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Summary

This paper is devoted to the study of the efficiency of an oscillating trough for any value of the frequency. It is
found that pure slipping or mixed cycles may occur, the latter comprising sticking periods. The results of the
present analysis concern the cyclic displacement, the mean velocity and the dissipated power.

Résumé

Cet article traite du fonctionnement et des performances des couloirs oscillants, pour une pulsation quelconque.
Le régime de fonctionnement peut étre purement glissant ou mixte, avec des temps d'adhérence. Sont calculés,
le déplacement par cycle, la vitesse moyenne et la puissance dissipée.
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Notations

déplacement horizontal de la table
déplacement vertical de la table
rayon de la manivelle

angle a la manivelle

angle d'inclinaison de la suspension
masse posée sur le couloir

force verticale transmise a la masse
accélération de la pesanteur

force de frottement

coefficient de frottement

Aw déplacement de la masse lors d'un cycle

THdqaeazgase-<c

0o, 1 angles de début et de fin du glissement négatif
¢2, 03 angles de début et de fin du glissement positif

A = 1- do
Py puissance de frottement
Vi travail de frottement

1. Introduction

Les couloirs oscillants sont utilisés pour résoudre
maints problemes de transport mécanique. En
fonction de l'intensité de la vibration imposée au
couloir, le transfert peut étre d a un lancement de
la matiere (throw conveyor) ou simplement a son
glissement (sliding conveyor). Excluant a priori les
convoyeurs a lancement, dont la modélisation
impligue des hypothéses délicates relatives aux
conditions du choc d'atterrissage de la matiére
transportée [1], nous limiterons notre investigation
aux seuls convoyeurs a glissement. En dehors de
travaux anciens [3,4] qui se limitent au cas de la
pulsation maximale de non-lancement, on trouve

vitesse de rotation de la manivelle, pulsation du mouvement

trés peu de renseignements a ce sujet dans la
littérature. Les bases d'une étude compléte sont
données par HARDING et NEDDERMAN [2], mais
leur résolution numérique mene a des diagrammes
assez peu pratiques.

Une étude analytique du fonctionnement est
cependant possible a partir de la condition de
fermeture d'un cycle établi ou la matiere glisse
constamment. Sur cette base, il est assez aisé de
déterminer le déplacement par cycle et la vitesse
moyenne de transport, en fonction de la pulsation.
Une analyse un peu plus fouillée montre qu'en-deca
d'une certaine pulsation, le cycle change de nature,



car il apparait des temps d'adhérence qui, du reste,
concourent au transport.

En ce qui concerne la puissance de frottement, un
résultat particulierement intéressant est qu'en
régime de glissement pur, cette puissance est
directement proportionnelle au débit, leur rapport ne
dépendant ni du coefficient de frottement, ni de la
pulsation.

2. Mouvement du couloir

Figurel: lecouloir vibrant

Le couloir, supposé horizontal, est astreint par sa
suspension a se mouvoir a peu de chose pres selon
une droite d'angle a par rapport a I'horizontale,
montant de gauche a droite (fig. 1). Le mouvement
horizontal est commandé par un systeme bielle-
manivelle dont la bielle est trés longue devant le
rayon de la manivelle. On peut donc écrire sans
grande erreur

u=-r cos¢ 1)

ou r est le rayon de la manivelle, u le déplacement
de la table, et ¢ I'angle a la manivelle, posé nul au
point mort gauche.
L'angle a d'obliquité de la suspension a pour effet
de conjuguer au mouvement horizontal, petit devant
la longueur des bhielles de suspension, un
mouvement vertical vers le haut

v=utga =-r cosg tga 2)
Les vitesses sont donc

U= sing, v=ar sing tga 3)

et les accélérations,

{i = w?r cosg, V=aw?r cosp tga (4)

3. Action du couloir sur une masse m posée
dessus

Soit une masse m posée sur le couloir (fig. 2). Dans
le cas ou la liaison masse-couloir n'est pas rompue,

la vitesse verticale de la masse est v, et I'équation
de son mouvement dans cette direction est

mv=N-mg,

ce qui signifie que la force verticale N que lui
transmet le couloir est donnée par

N =m(g+V) =m(g +0Pr cosg tga) 5)

mg

[N

Figure 2 : équilibre dela masse portée

Cette force doit rester constamment positive, sous
peine de perdre tout contréle du couloir sur la
masse, qui s'envolerait. Il est donc nécessaire
d'assurer la condition

g+w’r cosptga =0

quel que soit I'angle de manivelle ¢. Le minimum du
premier membre se produisant pour cos ¢ = -1, on
obtient la condition

w<

< = 6
r tga max ©)

qui fixe la pulsation maximale.
Examinons a présent le mouvement horizontal. Soit
W la vitesse horizontale de la masse. Trois cas sont

possibles :

(@) Le couloir va plus vite que la masse, u>w. Il
lui transmet alors la force de frottement

T = 1N = zm(g + w?r cosg tga) ,

et l'accélération de la masse est donc donnée
par

w=% =u(g+ w?r cosg tga) )

(b) Le couloir va moins vite que la masse, u<w. Il
lui transmet alors la force de frottement

T =—uN = —zm(g + w?r cosg tga)

si bien que l'accélération de la masse est
donnée par



w=-u(g +0Pr cosg tga) 8)

(c) La masse adhére au couloir, ce qui implique
que leurs accélérations coincident. Alors,

T =mi

et cette force doit rester inférieure en valeur
absolue a N, condition qui s'écrit

|mii| < zm(g + wPr cosg tga)

soit

U< u(g+ @’r cosg tga) 9)
et

U=-u(g+ A cosg tga) (20)

Tenant compte de I'expression (4) de l'accélération
du couloir, ces conditions s'écrivent respectivement

cosg < ZL (11)
wr (- utga)
et
cosg = # (12)
wr(l+ putga)

Il en découle en particulier que tout mouvement
relatif est impossible si

. N}
wzr(1+,utga)

soit Si

H g _
ws |[—H 9 -4 13
Trptga v L (13)

Pour des pulsations inférieures, la masse adhere
constamment au couloir.

4. Cas ou le couloir va plus vite que la masse
(glissement négatif, fig. 3)

Supposons qu'a partir d'un angle ¢,, correspondant

a un instant tozﬁ, la vitesse du couloir u
w

commence a surpasser celle de la masse, w. A
partir de ce moment, I'accélération est donc par (7)

W= p(g +w?r cosg tga)

t U, W

Do

\ 4

2 Q

Figure 3 : glissement négatif

Comme en t, les deux vitesses coincident, on
n'‘aura W<u juste aprés que si Vi(ty) <Uf(t,) , c'est-
a-dire si

u(g +ar cos@, tga) < @?r Cos@g ,

soit

]

CcoSPy =2 ————
° a)zr(l—,utga)

=(cos@s) min (14)

Cette condition étant supposée vérifiée, l'intégration
de (7) donne

W=(to) + 49 (t —to) + pax tga(sing —sing,)
soit

W= ar Sngo(1- piga) +E5 (9~ go) + par tgarsing - (15)

Cette situation se maintient tant que W reste
inférieur a u, c'est-a-dire jusqu'a l'angle ¢; ou
W(@1) =u(@q) , ce qui s'écrit

ar singy = ar singo (- 19a) + (81 - 4)
+ par tga sing,
soit

K (¢-¢o) (16)

sing; =sing, + —————
wr(l- utga)

Le déplacement de la masse entre ¢, et ¢1 s'obtient
en intégrant la relation (15) :
Wy = Wo =1 sing, (1= 419a).(¢1 — @)

(1= 00)% + i 19a(c0sg, - cosg)

Notant que, par (16),



(91~ 90)% = (- ga) (Sngy ~Sngo) (B - 4o,
2w 2
on obtient I'expression équivalente

Wy~ o = (1~ 4190)(By ~ Po) T (Sn g +singy)

+ 4 tga(cosp, - cosgy)

soit encore
Wy —W, =T sinM O
2 (7

¢ - #1- ¢0:|

[(1— utga) (¢1 - ¢0)cos ¢° +2utga sin

5. Cas ou le couloir va moins vite que la masse
(glissement positif, fig. 4)

A

Figure4 : glissement positif

Supposons a présent qu'a partir d'un angle ¢o,
correspondant a un instant t; = ¢»/w, la vitesse du
couloir u devient inférieure a Ww. A partir de ce
moment, l'accélération est donnée par la relation
(8). Comme en tp, les deux vitesses coincident, on
n'‘aura W>U juste aprés que si Vi(t3) = li(t3) c'est-a-

dire si
- u(g +aPr cos@, tga) 2 @°r cosg,

soit

M9 _
cosg, < —m =(cos@)max  (18)

En supposant cette condition vérifiée, on peut
intégrer (8) pour obtenir la vitesse de la masse :

W=a(tp) - pg(t —tp) - par tga(sing —singy)

soit

W=ar sin¢2(1+,utga)—%(¢—¢2)
- H{ar tga sing

(19)

Le glissement considéré cessera d'avoir lieu
lorsqu'en un angle ¢3, on obtiendra W(g3) =u(g3),

ce qui s'écrit
ar singg =ar sin g, (1+ g tga)

2393~ 4) - per tga sn g
soit

-——H (4,9, (20)

sing; =sing
3 2 wzr(1+,utga)

Le déplacement de la masse entre ¢ et ¢3 s'obtient
en intégrant la relation (19) :

W3 =Wy =1 Sing, (1+ 1tga)(¢s — #2)
-%(% - $,)? - 1 tga(cosg, — cosgs)

Ici encore, on peut noter que par (20),
y2is] 2 r, . .
- - =1+ utga)—(sing, —sin ,
2w(¢3 $o)° =(1+utg )2( ?3 #2)

si bien que

W5 — W, =(1+ﬂtga)%(9'n¢z +SiNd3)(#3 — #5)
- pr tga(cosg, — cos@s)

et, en faisant appel aux mémes relations
trigonométriques que ci-dessus,

P+ @3 0
2

W3 —W, =1 Sin

[0+ ptga)gs-g)oos? P2

2u tgasin¢3;2¢2]

6. Possibilité d'un cycle glissant

Peut-on imaginer un régime cyclique formé
uniguement de phases successives de glissement
vers l'arriere et vers l'avant ? Nous parlerons dans
ce cas d'un cycle glissant. Pour qu'un tel cycle soit
possible, il faut (fig. 5) assurer les relations de
fermeture

@2 =¢1, P3=@o+2r (22)

et qu'en outre, les conditions (14) et (18) soient
vérifites. Dans un premier temps, nous



supposerons que ces deux derniéres conditions
sont bien remplies, et nous nous concentrerons sur
les relations (22).

£ 0,W
u
Po | Y= Pot2n
W ¢

P=P,
Figure5: cycleglissant

L'équation (20) devient alors

sing, =sing, - (211+ ¢ = 1) (23)

w’r(1+ ptga)

En additionnant cette relation a I'équation (16), on

obtient alors, apres division par A; ,
wr

$1=0o _ 2 P19

1-putga 1+utga 1+utga

On en déduit

($1-¢o)(A+ ptga +1- ptga) = 2n(1- ptga)
soit

Ap =@y~ ¢o =111~ ptga) (24)

L'introduction de ce résultat dans (16) donne alors
sing, -sing, =12 (25)
wr

qui se transforme aisément en

¢o+¢1]_ A¢j_ g 26
cod 222 |=cog Py + — | = ———— (26)
{ 2 2 2a)2rsin—A2¢

Comme A¢ est connu, cette relation fixe [¢O +A—2¢]
au signe pres,

b +A—¢:¢arco % ) 27)

2 20°r Sn=2
2

pour autant, bien entendu, que

g
= Whin (28)
2r sinA—2¢

En deca de cette valeur, un cycle glissant ne peut
exister. Pour lever l'indétermination de signe de la
relation (27), notons que si l'on suppose

(¢0 +A—2¢]<O, le fait que son cosinus soit positif
implique

T A
-——<¢,+——<0
2P0t
Alors, en tenant compte de la valeur (24) de A¢,

Ag

$r=01=0o+Dp =9, +7+%T(1—,utga)

vérifie
—7—27utga<¢z <’—27(1—utga) :
ce qui implique
cosg, =0
en contradiction avec (18). C'est donc le signe

positif qui s'impose :

¢0+A—¢=arco

g — wr%]in
—m | arco{wz] (29)

20°r Sn=2
2

Le déplacement de la masse au cours d'un cycle
est alors

Aw = (W = W) + (W3 —Wy)

Dans la formule (17) donnant (wi-w,), on peut
remplacer (1 - ¢o) par sa valeur

Ag =m(l-ptga),

ce qui donne

(W —wy) =r sin(¢o +A—2¢] [(1—utga)2ncosA7¢+ 2utga sinA—zq

De méme, dans la formule (18), on peut écrire

$3 =@ =211—(P1 — Po) = 1M1+ ptga)

co{—¢3 92 ] = cos[rr—A—‘q = —COSA—¢
2 2 2



(¢3 ¢2] sin |:7T—A—¢:| —sn2f
2 2

Ap
{0+

¢2 ¢3 5 Ag
[¢o +7]

Potds _ P +2m+¢, _
2 2

et

ce qui entraine

W3 =Wy =T S’n(¢o +A—2¢]D

Ag

{(1+ ,utga)z ncos7 A¢

+2 ptga sin—
uaasn? |

et finalement
Aw=r sin(qﬁo +M] O
2 (30)

Ag

[2 7 (L+ 12tga) cos—~+ 4 utga sinA—qu]

Dans cette expression, le facteur entre crochets ne
dépend que du coefficient de frottement et de
I'angle a. La pulsation n'intervient que dans

4
sjn(% +A_2¢j = 1{%] (31)

w

On constate en particulier que le déplacement par
cycle croit avec la pulsation.

7. Formule approchée

Dans tous les cas pratiques, on peut négliger u2
tg?a devant 'unité. On a alors

co{g,utga] =1—§,u2 tg2a=1

sin E,utgajzl—T,utga
2 2

et
cosA—¢— 7—T—£,utga =sn LT,utga :’—T,utga
2 2 2 2 2
sml-sm— — ta] co: r ta]zl
> D) 2# g 2/1 g
Il vient donc

4
Aw= 1—[0%"‘] (77> +4) ur tga

4
Aw= 1387,urtga}/1 ( 2‘)‘”] (32)

En outre, a la pulsation maximale

soit

9
rtga

Wiax =

ona

THY
———=— utga
5 A¢ ,ug

2w sin—— 2

et, a l'approximation consentie, le radicant peut étre
assimilé a l'unité. Il vient alors

AWax =1387 v tga, (33)

formule qui a été obtenue par HANFFSTENGEL [3]
par une voie mi-analytique, mi-empirique et qu'il a
pu vérifier sur des cas pratiques. Mais son approche
ne permet pas de calculer la variation de Aw avec la
pulsation.

La vitesse moyenne de la charge est

w
21T

W =— AW (34)

Comme Aw croit avec la pulsation, il est clair qu'il
en est de méme de la vitesse moyenne. A la vitesse
maximale,

W= %TELS,87 Ao tga = 2,207 p\[or tga (35)

8. Cycles mixtes
On constatera que le rapport

2
Wpin _ T+ ptga) _ 71
= =—(1+ ytaa
2( Utga)

2
Wadh 2sin—— A¢

est supérieur a l'unité. Cela signifie que si le cycle
glissant continue d'exister en wmn, la Vvitesse
moyenne s'annule pour une vitesse de rotation
supérieure a Wagh, Ce qui est assez paradoxal. En
réalité, il est facile de montrer que pour w = Wmin, les
deux conditions d'amorce de glissement (14) et (18)
sont violées aux angles ¢, et ¢» = ¢1 obtenus a
partir de (31). En effet, pour w = wmin,



Ag ) _
co{% + 7) =1

donc
__b¢ , _A¢
¢o 2 ’ ¢1 2
Alors,
“g Sin%yj gniz‘t
(cos@o) min = = =
o wr%inr(l_.utga) E(]_—/jtga) Ag
2 2
La condition

coS@, = (COSPy) min

équivaut alors a

Y
Sn——-
0Pl 2
2 Ag
2

AYY

soit, vu la positivité de cos7 ,

tgA_¢SA_¢
2 2

ce qui n'est jamais réalisé.
De la méme facon, il résulte de (18) que

(coS@2) max <O

Or, pour ® = Wnin,

COS@, = COS@P; = oosA—2¢ >0,

si bien que la condition de glissement en ¢, n'est
pas réalisée non plus.

Ainsi par exemple, en se donnant r = 0,015 m, a =
20°, p = 0,35, on obtient

262,3
(C0S@0) min =———
w

(coS@2) in = _%
Ag ) _ 3669
of g0+ 57 )+ 2%

et
A$/2 =1,371 rad,

ce qui permet d'établir le tableau | comparant cosd,
a son minimum et cosps a son maximum. On
constate que le cycle glissant cesse d'étre valide
aux environs de 21 rad/s, valeur supérieure a Wmin.
Cela ne signifie pas que tout fonctionnement
périodique est impossible, mais que le cycle
comportera des temps d'adhérence : c'est ce que
nous appellerons un cycle mixte (fig. 6).

u’ V'VA

Do

Figure 6 : cycle mixte

Tableau 1. — Validité du cycle glissant, pour les données du 88

L cosdo (cosdo)min cosd1 (cosd2)max Valide ?
rad /s
40 0,9995 0,1639 -0,9083 -0,1269 oui
35 0,9946 0,2141 -0,8759 -0,1658 oui
30 0,9759 0,2914 -0,8141 -0,2257 oui
25 0,9110 0,4197 -0,6769 -0,3250 oui
24 0,8820 0,4554 -0,6291 -0,3526 oui
23 0,8437 0,4598 -0,5681 -0,3839 oui
22 0,7897 0,5419 -0,4888 -0,4196 oui
21 0,7089 0,5948 -0,3786 -0,4605 non
20 0,5784 0,6558 -0,2084 -0,5078 non
19,15 = Wnin 0,1985 0,7149 -0,1985 -0,5536 non




Il est assez facile de déterminer ce cycle, ainsi que
nous allons le montrer sur deux exemples.

a) Condition en ¢; violée : w = 21 rad/s. Dans ce

cas, le glissement positif ne peut se produire
qua partir de langle @, tel que

cosg, = (COSP,) min =—0,4605, ce qui donne
9, =2,049rad .

En résolvant I'équation (20), qui s'écrit encore

Sin@3 = (COSP) inP3 =

. (36)
sn 752 - (COS¢2)min¢-2
on obtient
¢3 = 5,504 rad.

L'angle équivalent
@3 =¢3-2m=-0,7792rad
vérifie
cos@z =0,7112> (CoS@, ) rrin = 0,5948,

et constitue donc une valeur admissible pour ¢,. On
a donc

#o=¢3=-0,7792rad
et ¢1 s'obtient en résolvant I'équation (16), soit

singy = (cos@o) min 1 =
Sing, = (cos@) min Po

(37)
On obtient

¢1=1,959 rad.

Pour cet angle,

cosgy = —0,3782= —0,3786 = (COSP>) max -

ce qui signifie qu'il y aura adhérence entre ¢; et

$2=0,.
Le déplacement pendant le cycle est a présent
A= (W —Wo) + (W —w) + (W3 —wp)  (38)

ou (w1 — wo) et (ws — wp) sont donnés par les
formules (17) et (21) respectivement et

W =Wy =Up = Ug =T (COoS@; —COSP5) (39)
Le calcul donne

Aw=0,01495 m.

En supposant faussement qu'il s'agit d'un cycle
glissant, on aurait obtenu la valeur légerement
inférieure

(Aw) gliss = 0,01471m.

b) Conditions en ¢, et @ violées : w = 20 rad/s
Ici, le glissement négatif suppose

COS@q 2 (COSPy ) min = 0,6558
ce qui ne peut avoir lieu qu'a partir de

@, =—0,8556 rad
Le glissement positif suppose quant a lui

COS@, < (COSP5) max = —0,5078
soit

$,2¢, =2103rad

Partant de @,, on détermine ¢1 par la relation (37),
ce qui donne

¢1=1,785 rad.
On note que

cos@; =—0,2130= —0,6269,
si bien qu'il y aura adhérence entre ¢1 et ¢, =@5.

L'angle de fin de glissement positif se détermine par
la relation (36), et vaut

¢3 = 5,365 rad.
Il est inférieur &
P4 =¢o+2m=5428rad,
et il y aura donc adhérence entre ¢ et ¢4
Le déplacement total est donné par
Aw = (W =W ) +(Wa =) + (W3 = Ws) +(Wy —W3)

ou (w—w,) et (wg—w,) sont donnés par les
formules (17) et (21) respectivement et

W, =W, =r(CoS@; —Cos@»), (40)
W, —Ws3 = I (COS¢h3 — COS@,)

On obtient ainsi

Aw =0,01317 m

L'application indue de la formule (32) aurait donné
la valeur plus faible



(AW)inss = 0,01056 m.

pulsation maximale, la vitesse moyenne décroit plus
vite que la pulsation. En toute premiere
approximation, on peut admettre linterpolation
linéaire par morceaux

9. Evolution du déplacement par cycle et de la 0S WS Wy
vitesse moyenne en fonction de la pulsation W~ - _
y P w —ww wa(,_(ih EvaaX Si W > Wygh (41)
Dans le cadre des données du 88, les valeurs du max — “adh
déplacement par cycle et de la vitesse moyenne
sont consignées dans le tableau Il et représentées
sur les figures 7 et 8. On constate que, partant de la
Aw/mm B
30 W/ (mm/ s)
250
25 + 4
200 +
20 + Bl
150 +
15 + / g
10 I | 100 |
5t ) 50 | /
0 10 15 :20 25 30 35 40 4‘5 50 0 .
W /(rajls) 10 15 20 25 30 35 40 45 50
) ) w /(rad/s)
Figure 7 : déplacement par cycle
Figure 8 : vitesse moyenne
Tableau 2. — Déplacements par cycle et vitesses moyennes
@ Aw W
rad/s mm mm/s
14,25 = Wadh 0 0
15 0,7348 1,754
16 3,393 8,640
17 6,669 18,04
18 9,287 26,61
20 13,17 41,92
21 14,95 49,97
22 17,29 60,54
23 19,10 69,92
24 20,44 78,08
25 21,46 85,39
30 24,21 115,6
35 25,29 140,9
40 25,80 164,2
42,39 = Wmax 25,97 175,2
La deuxiéme expression d'écrit encore, en notant — 0Q0-Q
P W= T"""h [2,207 [/ o tgar (44)
~>%adh

_ o _ [riga 42)
Wimax g
Q — wadh = )u tga (43)
N oex \1+viga

10. Travail de frottement de la charge sur le
couloir

A un instant donné, la puissance perdue par
frottement de la charge sur le couloir vaut



Pr = N Ju-wj

I n'y a donc dissipation que lors des phases de
glissement.

a) Phase de glissement négatif :

entre ¢, et ¢1, u>wllet l'accélération de la charge
vérifie

mw=uN .

Le travail de frottement entre ¢, et ¢1 vaut donc

t, t, P2 w2
Tmﬁjlm'fv(u—\iv) dt=mjlwu dt—rr{wl—w"]
t t, 2 2
Notant que
o A 2
I wu dt:—j wrsing (g+wr tga cosg)dg
t W Jg,

sn’¢; sin’g,
2 2

=u r{g (cosq?)0 - cos¢1) a tga{

on obtient

T o1 = mg r(cosg, - cosg,)
2 2

(45)
-mZ - utga)(sn $1-sin ¢o)

b) Phase de glissement positif :

entre ¢, et ¢3, U<Ww et l'accélération de la charge
vérifie

mw=-uN .
On adonc

2

2
Tf23—j( mw) (W— u)dt-mj wu dt - N{V\s V\g]
Or,

wudt- 'UI wrsm¢(g+wrtga cosg)dg

t

=y {g (cosgs —cosgy )+ wr tga[smh _MH

2 2

et, par ailleurs

)
=%(u32 ~2)= < in? gy -sin g
on obtient

T 123 =umgr(cosgs - cosg,)
2.2 (46)

+m

1+ utga) lsin? g, ~sin? o)

Le travail de frottement au cours d'un cycle est donc

Tt =Ttor+Tt (47)

Ces expressions valent que le cycle soit glissant ou
mixte. Examinons de plus prés le régime glissant,
qui correspond aux utilisations normales. On a dans
cecas ¢, =¢; et g3=¢,+2m et
T =2umagr (cos¢o - cos¢1)

+umar tga(sin2¢1—sin2¢o)

Cette expression peut étre améliorée en notant que

Cos@, —cosg, = 28 n(;z)o +A_2¢]SinA_¢

2

et que

sin?g, -sin?g, =(sing, —~sing, sing, +sing,)

ﬂ’ugmsn[% ¢]cosA¢
w’r

en faisant usage de la relation (25). Tenant encore
compte de (31), on obtient

4
T¢=pumgr,|l- ( m'”) 0
w

[4sinA—2¢+2nytgacos%]

: (48)

formule exacte tant que le cycle glissant est
d'application.

Si I'on peut négliger (tga)? devant l'unité, on a en
outre

Ag

S|n—~:L cosA¢ ”ﬂ

—tga
et le facteur entre crochets de (48) se réduit a

a4+ pttg’a = 4,

ce qui donne

4
Ti=4u mor,/1- ( 2)'”] (49)
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La puissance moyenne de frottement vaut alors

4

w w Wi

Pt =—T¢=—0Mum r‘/l— —mn
"o " on Hme ( w ]

Il est plus logique de rapporter cette puissance au
débit massique gm. En supposant un chargement
continu, ce débit vaut

(50)

_m—=
Qm_I_W

ou | est la longueur du couloir. Notant que

4
w=Y aw="2 1387 urtga,/1-| Lmin |
2 2 w

4
qn =22 13874 tga,|1- Ghin |
2 | w

ona

La résistance spécifique k, rapport de la puissance
au débit, vaut alors

_ Py gl
k=—=0,2884—— (51)
Om tga

Fait remarquable, elle ne dépend que de la
longueur du couloir et de l'angle a. Elle est
indépendante du coefficient de frottement, résultat
gu'avait obtenu HANFFSTENGEL [3]. En outre, elle
ne dépend pas de la pulsation, du moins dans le
cadre du régime glissant.1

Dans le cas du transport de substances
pulvérulentes, il se produit en outre des frottements
internes dans le corps transporté, dont I'évaluation
est difficile.

11. Conclusions

L'analyse qui précede a montré la possibilité
d'existence d'un mouvement cyclique dont les
conditons de  fermeture  déterminent les
performances du couloir. Des développements
complémentaires, malheureusement trop longs pour
étre reproduits ici, nous ont permis de vérifier que
ce cycle s'établit spontanément, trés vite dans le
cas de cycles mixtes et asymptotiquement dans le
cas de cycles glissants. Ces conclusions sont en
plein accord avec celles de Harding et Nedderman
[2]. Les performances du couloir en termes de débit
sont maximales a la pulsation maximale et, pour les
pulsations inférieures, le débit décroit plus vite que

1 on noteradu reste que dans laréférence 3], une erreur
algébrique a conduit a une valeur de k deux foistrop faible.
Cette erreur a été reproduite dans [4].

la pulsation. Enfin, en régime glissant, la résistance
spécifigue du couloir est indépendante du
coefficient de frottement et de la pulsation.
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