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Summary 
 
This paper is devoted to the study of the efficiency of an oscillating trough for any value of the frequency. It is 
found that pure slipping or mixed cycles may occur, the latter comprising sticking periods. The results of the 
present analysis concern the cyclic displacement, the mean velocity and the dissipated power. 
 
 
Résumé 
 
Cet article traite du fonctionnement et des performances des couloirs oscillants, pour une pulsation quelconque. 
Le régime de fonctionnement peut être purement glissant ou mixte, avec des temps d'adhérence. Sont calculés, 
le déplacement par cycle, la vitesse moyenne et la puissance dissipée. 
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Notations 
 
u déplacement horizontal de la table 
v déplacement vertical de la table 
r rayon de la manivelle 
ϕ angle à la manivelle 
w vitesse de rotation de la manivelle, pulsation du mouvement 
α angle d'inclinaison de la suspension 
m masse posée sur le couloir 
N force verticale transmise à la masse 
g accélération de la pesanteur 
T force de frottement 
µ coefficient de frottement 
∆w déplacement de la masse lors d'un cycle 
ϕo, ϕ1 angles de début et de fin du glissement négatif 
ϕ2, ϕ3 angles de début et de fin du glissement positif 
∆ϕ = ϕ1 - ϕo 
Pf puissance de frottement 

�
f travail de frottement 

 
 
 
1. Introduction 
 
Les couloirs oscillants sont utilisés pour résoudre 
maints problèmes de transport mécanique. En 
fonction de l'intensité de la vibration imposée au 
couloir, le transfert peut être dû à un lancement de 
la matière (throw conveyor) ou simplement à son 
glissement (sliding conveyor). Excluant a priori les 
convoyeurs à lancement, dont la modélisation 
implique des hypothèses délicates relatives aux 
conditions du choc d'atterrissage de la matière 
transportée [1], nous limiterons notre investigation 
aux seuls convoyeurs à glissement. En dehors de 
travaux anciens [3,4] qui se limitent au cas de la 
pulsation maximale de non-lancement, on trouve 

très peu de renseignements à ce sujet dans la 
littérature. Les bases d'une étude complète sont 
données par HARDING et NEDDERMAN [2], mais 
leur résolution numérique mène à des diagrammes 
assez peu pratiques. 
 
Une étude analytique du fonctionnement est 
cependant possible à partir de la condition de 
fermeture d'un cycle établi où la matière glisse 
constamment. Sur cette base, il est assez aisé de 
déterminer le déplacement par cycle et la vitesse 
moyenne de transport, en fonction de la pulsation. 
Une analyse un peu plus fouillée montre qu'en-deçà 
d'une certaine pulsation, le cycle change de nature, 
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car il apparaît des temps d'adhérence qui, du reste, 
concourent au transport. 
 
En ce qui concerne la puissance de frottement, un 
résultat particulièrement intéressant est qu'en 
régime de glissement pur, cette puissance est 
directement proportionnelle au débit, leur rapport ne 
dépendant ni du coefficient de frottement, ni de la 
pulsation. 
 
 
 
2. Mouvement du couloir 
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Figure 1 :  le couloir vibrant 

 
Le couloir, supposé horizontal, est astreint par sa 
suspension à se mouvoir à peu de chose près selon 
une droite d'angle α par rapport à l'horizontale, 
montant de gauche à droite (fig. 1). Le mouvement 
horizontal est commandé par un système bielle-
manivelle dont la bielle est très longue devant le 
rayon de la manivelle. On peut donc écrire sans 
grande erreur 
 

ϕcosru −=            (1) 

 
où r est le rayon de la manivelle, u le déplacement 
de la table, et ϕ l'angle à la manivelle, posé nul au 
point mort gauche. 
 
L'angle α d'obliquité de la suspension a pour effet 
de conjuguer au mouvement horizontal, petit devant 
la longueur des bielles de suspension, un 
mouvement vertical vers le haut 
 

αϕα tgrtguv cos−==          (2) 

 
Les vitesses sont donc 
 

αϕωϕω tgrvru sin,sin == ��         (3) 

 
et les accélérations, 
 

αϕωϕω tgrvru cos,cos 22 == ����         (4) 

 
 
 
3. Action du couloir sur une masse m posée 
dessus 
 
Soit une masse m posée sur le couloir (fig. 2). Dans 
le cas où la liaison masse-couloir n'est pas rompue, 

la vitesse verticale de la masse est v, et l'équation 
de son mouvement dans cette direction est 
 

mgNvm −=
��

, 
 
ce qui signifie que la force verticale N que lui 
transmet le couloir est donnée par 
 

)cos()( 2 αϕω tgrgmvgmN +=+= ��          (5) 

 
 

mg

N
 

Figure 2 : équilibre de la masse portée 

 
Cette force doit rester constamment positive, sous 
peine de perdre tout contrôle du couloir sur la 
masse, qui s'envolerait. Il est donc nécessaire 
d'assurer la condition 
 

0cos2 ≥+ αϕω tgrg  

 
quel que soit l'angle de manivelle ϕ. Le minimum du 
premier membre se produisant pour cos ϕ = -1, on 
obtient la condition 
 

maxω
α

ω =≤
tgr

g
          (6) 

 
qui fixe la pulsation maximale. 
 
Examinons à présent le mouvement horizontal. Soit 
w�  la vitesse horizontale de la masse. Trois cas sont 
possibles : 
 
(a) Le couloir va plus vite que la masse, wu �� > . Il 

lui transmet alors la force de frottement 
 

)cos( 2 αϕωµµ tgrgmNT +== , 

 
et l'accélération de la masse est donc donnée 
par 
 

)cos( 2 αϕωµ tgrg
m

T
w +==

��
          (7) 

 
(b) Le couloir va moins vite que la masse, wu �� < . Il 

lui transmet alors la force de frottement 
 

)cos( 2 αϕωµµ tgrgmNT +−=−=  

 
si bien que l'accélération de la masse est 
donnée par 
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)cos( 2 αϕωµ tgrgw +−=��           (8) 

 
(c) La masse adhère au couloir, ce qui implique 

que leurs accélérations coïncident. Alors, 
 

umT ��=  
 
 et cette force doit rester inférieure en valeur 

absolue à µN, condition qui s'écrit 
 

 )cos( 2 αϕωµ tgrgmum +≤��  

 
soit 
 

)cos( 2 αϕωµ tgrgu +≤��           (9) 

 
et 
 

)cos( 2 αϕωµ tgrgu +−≥��         (10) 

 
Tenant compte de l'expression (4) de l'accélération 
du couloir, ces conditions s'écrivent respectivement 

 

)1(
cos

2 αµω
µϕ

tgr

g

−
≤          (11) 

 
et 

 

)1(
cos

2 αµω
µϕ

tgr

g

+
−≥          (12) 

 
Il en découle en particulier que tout mouvement 
relatif est impossible si 

 

1
)1(2

≥
+ αµω
µ

tgr

g
 

 
soit si 

 

adhr

g

tg
ω

αµ
µω =

+
≤

1
        (13) 

 
Pour des pulsations inférieures, la masse adhère 
constamment au couloir. 
 
 
 
4. Cas où le couloir va plus vite que la masse 
(glissement négatif, fig. 3) 
 
Supposons qu'à partir d'un angle ϕo, correspondant 

à un instant 
ω
ϕo

ot = , la vitesse du couloir u�  

commence à surpasser celle de la masse, w� . A 
partir de ce moment, l'accélération est donc par (7) 
 

)cos( 2 αϕωµ tgrgw +=��  
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Figure 3 : glissement négatif 

 
Comme en to, les deux vitesses coïncident, on 
n'aura uw �� <  juste après que si )()( oo tutw

����
≤ , c'est-

à-dire si 
 

oo rtgrg ϕωαϕωµ cos)cos( 22 ≤+ , 

 
soit 
 

min2
)(cos

)1(
cos oo

tgr

g ϕ
αµω

µϕ =
−

≥       (14) 

 
Cette condition étant supposée vérifiée, l'intégration 
de (7) donne 
 

)sin(sin)()( ooo tgrttgtuw ϕϕαµωµ −+−+=
��

 

 
soit 
 

ϕαµωϕϕ
ω
µαµϕω sin)()1(sin tgr

g
tgrw oo +−+−=

�     (15) 

 
Cette situation se maintient tant que w�  reste 
inférieur à u� , c'est-à-dire jusqu'à l'angle ϕ1 où 

)()( 11 ϕϕ uw
��

= , ce qui s'écrit 

 

1

11

sin

)()1(sinsin

ϕαµω

ϕϕ
ω
µαµϕωϕω

tgr

g
tgrr oo

+

−+−=  

 
soit 
 

)(
)1(

sinsin 121 oo
tgr

g ϕϕ
αµω

µϕϕ −
−

+=        (16) 

 
Le déplacement de la masse entre ϕo et ϕ1 s'obtient 
en intégrant la relation (15) : 
 

)cos(cos)(
2

)).(1(sin

1
2

12

11

ϕϕαµϕϕ
ω
µ

ϕϕαµϕ

−+−+

−−=−

oo

ooo

tgr
g

tgrww
 

 
Notant que, par (16), 
 



 4

),)(sin(sin
2

)1()(
2

11
2

12 ooo
r

tg
g ϕϕϕϕαµϕϕ

ω
µ −−−=−  

 
on obtient l'expression équivalente 
 

)cos(cos

)sin(sin
2

))(1(

1

111

ϕϕαµ

ϕϕϕϕαµ

−+

+−−=−

o

ooo

tgr

r
tgww  

 
soit encore 
 

( ) ( ) ��
���� −

+
−

−−

⋅
+

=−

2
sin2

2
cos1

2
sin

11
1

1
1

oo
o

o
o

tgtg

rww

ϕϕαµϕϕϕϕαµ

ϕϕ

 (17) 

 
 
 
5. Cas où le couloir va moins vite que la masse 
(glissement positif, fig. 4) 
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Figure 4 : glissement positif 

 
Supposons à présent qu'à partir d'un angle ϕ2, 
correspondant à un instant t2 = ϕ2/ω, la vitesse du 
couloir u�  devient inférieure à w� . A partir de ce 
moment, l'accélération est donnée par la relation 
(8). Comme en t2, les deux vitesses coïncident, on 
n'aura uw �� >  juste après que si )()( 33 tutw

����
≥  c'est-à-

dire si 
 

2
2

2
2 cos)cos( ϕωαϕωµ rtgrg ≥+−  

 
soit 
 

max222 )(cos
)1(

cos ϕ
αµω

µϕ =
+

−≤
tgr

g
   (18) 

 
En supposant cette condition vérifiée, on peut 
intégrer (8) pour obtenir la vitesse de la masse : 
 

)sin(sin)()( 222 ϕϕαµωµ −−−−= tgrttgtuw ��  

 
soit 
 

ϕαµω

ϕϕ
ω
µαµϕω

sin

)()1(sin 22

tgr

g
tgrw

−

−−+=
	

    (19) 

 
Le glissement considéré cessera d'avoir lieu 
lorsqu'en un angle ϕ3, on obtiendra )()( 33 ϕϕ uw

��
= , 

ce qui s'écrit 
 

3sin)23(

)1(2sin3sin

ϕαµωϕϕ
ω
µ

αµϕωϕω

tgr
g

tgrr

−−−

+=
 

 
soit 
 

)(
)1(

sinsin 23223 ϕϕ
αµω

µϕϕ −
+

−=
tgr

g
 (20) 

 
Le déplacement de la masse entre ϕ2 et ϕ3 s'obtient 
en intégrant la relation (19) : 
 

)cos(cos)(
2

))(1(sin

32
2

23

23223

ϕϕαµϕϕ
ω

µ
ϕϕαµϕ

−−−−

−+=−

tgr
g

tgrww
 

 
Ici encore, on peut noter que par (20), 
 

),sin(sin
2

)1()(
2 23

2
23 ϕϕαµϕϕ

ω
µ −+=−− r

tg
g

 

 
si bien que 
 

)cos(cos

))(sin(sin
2

)1(

32

233223

ϕϕαµ

ϕϕϕϕαµ

−−

−++=−

tgr

r
tgww

 

 
et, en faisant appel aux mêmes relations 
trigonométriques que ci-dessus, 
 

]
2

sin2

2
cos))(1[(

2
sin

23

23
23

32
23

ϕϕαµ

ϕϕϕϕαµ

ϕϕ

−

−
−

−+

⋅
+

=−

tg

tg

rww

       (21) 

 
 
 
6. Possibilité d'un cycle glissant 
 
Peut-on imaginer un régime cyclique formé 
uniquement de phases successives de glissement 
vers l'arrière et vers l'avant ? Nous parlerons dans 
ce cas d'un cycle glissant. Pour qu'un tel cycle soit 
possible, il faut (fig. 5) assurer les relations de 
fermeture 
 

πϕϕϕϕ 2, 312 +== o         (22) 

 
et qu'en outre, les conditions (14) et (18) soient 
vérifiées. Dans un premier temps, nous 
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supposerons que ces deux dernières conditions 
sont bien remplies, et nous nous concentrerons sur 
les relations (22). 
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Figure 5 : cycle glissant 

 
L'équation (20) devient alors 
 

)2(
)1(

sinsin 121 ϕϕπ
αµω

µϕϕ −+
+

−= oo
tgr

g              (23) 

 
En additionnant cette relation à l'équation (16), on 

obtient alors, après division par 
r

g
2ω

µ
, 

 

αµ
ϕϕ

αµ
π

αµ
ϕϕ

tgtgtg
oo

+
−

−
+

=
−

−
11

2

1
11  

 
On en déduit 
 

)1(2)11)(( 1 αµπαµαµϕϕ tgtgtgo −=−++−  

 
soit 
 

)1(1 αµπϕϕϕ tgo −=−=∆         (24) 

 
L'introduction de ce résultat dans (16) donne alors 
 

r

g
o 21 sinsin

ω
πµϕϕ =−         (25) 

 
qui se transforme aisément en 
 

2
sin22

cos
2

cos
2

1

ϕω

πµϕϕϕϕ
∆

=
������ ∆+=�������� +

r

g
o

o        (26) 

 

Comme ∆ϕ est connu, cette relation fixe ��	
�� ∆+
2

ϕϕo  

au signe près, 
 

��
���

	





�
�

∆
±=∆+

2
sin2

cos
2 2 ϕω

πµϕϕ
r

g
aro ,       (27) 

 

pour autant, bien entendu, que 
 

min

2
sin2

ωϕ
πµω =

∆
≥

r

g
        (28) 

 
En deçà de cette valeur, un cycle glissant ne peut 
exister. Pour lever l'indétermination de signe de la 
relation (27), notons que si l'on suppose 

0
2

<��	
�� ∆+ ϕϕo , le fait que son cosinus soit positif 

implique 
 

0
22

<∆+<− ϕϕπ
o  

 
Alors, en tenant compte de la valeur (24) de ∆ϕ, 
 

)1(
2212 αµπϕϕϕϕϕϕ tgoo −+∆+=∆+==  

 
vérifie 
 

)1(
22 2 αµπϕαµπ

tgtg −<<− , 

 
ce qui implique 
 

0cos 2 ≥ϕ  

 
en contradiction avec (18). C'est donc le signe 
positif qui s'impose : 
 



�
����

�
=






�
�

���
�
�
�

∆
=∆+

2

2
min

2
cos

2
sin2

cos
2 ω

ω
ϕω

πµϕϕ ar
r

g
aro

       (29) 

 
Le déplacement de la masse au cours d'un cycle 
est alors 
 

)()( 231 wwwww o −+−=∆  

 
Dans la formule (17) donnant (w1-wo), on peut 
remplacer (ϕ1 - ϕo) par sa valeur 
 

)1( αµπϕ tg−=∆ , 

 
ce qui donne 
 

( ) ������ ∆+∆−
������ ∆+=−

2
sin2

2
cos1

2
sin)( 2

1
ϕαµφπαµϕϕ tgtgrww oo

 
De même, dans la formule (18), on peut écrire 
 

)1()(2 0123 αµπϕϕπϕϕ tg+=−−=−  

 

2
cos

2
cos

2
cos 23 ϕϕπϕϕ ∆−=� !"#$ ∆−=

%&'()* −
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2
sin

2
sin

2
sin 23 ϕϕπϕϕ ∆=� !"#$ ∆−=

%&
'()* −

 

 

��	
�� ∆++=++=+
22

2

2
132 ϕϕπϕπϕϕϕ

o
o  

 
et 
 

��	
�� ∆+−=+
2

sin
2

sin 32 ϕϕϕϕ
o  

 
ce qui entraîne 
 

( ) ��
���� ∆+∆+

⋅
��

�	
� ∆+=−

2
sin2

2
cos1

2
sin

2

23

ϕαµϕπαµ

ϕϕ

tgtg

rww o

 

 
et finalement 
 

�
���� ∆+∆+

⋅
������ ∆+=∆

2
sin4

2
cos)1(2

2
sin

22 ϕαµϕαµπ

ϕϕ

tgtg

rw o
          (30) 

 
Dans cette expression, le facteur entre crochets ne 
dépend que du coefficient de frottement et de 
l'angle α. La pulsation n'intervient que dans 
 

4
min1

2
sin ��

����
−=��

���� ∆+
ω

ωϕϕo        (31) 

 
On constate en particulier que le déplacement par 
cycle croît avec la pulsation. 
 
 
 
7. Formule approchée 
 
Dans tous les cas pratiques, on peut négliger µ2 
tg2α devant l'unité. On a alors 
 

1
4

1
2

cos 22
2

≈−≈��
����

αµπαµπ
tgtg  

 

αµπαµπ
tgtg

22
sin ≈��	
��

 

 
et 
 

αµπαµπαµππϕ
tgtgtg

22
sin

22
cos

2
cos ≈

�� !"#
=

�� !"#
−=∆

 

1
2

cos
22

sin
2

sin ≈
$%&'()

=
$%&'()

−=∆ αµπαµππϕ
tgtg  

 
Il vient donc 
 

αµπ
ω

ω
tgrw )4(1 2

4
min +��

����
−≈∆  

 
soit 
 

4
min187,13 ��

����
−≈∆

ω
ωαµ tgrw        (32) 

 
En outre, à la pulsation maximale 
 

α
ω

tgr

g=max , 

 
on a 
 

αµπ
ϕω

µπ
tg

r

g

2
2

sin2 2
≈

∆
 

 
et, à l'approximation consentie, le radicant peut être 
assimilé à l'unité. Il vient alors 
 

αµ tgrw 87,13max ≈∆ ,        (33) 

 
formule qui a été obtenue par HANFFSTENGEL [3] 
par une voie mi-analytique, mi-empirique et qu'il a 
pu vérifier sur des cas pratiques. Mais son approche 
ne permet pas de calculer la variation de ∆w avec la 
pulsation. 
 
La vitesse moyenne de la charge est 
 

ww ∆=
π

ω
2

�
         (34) 

 
Comme ∆w croît avec la pulsation, il est clair qu'il 
en est de même de la vitesse moyenne. A la vitesse 
maximale, 
 

αµαµ
π

tggrtggrw 207,2.87,13
2

1 =⋅≈
*        (35) 

 
 
 
8. Cycles mixtes 
 
On constatera que le rapport 
 

)1(
2

2
sin2

)1(
2

2
min αµπ

ϕ
αµπ

ω
ω

tg
tg

adh

+≈
∆

+=  

 
est supérieur à l'unité. Cela signifie que si le cycle 
glissant continue d'exister en ωmin, la vitesse 
moyenne s'annule pour une vitesse de rotation 
supérieure à ωadh, ce qui est assez paradoxal. En 
réalité, il est facile de montrer que pour ω = ωmin, les 
deux conditions d'amorce de glissement (14) et (18) 
sont violées aux angles ϕo et ϕ2 = ϕ1 obtenus à 
partir de (31). En effet, pour ω = ωmin, 
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1
2

cos =��	
�� ∆+ ϕϕo  

 
donc 
 

2
,

2 1
ϕϕϕϕ ∆=∆−=o  

 
Alors, 
 

2

2
sin

)1(
2

2
sin

)1(
)(cos

2
min

min ϕ

ϕ

αµπ

ϕ

αµω
µϕ

∆

∆

=
−

∆

=
−

=
tgtgr

g
o

 

 
La condition 
 

min)(coscos oo ϕϕ ≥  

 
équivaut alors à 
 

2

2
sin

2
cos ϕ

ϕ
ϕ

∆

∆

≥∆
 

 

soit, vu la positivité de 
2

cos
ϕ∆

, 

 

22

ϕϕ ∆≤∆
tg , 

 
ce qui n'est jamais réalisé. 
 
De la même façon, il résulte de (18) que 
 

0)(cos max2 <ϕ . 

 
Or, pour ω = ωmin, 
 

0
2

coscoscos 12 >∆== ϕϕϕ , 

 

si bien que la condition de glissement en ϕ2 n'est 
pas réalisée non plus. 
 
Ainsi par exemple, en se donnant r = 0,015 m, α = 
20°, µ = 0,35, on obtient 
 

2min
3,262

)(cos
ω

ϕ =o  

 

2min2
1,203

)(cos
ω

ϕ −=  

 

2

9,366

2
cos

ω
ϕϕ =��	
�� ∆+o  

et 
 
∆ϕ/2 = 1,371 rad, 
 
ce qui permet d'établir le tableau I comparant cosϕo 
à son minimum et cosϕ1 à son maximum. On 
constate que le cycle glissant cesse d'être valide 
aux environs de 21 rad/s, valeur supérieure à ωmin. 
Cela ne signifie pas que tout fonctionnement 
périodique est impossible, mais que le cycle 
comportera des temps d'adhérence : c'est ce que 
nous appellerons un cycle mixte (fig. 6). 
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Figure 6 : cycle mixte 

 
 

Tableau 1. – Validité du cycle glissant, pour les données du §8 
 

srad /

ω
 

 
cosϕo 

 

 
(cosϕo)min 

 

 
cosϕ1 

 

 
(cosϕ2)max 

 

 
Valide ? 

 
40 0,9995 0,1639 -0,9083 -0,1269 oui 
35 0,9946 0,2141 -0,8759 -0,1658 oui 
30 0,9759 0,2914 -0,8141 -0,2257 oui 
25 0,9110 0,4197 -0,6769 -0,3250 oui 
24 0,8820 0,4554 -0,6291 -0,3526 oui 
23 0,8437 0,4598 -0,5681 -0,3839 oui 
22 0,7897 0,5419 -0,4888 -0,4196 oui 
21 0,7089 0,5948 -0,3786 -0,4605 non 
20 0,5784 0,6558 -0,2084 -0,5078 non 

19,15 = ωmin 0,1985 0,7149 -0,1985 -0,5536 non 
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Il est assez facile de déterminer ce cycle, ainsi que 
nous allons le montrer sur deux exemples. 
 
a) Condition en ϕ1 violée : ω = 21 rad/s. Dans ce 

cas, le glissement positif ne peut se produire 
qu'à partir de l'angle 2ϕ  tel que 

4605,0)(coscos min22 −== ϕϕ , ce qui donne 

 
rad049,22 =ϕ . 

 
En résolvant l'équation (20), qui s'écrit encore 
 

2min22

3min23

)(cossin

)(cossin

ϕϕϕ
ϕϕϕ

−
=−

        (36) 

 
on obtient 
 
ϕ3 = 5,504 rad. 
 
L'angle équivalent 
 

rad7792,02~
33 −=−= πϕϕ  

 
vérifie 
 

5948,0)(cos7112,0~cos min3 =≥= oϕϕ , 

 
et constitue donc une valeur admissible pour ϕo. On 
a donc 
 

rado 7792,0~
3 −== ϕϕ  

 
et ϕ1 s'obtient en résolvant l'équation (16), soit 
 

ooo

o

ϕϕϕ
ϕϕϕ

min

1min1

)(cossin

)(cossin

−
=−

        (37) 

 
On obtient 
 
ϕ1 = 1,959 rad. 
 
Pour cet angle, 
 

max21 )(cos3786,03782,0cos ϕϕ =−≥−= , 

 
ce qui signifie qu'il y aura adhérence entre ϕ1 et 

22 ϕϕ = . 

 
Le déplacement pendant le cycle est à présent  
 

)()()( 23121 wwwwwww o −+−+−=∆      (38) 

 
où (w1 – wo) et (w3 – w2) sont donnés par les 
formules (17) et (21) respectivement et 
 

)cos(cos 211212 ϕϕ −=−=− ruuww        (39) 

 
Le calcul donne 
 
∆w=0,01495 m. 
 

En supposant faussement qu'il s'agit d'un cycle 
glissant, on aurait obtenu la valeur légèrement 
inférieure 
 

mw gliss 01471,0)( =∆ . 

 
b) Conditions en ϕ1 et 3

~ϕ  violées : ω = 20 rad/s 

 
Ici, le glissement négatif suppose 
 

6558,0)(coscos min =≥ oo ϕϕ  

 
ce qui ne peut avoir lieu qu'à partir de 
 

rado 8556,0−=ϕ  

 
Le glissement positif suppose quant à lui 
 

5078,0)(coscos max22 −=≤ ϕϕ  

 
soit 
 

rad103,222 =≥ ϕϕ  

 
Partant de oϕ , on détermine ϕ1 par la relation (37), 

ce qui donne 
 
ϕ1 = 1,785 rad. 

 
On note que 
 

,6269,02130,0cos 1 −≥−=ϕ  

 
si bien qu'il y aura adhérence entre ϕ1 et 22 ϕϕ = . 

 
L'angle de fin de glissement positif se détermine par 
la relation (36), et vaut 
 
ϕ3 = 5,365 rad. 
 
Il est inférieur à 
 

rado 428,524 =+= πϕϕ , 

 
et il y aura donc adhérence entre ϕ3 et ϕ4 
 
Le déplacement total est donné par 
 

)()()()( 3423121 wwwwwwwww o −+−+−+−=∆  

 
où )( 1 oww −  et )( 23 ww −  sont donnés par les 

formules (17) et (21) respectivement et 
 

)cos(cos

),cos(cos

4334

2112

ϕϕ
ϕϕ

−=−
−=−

rww

rww
       (40) 

 
On obtient ainsi 
 
∆w = 0,01317 m 
 
L'application indue de la formule (32) aurait donné 
la valeur plus faible 
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(∆w)gliss = 0,01056 m. 

 
 
 

9. Evolution du déplacement par cycle et de la 
vitesse moyenne en fonction de la pulsation 
 
Dans le cadre des données du §8, les valeurs du 
déplacement par cycle et de la vitesse moyenne 
sont consignées dans le tableau II et représentées 
sur les figures 7 et 8. On constate que, partant de la 

pulsation maximale, la vitesse moyenne décroît plus 
vite que la pulsation. En toute première 
approximation, on peut admettre l'interpolation 
linéaire par morceaux 
 

��
��
�

>⋅
−

−
≤

≈
adh

adh

adh

adh

siw

si
w ωω

ωω
ωω

ωω

max
max

0 ��
       (41) 
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0

5

10

15

20

25

30

�
w/mm

�  /(rad/s)  
Figure 7 : déplacement  par cycle 
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0

50
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�
/ ( / )w mm s

 
Figure 8 : vitesse moyenne

 
Tableau 2. – Déplacements par cycle et vitesses moyennes 

 

srad /

ω
 

mm

w∆
 

smm

w

/

	
 

14,25 = ωadh 0 0 
15 0,7348 1,754 
16 3,393 8,640 
17 6,669 18,04 
18 9,287 26,61 
20 13,17 41,92 
21 14,95 49,97 
22 17,29 60,54 
23 19,10 69,92 
24 20,44 78,08 
25 21,46 85,39 
30 24,21 115,6 
35 25,29 140,9 
40 25,80 164,2 

42,39 = ωmax 25,97 175,2 
 
 
La deuxième expression d'écrit encore, en notant 
 

g

tgr αω
ω

ω ==Ω
max

  (42) 

 

αν
αµ

ω
ω

tg

tgadh
adh +

==Ω
1max

  (43) 

 

αµ tggrw
adh

adh ⋅⋅
Ω−
Ω−Ω

≈ 207,2
1

�  (44) 

 
 
 
10. Travail de frottement de la charge sur le 
couloir 
 
A un instant donné, la puissance perdue par 
frottement de la charge sur le couloir vaut 
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wuNPf

��
−= µ  

 
Il n'y a donc dissipation que lors des phases de 
glissement. 
 
a) Phase de glissement négatif : 
 
entre ϕo et ϕ1, ⋅> wu�  et l'accélération de la charge 
vérifie 
 

Nwm µ=
��

. 

 
Le travail de frottement entre ϕo et ϕ1 vaut donc 
 � � �������� −−=−=

1 1

22
)(

22
1

01

t

t

t

t

o
f

o o

ww
mdtuwmdtwuwm ���������T  

 
Notant que 
 	 	

+=
1 4

)cos(sin 2
t

to o

dtgrgrdtuw
ϕ

ϕ
ϕϕαωϕω

ω
µ


  

( ) ���
���� �������� −+−=
2

sin

2

sin
coscos

2
1

2
2

1
o

o tgrgr
ϕϕαωϕϕµ

 
et que 
 

( )o
oo ruuww ϕϕω 2

1
2

2222
1

22
1 sinsin

22222
−=−=− ����

, 

 
on obtient 
 

( )

( )o

of

tg
r

m

rgm

ϕϕαµω

ϕϕµ

2
1

2
22

101

sinsin)1(
2

coscos

−−−

−=T

       (45) 

 
b) Phase de glissement positif : 
 
entre ϕ2 et ϕ3, wu �� <  et l'accélération de la charge 
vérifie 
 

Nwm µ−=
��

. 

 
On a donc 
 � � �������� −−=−−=

3

2

3

2 22
)()(

2
2

2
3

23

t

t

t

t
f

ww
mdtuwmdtuwwm ���������T  

 
Or, 
 � �

+−=
3

2

3

2

)cos(sin 2
t

t
dtgrgrdtuw

ϕ

ϕ
ϕϕαωϕω

ω
µ   

 

( ) !!"#$$%& ''()**+, −+−=
2

sin

2

sin
coscos 3

2
2

2
2

23
ϕϕαωϕϕµ tgrgr  

 
et, par ailleurs 
 

( ) ( )2
2

3
2

22
2
2

2
3

2
2

2
3 sinsin

22

1

22
ϕϕω −=−=− r

uu
ww ----

, 

 
on obtient 
 

( )

( )3
2

2
2

22

2323

sinsin)1(
2

coscos

ϕϕαµω

ϕϕµ

−++

−=

tg
r

m

rgmfT
       (46) 

 
Le travail de frottement au cours d'un cycle est donc 
 

2301 fff TTT +=          (47) 

 
Ces expressions valent que le cycle soit glissant ou 
mixte. Examinons de plus près le régime glissant, 
qui correspond aux utilisations normales. On a dans 
ce cas 12 ϕϕ =  et πϕϕ 23 += o  et 

 
( )

( )o

of

tgrm

grm

ϕϕαωµ

ϕϕµ
2

1
22

1

sinsin

coscos2

−+

−=T
 

 
Cette expression peut être améliorée en notant que 
 

2
sin

2
sin2coscos 1

ϕϕϕϕϕ ∆��	
�� ∆+=− oo  

 
et que 
 

( )( )ooo ϕϕϕϕϕϕ sinsinsinsinsinsin 11
2

1
2 +−=−  

   
2

cos
2

sin2
2

ϕϕϕ
ω

µπ ∆��	
�� ∆+⋅= o
r

g
, 

 
en faisant usage de la relation (25). Tenant encore 
compte de (31), on obtient 
 

./0123 ∆+∆

⋅
456789

−=

2
cos2

2
sin4

1
4

min

ϕαµπϕ

ω
ωµ

tg

grmfT
,        (48) 

 
formule exacte tant que le cycle glissant est 
d'application. 
 

Si l'on peut négliger 2)( αµ tg  devant l'unité, on a en 

outre 
 

αµπϕϕ
tg

22
cos,1

2
sin ≈∆≈∆

 

 
et le facteur entre crochets de (48) se réduit à 
 

44 222 ≈+ αµπ tg , 
 
ce qui donne 
 

4
min14 :;<=>?

−≈
ω

ωµ grmfT        (49) 
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La puissance moyenne de frottement vaut alors 
 

4
min14

22

���
�����−⋅=≈

ω
ωµ

π
ω

π
ω

grmP ff T        

(50) 
 
Il est plus logique de rapporter cette puissance au 
débit massique qm. En supposant un chargement 
continu, ce débit vaut 
 

w
l

m
qm

 
=  

 
où l est la longueur du couloir. Notant que 
 

4
min187,13

22

��
�	
�

−⋅=∆=
ω

ωαµ
π

ω
π

ω
tgrww� , 

 
on a 
 

4
min187,13

2
:;<=>?

−⋅⋅=
ω

ωαµ
π

ω
tgr

l

m
qm . 

 
La résistance spécifique k, rapport de la puissance 
au débit, vaut alors 
 

αtg

gl

q

P
k

m

f
2884,0==         (51) 

 
Fait remarquable, elle ne dépend que de la 
longueur du couloir et de l'angle α. Elle est 
indépendante du coefficient de frottement, résultat 
qu'avait obtenu HANFFSTENGEL [3]. En outre, elle 
ne dépend pas de la pulsation, du moins dans le 
cadre du régime glissant.1 
 
Dans le cas du transport de substances 
pulvérulentes, il se produit en outre des frottements 
internes dans le corps transporté, dont l'évaluation 
est difficile. 
 
 
 
11. Conclusions 
 
L'analyse qui précède a montré la possibilité 
d'existence d'un mouvement cyclique dont les 
conditions de fermeture déterminent les 
performances du couloir. Des développements 
complémentaires, malheureusement trop longs pour 
être reproduits ici, nous ont permis de vérifier que 
ce cycle s'établit spontanément, très vite dans le 
cas de cycles mixtes et asymptotiquement dans le 
cas de cycles glissants. Ces conclusions sont en 
plein accord avec celles de Harding et Nedderman 
[2]. Les performances du couloir en termes de débit 
sont maximales à la pulsation maximale et, pour les 
pulsations inférieures, le débit décroît plus vite que 

                                                           
1  On notera du reste que dans la référence [3], une erreur 
algébrique a conduit à une valeur de k deux fois trop faible. 
Cette erreur a été reproduite dans [4]. 

la pulsation. Enfin, en régime glissant, la résistance 
spécifique du couloir est indépendante du 
coefficient de frottement et de la pulsation. 
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