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1 Introduction

The main difficulty of design against fatigue lies in the fact that the endurance stress of a
notched part varies with the material and the scale. Theoretical models exist from long, but
they are restricted to notches defined by known values of stress concentration factor and
gradient. Nevertheless there exist a lot of umpredictable notches for which these two
characteristic parameters are unknown, the most typical case being the press-fitted assembly.
Our purpose is then to present a new similarity method allowing a safe evaluation of the
fatigue behaviour of such notches, from partial experimental data. A comparison with further
literature results shows a fair agreement between the present approach and experience.

2 The conventional method

The classical method of design against fatigue relates the endurance limit of a notched part of
diameter d, o, (d), to the endurance limit of a smooth part of diameter d,,o,(d,), by

dividing the latter by two effect factors, namely the scale factor K and the notch factor Kg,

UD (da )
K. K

o (d)= (1)

s

Unfortunately, these two factors are interrelated and therefore, if the notch effect is obtained
for a reference diameter of 10 mm for example, then the scale effect will also depend on the
notch. A purely experimental approach would therefore require a large amount of tests,
including large scale ones, which are very expensive.

In order to circumvene the abovementioned difficulties, it was tried to relate the notch factor
Krto the stress concentration factor K; by a notch sensitivity index q defined by

K, -1
K -1’

q= )

q depending on the material and on the notch radius. This approach is not completely
satisfactory from a theoretical point of view because K, the ratio between the maximum stress
and the nominal one, comes from an arbitrary choice of 6,0, and the so obtained criterium, as
finally expressed in terms of the maximum stress, is not objective.
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3 The gradient method

By far more attractive is the gradient method as pioneered by Siebel [1] and Petersen [2] and
which is now a standard in Germany. The fundamental idea of this method is to admit that the
endurance limit, as expressed in terms of the maximum stress, is a function of the relative
stress gradient

¥ = —1—Hg7‘ad o| at the maximum, (3)
o
whose general form is
x=—+== Q)

d being the diameter, and R the root radius. B; takes the value 0 in axial loading and 2 in
bending or torsion. Typical values of B, are 2.33 for axial loading or bending and 1 for
torsion. The general endurance criterium is

Op, +A\/—;E
TR,

)
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where o, is the endurance limit in axial loading, and A a material constant. Slightly

different values of A are given by different authors, but in each case, this constant is
approximately the same for any steel. A recent study of the compatibility of the gradient
method with fracture mechanics [3] led to a confirmation of this unique value of A for steels.
It also came to the conclusion that sharp notches may be treated by a limiting process. Finally,
checking the gradient method on a set of 292 experimental results given by Heywood [4]
conducted the author to find a fair agreement clearly confirming the validity of relation (5).

However, a severe limitation of this method lies in the fact that it is restricted to what may be
called predictable notches, for which K; and y are well known.

4 Unpredictable notches

There are in fact a lot of actual notches which cannot enter in the preceeding scheme, since K
or x or both are unknown. Such notches will be called umpredictable. Are included in this

category,

e sharp notches, for which K; and y tend to infinity. It is however well known that such
notches are characterized by a non zero, even weak, endurance.

e a lot of notches for which insufficient data is available, or having not well defined root
radii. Such are keyways, splined shafis, screw-threads, and so on.

o press-fitted assemblies, in which the stress state is unknown and does not depend on any -

radius.

g
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All these cases, which ironically are the most current ones, necessarily require an experience-
based approach. But experimental results are sparse. In fact, most references only give one
value of Ky for a given steel and a given diameter. In the best case, values of Kr are proposed
for a given diameter and some different steels. We only found one reference [5] giving values
of the endurance limit for one steel, and various diameters, up to 290 mm. The very strong
scale effect which was found shows that applying notch factors obtained from small parts to
large parts may be catastrophic.

As large experimental plants are not feasible, the question is now the possibility to find a law
by which partial results could be safely extrapolated. In this way, a key argument is the fact
that practical notches remain approximately similar from a geometrical point of view when
the scale is modified.

So, let us consider a family of geometrically similar pieces. This family may be characterized
by an identical value of two characteristic numbers, which are

e The stress concentration factor K,
e The gradient number G =,y d .

Let us define the weakening factor

y = oo (@) (for torsion, y = M) (6)
Op, Op,
which is the inverse of Niemann's 8, factor [6]). From the gradient method, one has
k .
1 G A4 A
y=—t——u=0C+C, ——— 7
K, K, oy, w/Zl; 1 2 o \/E 9

where C; and C, are two new characteristic numbers of the family, and there appears a new
undimensional number

A
. ®)

7 =

taking account of the material through A and o, and of the scale through d. Physically, C, is

the weakening factor for infinite hardness or infinite diameter. It is the lowest possible value
of the weakening factor. C, is responsible of the scale effect and of the material dependency.
The higher C,, the higher the scale effect, which here appears as an overstrength for low
scales.

As all studied versions of the gradient method lead to an approximately constant value of A
for steels, it is reasonable in this case to define a new constant C; = Cy+ A, which has the

dimension of a stress intensity factor (MPa~/mm ) and leads to a simplified law,

U8}
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y=C+

Finding constants C; and C; requires at least two experimental results with different steels or
different scales. More results are of course needed to perform a regression analysis, which
may be useful to increase the reliability of this approach.

5 The case of sharp notches

Sharp notches, characterized by a zero radius, generally lead to a non-zero endurance. In this
case, K, — o, G — o, but generally,

G
C, =11rnz:fznzte

As C; = 0, the strongest scale effect is obtained with such notches, that is,

3
SRS 10
y a (10)

However somewhat fictitious, since a true sharp notch is not possible, due to the radius of the
tool, this case may be taken as a conservative approximation when only one experimental
result is known.

6 A first case of study

The press-fitted assembly in bending is probably the most typical case of an unpredictable
notch. In fact, no one knows how to compute such a notch. Data from Lehr [5] indicate a very
strong scale effect, the endurance stress varying for a DIN St50 steel (Rm = 500 MPa) from
160 MPa for a 10 mm diameter to 70 MPa for a 290 mm diameter. From the 4 experimental
values given by Lehr, the following constants were obtained,

Ci1=0.2373,C3=3414

with a regression coefficient of 0.9976. Other values are given in the Dubbel momento [7] for
9 different steels and a constant 40 mm diameter. Applying our model with the above
constants, a less than 3.6 % discrepancy is obtained. A good accordance is also obtained with
data given by Niemann [6] but with a constant factor probably due to an extra-security for
design values and a not precisely given scale. Other spot verifications on isolated results are
very consistent, always within a range of +4 %. It is the only case where results concerning
both diameter and material variations were available, but it clearly confirms our point of view.

o
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7 Other experimental results

Adjustments were made for a lot of results coming from literature, generally for one diameter
and various steels. They are summarized in table 1. As can be seen, the regression coefficient
is always greater than 0.98. This leads to a valuable chart of notches for which up to now, no
effective computational method covering both steel and scale variations was known.

8 Conclusion

The proposed similarity method is an attempt to give a rational solution for unpredictable
notches which, up to now, resisted to any analysis. Very simple to use, our chart of table 1
could of course be improved by inclusion of other experimental results. The exceptionally
good regression coefficients which were obtained tend to prove that the proposed way is not
so bad. The applicability to other materials than classical steels remains an open way of
investigation.

C
Table 1. ¥ =C, +—2

op,Nd

Da
Csin WQW
Notch Ref. Variation Regression Cy Cs
1. Keyway [8] |6 steels 0.9933 0.2853 | 346.5
Bending o, =M /W, do =10 mm
_md® b 1)’
7 32 2d
b = width, t = depth
2. Idem, torsion 7, =M, /W, [8] | 6 steels 0.9892 0.2826 | 389.6
wd®  bt(d~1)* do = 10 mm
W, = _
16 2d
3. Press-fitted assembly, bending [5] |4 sizes, St50 0.9976 0.2373 | 3414
[6] |6 steels,
do=10mm
[7] |9 steels,
do=40mm
4. Press-fitted assembly, torsion [7] |9 steels 0.9978 0.4006 | 456.2
do =40 mm
5. Metric bolted assembly, direct [8] |4 steels 0.9917 10.08538 | 154.6
loading \ d, =12 mm
6. Withworth bolted assembly [8] | 4 steels 0.9967 0.1202 | 206.6
Direct loading do =12 mm
7. Withworth screw-thread on a shaft, | [9] |4 steels 0.9983 0.1556 | 176.8
direct loading do = 10 mm
8. Metric screw-thread on a shaft, [9] |4 steels 0.9982 0.1446 | 158.4
direct loading do = 10 mm
9. Withworth screw-thread on a shaft, | [9] |5 steels 0.9831 0.1610 | 4373
Bending do = 10 mm

(A
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Notch Ref. Variation Regression Ci Cs
10. Metric screw-thread on a shaft, [9] | 5 steels 0.9827 0.1436 | 429.9
Bending d, = 10 mm
11. Splined shaft, bending [8] |8 steels 0.9994 0.4508 | 2353
o, =M,IW, do = 10 mm
3
- =—Z" (involute)
nd,
W,=¢ ™ (square)
& =9/8 light series
6/5 mean series
5/4 hard series
12. Square spline, torsion [8] |8 steels 0.9989 0.2736 | 167.4
T, :Mt/ZWf dozlomm
See 11
13. Involute spline, torsion [8] |8 steels 0.9993 0.5578 | 1704
T, =M, /12W, do =10 mm
See 11
14. Circlips groove, bending [6] |1 value, - 0 368.1
R assumed =0 Rm = 500 Mpa
do =10 mm
15. Circlips groove, torsion [6] |1 value, - 0 449.7
R assumed =0 Rm = 500 Mpa
o= 10 mm
16. Serrated shaft, torsion. Analytic - 0.3638 | 283.8
T computed from the gross section. approx. from
[10]
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