Experimentation and Simulation of a Small-Scale Adsorption Cooling System in Temperate Climate.

Sébastien Thomas¹*; Samuel Hennaut¹; Stefan Maas²; Philippe André¹

¹University of Liège, Belgium (BEMS Building Energy Monitoring and Simulation) ²University of Luxembourg. Faculté des Sciences, de la Technologie et de la Communication *Corresponding author: sebastien.thomas@ulg.ac.be

Objective: To measure the thermal and electrical energy performance of a small scale air-conditioning system

Solar air-conditioning system components

A small-scale adsorption chiller was installed in April 2011 in a laboratory building in Belgium. This building is equipped with a fully monitored heat and cold production and distribution system. A solar collector field (14m²) used for building heating and domestic hot water production exists. The heart of the system contains an adsorption chiller INVENSOR LTC09 (9 kWcold), a dry cooling tower and a hydraulic module including pumps. After one season measurement, some system improvements have been achieved (new

Control strategy

The main assumption deals with the cooling load. The building is cooled whatever the climatic conditions. In this way all the cold water produced is used to cool the building.

Due to the small solar collector area, the heat released to the chiller was not sufficient most of the time. Some tests were run with electrical heater additionally to the collector power (see typical days results)

Simulation

3001 New

Qe7

14 m²

ECOSOL

2.32

Solar loop

Solar

On the simulation point of view, various parts of the system are modelled. Nevertheless, the adsorption chiller model (which is the core of the system) has not yet reached good

agreement with measured data.

Electricity sharing

The electricity consumption is measured for each solar air-conditioning component (Qe6 involves hydraulics module and the chiller).

Electricity sharing folol	Chiller + pumps	Fans	Solar loop pump	Standby consumption % of total cons.
	Qe6	Qe8	Qe7	
June 27 th 2011				
hottest day				
solar heat	33	56	11	10
July 4 th 2011				
sunny day				
solar heat	62	15	23	12
May 26 th 2012				
Elec + Solar heat	68	20	12	7
May 29 th 2012				
Solar only	59	18	23	20

storage tank and pipes, spraying kit). Solar cooling @ University of Liège 2012 Qcold Cooling tower Qe6 **COPthermal** = Qcold/Qheat Hydraulics module COPelec = Qcold/(Qe6+Qe7+Qe8) Typical days results May 26th 2012 Electrical + Solar heat Invensor ADS chiller 12000

External temperature [°C] 18000 16000 14000 \

12000

10000

8000

6000

2000

10000 \(\bigsim

Global results

Three chiller operation periods were recorded (92 days) during two summers (2011 and 2012).

The daily performance reaches good results for sunny days. Half of the days encountered less than 5 kWh/m² incident global radiation. Those days did generally not meet large cold energy production. It implies a negative fraction of energy (fsave) savings (compared to a reference system) for long periods results.

An electrical heater is implemented into the hot water storage tank to overcome the lack of sun energy. This testing period showed higher electrical and thermal COPs. Avoiding start-stop chiller operation increases significantly the solar air-conditioning performance.

Daily results summary

Hot water inlet t° [°C]

Qcoll [W]

- 80 70 60 *

s [°C],

50 40

30 20 Recooling water inlet t° [°C]

Hourly mean COPth *100 [-] — Qaux_heater [W]

May 29th 2012 Solar heat

Qcold [W]

	Qcoll	Qcold	COP _{thermal}	COP _{elec}	f save	External temp.
Units & comments	[kWh]	[kWh]	[-]	[-]	[%]	mean / max [°C]
June 27 th 2011						
hottest day - solar heat	45.8	21.3	0.54	3.21	13	24/32
July 4 th 2011 sunny day - solar heat	44.6	17.9	0.44	5.14	45	18/26
May 26 th 2012 Elec + Solar heat	44.3	47	0.6	7.85	-	21/29
May 29th 2012 Solar only	34.3	15.2	0.47	5.02	44	19/25

Conclusion

Measurements of the solar cooling system provide a number of performance indicators. High energy savings can be reached for typical sunny days (up to 45%). Cloudy days involve a significant drop in both thermal and electrical performances. Long period analysis revealed no energy savings.

Electricity savings fields are pointed out: standby and fan (for very hot days) consumptions could easily be decreased to improve the system electrical performance.

