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ABSTRACT : At the 2001 Esaform conference, we have presented a simulation tool designed to predict form
errors of part surfaces obtained by face milling and turning processes. The most relevant aspect of the developed
method is its ability to solve industrial cases with huge 3D finite element meshes in a very small time. Until
recently, we were only considering pure linear problems. However, the simulation of several machining operations
requires the introduction of contact. The present paper describes the numerical method developed to solve such
non linear problems.

Key words : finite elements, machining simulation, milling, turning, form error, contact

1 INTRODUCTION

In manufacturing industries, there is a strong demand
for machining simulation tools. The available
commercial codes do not yet cover the wide panel of
industrial needs. Among them is the ability to predict
the form error of machined parts. In process planning
phase, engineers are faced with technical choices
(fixture, tool, cutting conditions, …) but they rarely
have the possibility to foresee their influence, so that
expensive actual tests are unavoidable. A few research
works deal with the form error prediction. Let us cite
Schulz and Bimschas [2], Gu et al. [3] and more
recently Liao [4]. The tool presented in this paper uses
a similar framework: the form error is obtained by
computing several part deformations thanks to the
finite element method. The most interesting capability
of our method is to deal with large industrial
applications with a small computation time thanks to
the superelement technique (see § 3.1). Face milling
and turning operations are considered. For most
processes, standard boundary conditions (constraints
or linear stiffness) can be adopted. However, there are
several cases where contact has to be introduced to
successfully model the part behavior. This is notably

the case when the part geometry prevents from using
clamps such as for transverse turning operations on
brake disks or when the contacting surfaces are not
perfect (rough parts for example). The introduction of
contact in the simulation shifts the problem in the non-
linear domain that is well-known to be time-
consuming. The aim of the present paper is to describe
a finite element method that is able to solve efficiently
this type of problem.

2 METHOD DESCRIPTION

2.1 Hypotheses

Generally, several phenomena may affect the surface
obtained by a given machining process. Some of them
are usually unexpected and need to be fixed (chatter,
vibrations). Other are peculiar to the process itself such
as the bending of thin end-mills or the thermal
workpiece expansion in cylinder boring operations. In
this research, we assume that the main source of the
form error is the part flexibility. The tool and the
machine-tool are supposed to be perfectly rigid. This
is a reasonable assumption for face milling and turning



Figure 1: Principle 

Figure 2: Finite element scheme 

operations [3]. The workpiece response under the load
applied by the tool presents both a static and a dynamic
part, especially in milling. As stated by Liao [4], the
dynamic part is small when the teeth entering
frequency is far enough from the system natural
frequencies. Therefore, only the static part of the
workpiece response is considered.

2.2 Principle

The defect of a machined surface point depends on its
displacement while the tool is cutting through it. The
error is simply its normal displacement changed of
sign. The figure below illustrates this principle for the
straight turning of a cylindrical bar. In this particular
case, the part deformation leads to a certain height of
uncut material on the surface, the result being a barrel
form. It has to be mentioned that in some situations the
tool may also cut too much material, especially in
milling.

2.3 Finite element approach

For complex shaped parts, the finite element method
is necessary to compute the deformations. Although
the part geometry changes as the tool removes
material, a single finite element model is used to
perform the calculation. Usually we chose a model
corresponding to the part geometry after the material
removal to obtain the greatest flexibility.
The strategy adopted to obtain the form error has a
great influence on both the efficiency and the accuracy
of the method. Schulz and Bimschas [2] compute
defects at a limited number of surface points to limit
the computational cost. They use a complex
interpolation scheme to find back the error of the
whole surface. The correctness of the solution is
doubtful if the number of computation points is small.

At contrary, Gu et. al [3] use a time description of the
machining process which leads to a great number of
calculation points. According to us, a time description
is useless in the frame of a static computation.
The method that we have adopted is to compute the
defect of all the nodes of the machined surface. Doing
so, the number of calculation points is naturally set by
the mesh and no interpolation scheme is needed. The
only interpolation made is the intrinsic finite element
interpolation. The defect of one node is obtained as
follow:

� first the tool position where the node is cut is
determined;

� then the cutting forces are computed and applied on
the mesh;

� the part deformation is computed thanks to the
finite element method;

� finally the node displacement is picked among the
whole displacement fields.

The final surface shape is obtained by applying the
above scheme to the  nodes of the machined surfacen
(figure 2).

More explanations on the cutting force computation
and the force application on the mesh can be found in
previous paper [1]. Let us just mention that extra
features are also implemented such as the back cutting
effect in milling and the form error computation
(flatness and cylindricity). As illustrated on figure 2, a
relevant point of our method is that deformedn
structures need to be computed in order to obtain the
machined surface. That means that  load cases aren
applied to the finite element model,  being a largen
number in the case of industrial applications (up to a



Figure 3: 4-cylinder engine block mesh with machined surface
in black (courtesy of Renault)
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few thousands). Solving problems with such a high
number of load cases requires special algorithms to
achieve a reasonable computation time.

3 FINITE ELEMENTS ANALYSIS

3.1 Superelement method

The system to solve is

where  is the stiffness matrix,  is a vectorK q
containing the degrees of freedom (dof) and  areg ( l )

the  load vectors applied to the structure. Applyingn
directly the  load cases to the whole structure provedn
to be highly time consuming and even unfeasible for
huge models [1]. So a special method called the
superelement method is adopted to reduce the size of
the system to solve. In fact, only a small number of
nodes are of interest, namely the machined surface
nodes and the nodes where boundary conditions are
applied. The major part of the system dof are ‘useless’
in the frame of form error simulation.
If the  retained dof are denoted  and the nR qR nC
condensed ones , the system can be written in theqC
following way

As the loads  are all equal to zero, this leads to thegC
reduced system

The superelement method is available in most
commercial finite element codes. The reduced system
size is highly lowered compared to the original one,
the ratio  being the order of 100 to 300. ThenC / nR
performance of the superelement is very impressive
even for large models. For the 4-cylinder engine block
illustrated on figure 3, the time required to create the
superelement is about one hour on a standard PC
(Athlon with 1.5Gb of physical memory) with the
finite element code Samcef.

3.2 Linear problems

Once the reduced system is obtained, we still have to
solve it for the  load cases. For linear problems forn
which boundary conditions consist in constraints and
linear stiffnesses, the reduced stiffness matrix can be
inverted. We use either the Gauss method or the
Cholesky factorization. For this last one the CPU time
needed is almost an hour for the case of the 4-cylinder
engine block, the matrix size being .[ 7125 x 7125]

Once the stiffness matrix  is inverted, the solutionK
�

RR
is obtained within a few seconds since we solve a
explicit system

For a given set of boundary conditions, numerous
simulations may now be achieved by changing the
tool, the tool path or the cutting conditions.

3.3 Contact problems

In several machining operations, it is not possible to
ensure a permanent contact between the workpiece and
the supports. In practice, this happens when the part
geometry prevent from using clamps such as for
transverse turning operations on brake disks. More
generally, contact is not ensured when the contacting
surfaces of workpiece and/or support are not perfect.



Figure 4: brake disk (courtesy of ACI)
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Such one-sided contacts are modeled by setting a
upper value on the normal degrees of freedom located
in the contact zones between the part and the supports.
The solution is obtained by minimizing the total
system energy with upper bounds on some degrees of
freedom,

The minimization problem is well-known: a quadratic
function submitted to bounds. The difficulty comes
from the great number of load cases and the system
size. A  scheme similar to the superelement one is
adopted to solve the problem. The degrees of freedom
of the reduced system are split between the  boundedJ
ones  and the other ones  to obtain a new system,qb qo

so that the minimization problem is now limited to the J
bounded degrees of freedom,

Practically, for a given set of boundary conditions, the
first step consists in building part of the reduced
system (b) by calculating ,  and . ThisK

� 1
oo KboK

� 1
oo K

�

bb
is the hardest part since it requires a matrix inversion.
Then each simulation result is obtained by calculating

, solving the minimization problem for the  loadg
�

b n
cases and finding back the reduced system dof qo
thanks to equation (a). This takes only a few seconds
since the number of contact dof is usually limited (the
order of 50 at maximum).

4 APPLICATION

The case of the transverse turning operation of a brake

disk is illustrated on figure 4. The disk is held in a
three-jaws chuck and lies on three support located near
the jaws. The machined surface presents a three-lobed
error. The obtained axial run-out at 75 mm equals
14.6µm while the measured one equals 14.4µm.

5 CONCLUSION

Thanks to the introduction of contact, a certain class of
applications can be treated successfully. Even for such
non linear problems, the simulation tool remains very
efficient. 
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1 ACI designs, develops, validates and manufactures
front and rear-chassis and suspension systems.


