providing extended spatial data types and associated functions available via SQL 3



- Spatialization of the database is performed thanks to :
  - A “**spatial column**” in the feature table
  - A couple of **metadata tables** giving :
    - Information on the type of feature in the spatial column
    - Information on the geo-reference system

– The “**spatial column**”

- Corresponds to one field of the table containing the feature ID and possible feature attributes (= “**spatial table**”)
- Can only refer to **one** type of spatial data
  - Different tables must be used to store the various spatial data types
- Contains the geometry (position data) of the feature or (generally) a pointer to a BLOB (large geometries)

| Spatial table (ex. polygone) |         |      |      |      |              |
|------------------------------|---------|------|------|------|--------------|
| se-row-id                    | Area-id | Name | Size | Type | Zone         |
|                              |         |      |      |      | <ST_Polygon> |

| Spatial table (ex. point) |         |      |            |
|---------------------------|---------|------|------------|
| se-row-id                 | Site-id | Name | Location   |
|                           |         |      | <ST_Point> |

– The “**Geometry table**”

- Specify the name and the content of the spatial columns in all spatial tables of the database

– The “**Reference table**”

- Specify the spatial reference for all spatial tables of the database



| se-row-id | Area-id | Name | Size | Type | Zone         |
|-----------|---------|------|------|------|--------------|
|           |         |      |      |      | <ST_Polygon> |

| DB-name | User-id | Table-name | Col-Spat-name | Col-type | SR-id |
|---------|---------|------------|---------------|----------|-------|
|         |         |            |               |          |       |

| SR-id | Descript. | Ref | Ref-id | FOX | FOY | XYUnit | FOZ | ZUnit | FOM | MUnit | SRText |
|-------|-----------|-----|--------|-----|-----|--------|-----|-------|-----|-------|--------|
|       |           |     |        |     |     |        |     |       |     |       | <WKT>  |

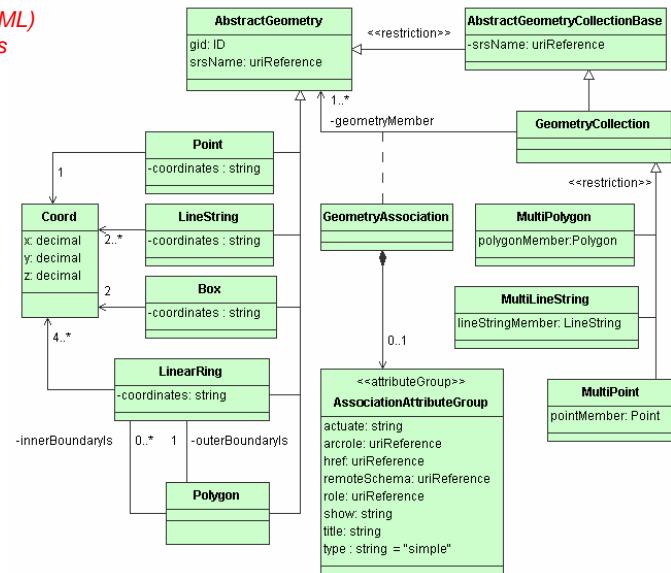
*Spatialization of a table & tables of metadata according to the Spatial DataBlade*

*System of reference in Well-Known Text format (OGC standard)*

*False origin & units in x, y, z, m*



- Pitfalls of object-relational solutions
  - Diversity of spatialization approaches
    - Extended data types : any kind of spatial feature could be created, according to user's domain
    - BLOB : sophisticated data structures could be stored in a "black box"
    - Spatial procedures : emergence of un-standard SQL statements
    - Etc.
  - The increasing role of spatial data (economic & strategic)
    - Clear distinction between data providers (specialized agencies) and data users
      - Importance of data quality and metadata
      - Requirements for data exchange and data remote access
        - Internet plays a key role in distributed databases
    - Projects of spatial data clearinghouse, spatial data gateways, spatial data infrastructures
  - Everything calls for standards !



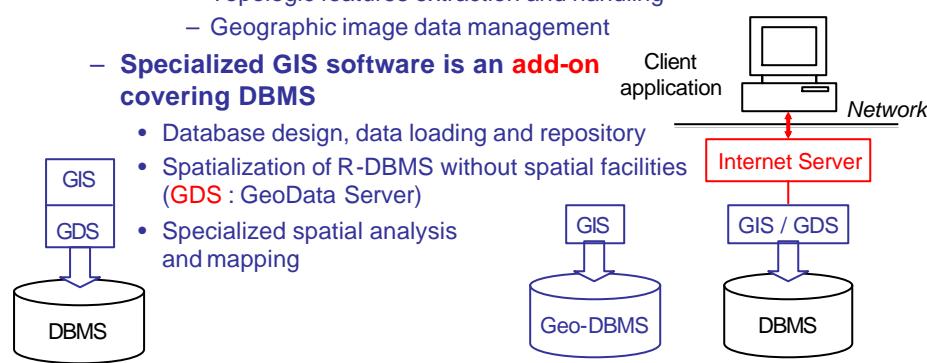

- An international concern for about 20 years
  - ISO TC 211, CEN TC 287, national and sectoral committees
    - Antagonisms between NMA in the public sector, and between many middle-size private companies
- Significant advances since the end of the '90s
  - FGDC (Federal Geographic Data Council) : metadata standards
  - OGC (Open GIS Consortium) :
    - Member driven, "non profit" industry consortium (258 members)
    - Quite slow advances until the end of the '90s : US public agencies + international "GIS" companies + universities
    - Since the end of the '90s : new members (Oracle, IBM, Microsoft, etc.) impose the standards, on the basis of :
      - Object definition of spatial features
      - Spatial enabled O-R databases
      - Internet interoperability
- Norms ISO CD 191xx
  - Published from 2001, and still in progress



## Standards required !

## Object schema (UML) of OGC geometries



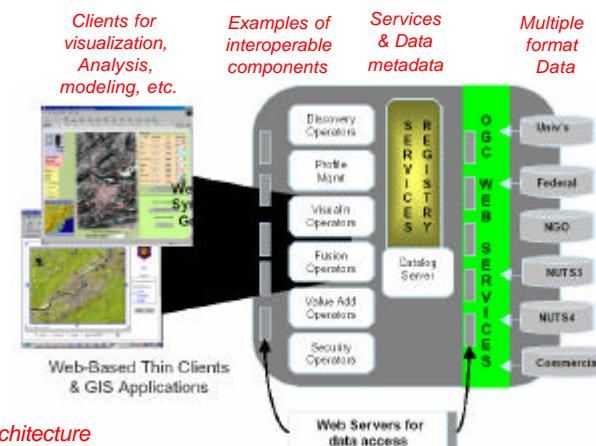

- GIS architecture of today

- Spatial enabled database is the rule

- Oracle solutions (Spatial Object - 8i, 9i, [10g]) = 90 % implementations !
- DBMS progressively perform **all tasks** related to spatial data
  - Long transactions, spatial indexation
  - Topologic features extraction and handling
  - Geographic image data management

- Specialized GIS software is an **add-on** covering DBMS

- Database design, data loading and repository
- Spatialization of R-DBMS without spatial facilities  
(**GDS** : GeoData Server)
- Specialized spatial analysis and mapping






– Standardized metadata and normalized schemas are published on Internet to set up future distributed GIS

- Emergence of services allowing remote access to various objects :

- Spatial data selected by the producers
- Interoperable components processing standardized data



Example of geo-data services architecture



Thank you for your attention ...