
Elsevier Editorial System(tm) for Journal of Systems Architecture

Manuscript Draft

Manuscript Number:

Title: Authentication in Stealth Distributed Hash Tables

Article Type: Special Issue: Euromicro SEAA 2006

Keywords: Distributed Hash Table; Peer-to-Peer; Security; Public Key Infrastructure; Stealth DHT

Corresponding Author: Mr Andrew MacQuire, B.Sc (Hons.)

Corresponding Author's Institution: Lancaster University

First Author: Andrew MacQuire, B.Sc (Hons.)

Order of Authors: Andrew MacQuire, B.Sc (Hons.); Andrew Brampton, B.Sc (Hons.); Idris A Rai, Ph. D;
Nicholas J Race, Ph. D; Laurent Mathy, Ph. D

Abstract: Most existing DHT algorithms assume that all nodes have equal capabilities. This assumption has
previously been shown to be untrue in real deployments, where the heterogeneity of nodes can actually
have a detrimental effect upon performance. We now acknowledge that nodes on the same overlay may
also differ in terms of their trustworthiness. However, implementing and enforcing security policies in a
network where all nodes are treated equally is a non-trivial task. We therefore extend our previous work on
Stealth DHTs to consider the differentiation of nodes based on their trustworthiness rather than their
capabilities alone.

Authentication in Stealth Distributed Hash Tables

Andrew MacQuire Andrew Brampton Idris A. Rai
Nicholas J. P. Race Laurent Mathy

Computing Department
Lancaster University

{macquire,brampton,rai,race,laurent}@comp.lancs.ac.uk

Abstract

Most existing DHT algorithms assume that all nodes have equal capabilities. This assumption has previously been
shown to be untrue in real deployments, where the heterogeneity of nodes can actually have a detrimental effect upon
performance. We now acknowledge that nodes on the same overlay may also differ in terms of their trustworthiness.
However, implementing and enforcing security policies in a network where all nodes are treated equally is a non-trivial
task. We therefore extend our previous work on Stealth DHTs to consider the differentiation of nodes based on their
trustworthiness rather than their capabilities alone.

Key words: Distributed Hash Table, Peer-to-Peer, Security, Public Key Infrastructure, Stealth DHT

1. Introduction

Distributed Hash Tables (DHTs) have been shown
to be a useful form of decentralised, structured peer-
to-peer overlay [24,29,31,20]. They allow for the pro-
vision of simple hash table functionality – that is,
the ability to put and get pieces of data indexed via
hash codes – across multiple nodes in a scalable and
resilient fashion. Primarily, DHTs have been used
as location substrates for many varied applications,
such as large-scale file storage [9,7,12] and multi-
cast [25,34], amongst others.

Theoretically, most DHTs consist of numerous
nodes which organise themselves and behave in a
well defined manner. Each node is associated with
a unique identifier (ID), randomly selected from a
large, sparsely-populated address space. When an
object is put into a DHT, its contents are hashed in
some way as to produce an identifier which also maps
into this address space. The originating node then
routes the object to the local node that it knows to

have the closest-matching identifier. If the recipient
knows of an even closer node, it then forwards the
data on. Eventually, the object reaches a node which
does not know of any closer match. This node is
considered the final destination, and must then take
responsibility for the storage and/or any other han-
dling of the object. Any individual who then wishes
to get the same object at a later date can then do so
based on the knowledge of the object’s hash alone, as
any message routed to the same hash should arrive
at the same node that the object originally reached.
Of course, this can only occur if all nodes follow the
DHT protocol correctly.

Unfortunately, in a real-world deployment it
would be näıve to assume that all nodes can be re-
lied upon to conform to any prescribed behaviour.
Without appropriate security policies in place, nu-
merous problems may exist for public DHTs. For
instance, a malicious node may examine, alter or
deliberately drop messages passed through it (i.e.
a sniffing, man-in-the-middle or denial of service

Preprint submitted to Elsevier 18 February 2007

Manuscript

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of malicious nodes

P
er

ce
nt

ag
e

of
 a

ffe
ct

ed
 m

es
sa

ge
s

1000 nodes
250 nodes
100 nodes

Fig. 1. The effect of malicious nodes forwarding messages

attack). Using the simulation platform described
in Section 5 we can demonstrate how a relatively
small number of untrustworthy nodes can have a
large impact on a generic DHT. Fig. 1 shows the
percentage of messages which would be affected as
the corresponding percentage of malicious nodes
increases. Observe that when a quarter of a 1,000
node DHT’s population is malicious, over half of
the messages sent are subject to attack.

The ability to inject unsolicited messages into the
DHT, or to alter those in transit, also allows untrust-
worthy nodes to corrupt the routing tables of others.
Possible consequences of such actions could be legit-
imate nodes being denied service, or malicious nodes
improving their standing on the network at the ex-
pense of others. In terms of content in the DHT, if all
nodes are allowed to perform put operations, then
the pollution of the system with unwanted or illegal
data may become an issue. Furthermore, existing
DHT algorithms used in peer-to-peer networks pro-
vide ideal environments for users to infringe intellec-
tual property law because they allow users to easily
duplicate copyrighted works or distribute illegal con-
tent. This is a major factor that hinders commercial
use of existing DHT architectures, especially now
as peer-to-peer application/service providers are in-
creasingly liable for illegal activity carried out on
their networks [11].

To avoid these security problems, it is clear that
some method for handling untrustworthy nodes in
DHTs is required, especially if DHTs are to be used
commercially. Sadly, most traditional DHTs make
the assumption of homogeneity amongst peers,
treating them all as equal. This means that untrust-
worthy nodes are regrettably granted exactly the
same privileges and responsibilities as the trustwor-
thy. A common approach to solving this problem

is to make use of an authentication mechanism to
ensure that only trustworthy nodes are allowed to
join the DHT. However, determining the veracity
of a node can be a difficult process, and simply
alienating all those who cannot prove themselves
trustworthy may be unwise. Instead, such nodes
should still be allowed to make use of the DHT, but
in a limited capacity.

To this end, a means of separating sets of nodes
on the same DHT proves necessary. We therefore
demonstrate how our recently proposed Stealth
DHT concept [3] can be used to provide this precise
functionality with almost any existing DHT algo-
rithm. Our original evaluation covered the benefits
of this approach from a performance standpoint,
whereas we now consider the advantages gained in
terms of security.

The separation between nodes that a Stealth DHT
provides can be exploited to enable secure content
distribution, as when coupled with a suitable au-
thentication mechanism, it aids in returning network
control to the service provider. To clarify, the ability
to create fine-grained permissions for nodes on the
DHT means that security policies are much easier
to enforce. For example, by having only authorised
nodes storing and retrieving content, Stealth DHTs
can ensure that only legitimate and useful content is
served, thus providing a platform for Digital Rights
Management (DRM) in peer-to-peer networks, as
well as aiding in the prevention of pollution attacks.

The remainder of this paper is structured as fol-
lows: Section 2 gives a brief overview of the differ-
ences between traditional and Stealth DHTs. Sec-
tion 3 discusses the structure of a typical Public Key
Infrastructure (PKI). Section 4 then explains how a
Stealth DHT and a PKI may interoperate. Section 5
then highlights and evaluates a number of imple-
mentation concerns for such a system, with further
discussion of optional functionality in Section 6. Sec-
tion 7 goes on to examine related work in the field
of DHT authentication, and finally Section 8 con-
cludes the paper.

2. Overview of a Stealth DHT

The join process for most DHT implementations
involves a node first gathering state. Usually, this
is achieved by routing a join message addressed to
its own ID into the DHT via a bootstrap node (an
already-connected node discovered through some
alternate mechanism). Nodes along the message’s

2

path then reply directly with relevant routing in-
formation, as to allow the joining node to construct
its routing tables. Once the joining node receives
notification that its message has reached its desti-
nation, it announces its presence on the network so
that other nodes may route messages through it.

Stealth DHTs [3] modify this procedure slightly
to create two types of nodes on the network: Ser-
vice and Stealth. Service nodes provide the rout-
ing infrastructure for the overlay, whereas stealth
nodes communicate with and through service nodes
only. This separation is achieved by halting the join
procedure for stealth nodes after they have gath-
ered state, but before they announce their presence
on the DHT. The resultant effect is that stealth
nodes do not appear in any routing tables, and thus
are not used to forward any messages or store any
keys. Therefore, they are incapable of interfering
with message delivery or object storage in any direct
manner. The routing data gathered by stealth nodes
is used only for selecting the locally-optimal loca-
tion to forward their own requests to, thus improv-
ing routing performance while removing the possi-
bility of a single point of failure that many similar
DHT super-peer schemes suffer from [16,33].

It is important to note that the assignment of
the stealth and service node roles is application-
dependent, and is not prescribed or constrained by
the Stealth DHT itself. However, a Stealth DHT
provides an individual or a service provider with
the control to command such assignment. There-
fore, from a security perspective, and since service
nodes are responsible for handling all messages, they
should consist of verifiably trustworthy machines.
Conversely, any nodes which are potentially untrust-
worthy should be forced to join as stealth nodes,
prohibiting them from interfering with DHT opera-
tions to any extent.

In contrast with traditional DHTs, the distinc-
tion between trustworthy and untrustworthy nodes
provided by a Stealth DHT results in an architec-
ture where the implementation of security policies is
more straightforward. In addition, as service nodes
never retain any knowledge of stealth nodes, Stealth
DHTs are poised to offer significant advantages from
a security perspective.

For example, when a stealth node joins or leaves
the network, no service nodes need to update their
routing tables, which prevents them from being af-
fected by stealth nodes churning. This is especially
important from a security standpoint, as the ef-
fects of heavy churn have been identified as being

particularly harmful to many DHT implementa-
tions [21,13]. Malicious individuals have accord-
ingly used this knowledge as a means of facilitating
Distributed Denial of Service (DDoS) attacks. By
making numerous nodes under their control rapidly
rejoin DHTs, an attacker can cause floods of main-
tenance messages as nodes struggle to keep their
routing tables up to date, resulting in inconsistent
routing and overloaded nodes. If, however, a Stealth
DHT is used where the potentially untrustworthy
are forced to join as stealth nodes, no routing ta-
ble updates and so no maintenance messages are
required. The inevitable cost of such an advantage
comes in the form of increased stress upon the
service nodes, although these are assumed to be rel-
atively powerful machines capable of handling such
load.

Of course, in a system such as this there still
must be a means of ensuring that stealth nodes can-
not masquerade as service nodes (e.g. by simply
announcing their presence to other service nodes).
This can be achieved in a Stealth DHT through the
use of an appropriate authentication scheme to ef-
fectively enforce the separation between node types.
Accordingly, this is the focus of this work, wherein
we discuss how an authentication scheme based on
a Public Key Infrastructure can be implemented in
a Stealth DHT.

3. Overview of a Public Key Infrastructure

A Public Key Infrastructure (PKI) is a security
platform which allows multiple users who have not
previously exchanged any information to validate
each other’s identities, be sure of message integrity
and even set up confidential communication. This is
usually achieved via digital certification signed by
mutually trusted third parties, where the certificates
themselves are used to verify the identity of their
owner through public/private key cryptography.

A typical PKI is composed of several logically sep-
arate entities, although the functionality offered by
each may be contained within a single physical ma-
chine:

A Registration Authority (RA) is a trusted
entity which acts as the first point of contact for an
individual requesting certification. The RA is used
to check the requestor’s supplied credentials and,
if deemed valid, pass them on to the Certification
Authority.

A Certification Authority (CA) is a trusted

3

Version Serial Number

Period of Validity

Subject
Identity

Public Key

Issued By

Signature

Extensions

Subject Permissions
...

Fig. 2. Certificate Format

entity responsible for the creation and, if supported,
revocation of certificates. As it is a mutually trusted
third party, individuals may authenticate each other
with confidence if they sign their messages using a
certificate verifiably issued by a CA.

A Certificate Repository (CR) simply acts as
a database of existing certificates. A CR need not
be a trusted entity as the certificates it holds are
immutable; if any attempt is made to alter an ex-
isting certificate, the digital signature will no longer
match the contents. Note that if nodes are made re-
sponsible for the storage and dissemination of their
own certificates, a dedicated CR may be redundant.

If supported, the CR also contains the Certifi-
cate Revocation List (CRL), indicating which
certificates in the database have been forcibly re-
voked. Certificate revocation, however, is often an
unsupported feature in actual PKIs due to imple-
mentation difficulties; an issue discussed further in
Section 5.5.

Many PKI implementations use certificates which
conform to the ITU-T X.509 standard [1], a simpli-
fied version of which can be seen in Fig. 2. Each cer-
tificate contains a version record for compatibility
reasons, as well as a serial number to aid in certifi-
cate management. The certificate should also have
two discrete dates associated with it, indicating its
period of validity.

The most important element of any digital cer-
tificate, however, is the subject. That is, the indi-
vidual or organisation whose identity the certificate
may be used to authenticate. Typically this infor-
mation is comprised of the owner’s name and any
other pertinent information (address, organisation
name etc.). The owner’s public key is also included
in this section of the certificate. This key is crypto-

graphically paired with a corresponding private key
that each individual must keep secret, as it serves as
their means of creating digital signatures, as well as
decrypting any messages encrypted with their pub-
lic key.

Finally, the certificate must indicate the author-
ity which issued it, and must also contain the sig-
nature of that authority. The key point here is that
once the certificate has been signed in this manner,
the data contained within cannot change without in-
validating the signature. Note that certificates may
also contain optional extension fields, allowing for
application-specific additions.

It is also notable that as any individual who owns
a signed certificate from a higher authority may also
sign certificates themselves, lengthy certification hi-
erarchies often exist. As requesting and verifying
each level of certification separately may prove to be
time-consuming, many PKIs allow for the chaining
of certificates. That is, all certificates up to the ini-
tial, self-signed certificate (created by some intrinsi-
cally trustworthy entity) are included in a single col-
lection. While such a certificate-chain will obviously
be larger than any single certificate, it intuitively re-
duces overhead if verification up to the highest level
is known to be required.

4. Authentication in a Stealth DHT

A straightforward approach to implementing a
PKI on a Stealth DHT is to require each service node
to be issued with a certificate, as to prove its author-
ity. In the simplest case, stealth nodes would not
require certification. If, however, restrictions were
placed on any of the operations that stealth nodes
could perform, certification would be required to
prove that a given stealth node is authorised to per-
form a particular operation.

The certificate extension fields may therefore con-
tain a list of authorised operations that its owner
may carry out (see Fig. 2). Simple examples could be
the right to join as a service node, or the right to put
content into the network. It would then be manda-
tory for the relevant DHT messages to contain a field
which identifies the node’s certificate in some way,
as well as a digital signature to prove that the same
node was indeed the message’s creator. The node’s
certificate or certificate-chain could also be attached
to the message to aid in the authentication process.

4

4.1. PKI Composition

There are two broad approaches to supplying the
PKI’s constituent elements for the Stealth DHT:
external and internal. In the former, the RA, CA
and CR all exist entirely separately to any part of
the Stealth DHT itself, whereas in the latter the
functionality is provided by a set of operations on
the DHT, supported by some subset of the Stealth
DHT’s service nodes. This subset may simply be a
single, well-known service node (centralised PKI)
providing the entire PKI functionality for the
Stealth DHT, or in contrast it may consist of several
or all the existing service nodes (distributed PKI).

Exactly how the PKI elements are organised is
entirely application-specific, and internal/external
elements may be mixed. For example, as the RA
and CA must be trusted entities, they may consist
of a small number of highly-trusted service nodes
with well-known identifiers. The CR, on the other
hand, does not require a high level of trust due to
the immutability of digital certificates. As a result,
it could consist of several or all service nodes on the
DHT, with certificates being hashed and stored as
if they were normal DHT keys.

4.2. Joining the DHT

The first step for a new user to take will typically
be certificate acquisition. The user must therefore
generate a public/private key pair, and then pass
his or her public key along with any requested proof
of identity to the Registration Authority. Following
successful verification of these credentials by the RA,
they are then passed to the Certification Authority.
The CA then creates the certificate, signs it, and
passes it back to the user via the RA. It may also be
passed to a Certificate Repository, if necessary.

In a Stealth DHT with an external PKI that re-
quires authenticated join operations, the user can
simply send a join message containing his or her cer-
tificate to a suitable DHT bootstrap node, with the
separate PKI server(s) being contacted as required.
The same process is required for a Stealth DHT with
an internal PKI, although the components of the
PKI system are contained within the DHT instead.
Note that in the latter case a new, uncertified user
could also simply pass all his or her relevant details
to a bootstrap node as their join message, with no
need for any further action on their part. As all el-
ements of the PKI are contained within the DHT,

Signature

Verification

Verification...

Delivery via DHT

Certificate Request

Reply

Certificate Request

Reply

Reply
Recursive

Verification

Alice Bob
Certificate Source

(e.g. certificate repository,
local cache, or message)

Fig. 3. Sequence of events for message authentication

a certificate can automatically be returned to them
whilst an appropriate DHT join message with the
newly created certificate attached is simultaneously
forwarded, thus minimising join delay. In all cases,
the DHT ID of the joining node is irrelevant (unless
associated with their certificate); the real identity of
a user is always determined by the certificate they
own.

4.3. Sending Messages

Following a successful join, nodes may then com-
municate as normal over the Stealth DHT, authen-
ticating each other as necessary. As an example of
this, assume we have two users, Alice and Bob, a
stealth node and a service node respectively who
have joined a Stealth DHT with an internal PKI.
Alice wishes to send a message to Bob, who requires
that messages be authenticated. The correct proce-
dure (as shown in Fig. 3) would therefore be as fol-
lows:

Alice first creates a message, signs it, and deliv-
ers it to Bob via the DHT. Bob can then verify the
signature, and thus the message integrity, using Al-
ice’s certificate. He may have acquired Alice’s certifi-
cate from his certificate cache, a Certificate Reposi-
tory, or from within the message itself. Bob can then
recursively verify the issuers within the certificate
chain, starting with Alice’s certificate. This process
continues until Bob reaches a certificate that he in-
trinsically trusts. At this point, the authentication

5

is complete, and Bob can continue to handle Al-
ice’s message appropriately. Naturally, if the certifi-
cate chain does not eventually lead to an certificate
that Bob trusts, his attempt to authenticate Alice
fails. Following any reply from Bob, Alice may per-
form the same process on his message to authenti-
cate his identity, but only if mutual authentication
is required.

Further to this, if Alice and Bob wish to ensure
that their messages are kept confidential from even
the service nodes, they can simply use the public
keys contained within each other’s certificates to
encrypt the messages’ contents. To clarify, if Alice
wants to send sensitive data to Bob, then she first
uses the CR to retrieve his certificate beforehand.
Following this, she uses his public key to encrypt the
message contents and her own private key to sign the
message. Only Bob’s private key can decrypt data
encrypted in this manner, so Alice can be sure that
only Bob is able to understand the message contents.
Further to this, her signature ensures that Bob can
be sure the message came from Alice, and that it
was not tampered with.

Note that in an internal PKI, if the Certificate
Repository functionality is spread across many ser-
vice nodes, and certificate chains are not included in
messages, users performing get operations may ex-
perience longer retrieval delays due to the need for
the relevant certificates to also be requested from
the DHT. This increased overhead should, however,
be weighed against the cost of using a centralised
PKI, which potentially represents a single point of
failure for all nodes on the network.

5. Implementation Considerations

As Stealth DHTs may be tailored to a wide
range of applications based on the assignment of
roles to nodes, it follows that there are numerous
application-specific decisions to be made regard-
ing the implementation of any security system, as
discussed in the following sections.

For evaluation purposes, we used our own
discrete-event packet-level simulator based on a
Stealth DHT implementation of Pastry [24] (val-
idated in our previous work [3]). Each simulation
was performed several times on a GT-ITM [4] gen-
erated transit-stub topology of 1,000 routers, with
4% transit nodes. Service, stealth and normal Pas-
try nodes were connected to this topology in a
random fashion.

Results from our real-world C++ implementation
of both Pastry and a Pastry Stealth DHT are also in-
cluded in the following sections. Data was obtained
from a randomly selected set of active PlanetLab
nodes [18], which were connected to the DHT in a
random fashion. Multiple iterations were run, with
the network being given suitable time to reach a
steady-state in all cases. The algorithm used in all
authentication operations was the OpenSSL 0.9.8d
implementation of RSA, with 1024 bit keys [10,22].

5.1. Certification Hierarchy

Some thought should be placed into how the cer-
tification structure is organised within the PKI. The
simplest approach for a Stealth DHT could be to
have a single globally trusted key, used to sign cer-
tificates for service nodes only. However, users may
require a more complex hierarchy for economic, po-
litical or security reasons; again, this is an entirely
application-specific issue. A possible example could
be that each department within a typical commer-
cial organisation is granted a certificate signed by a
single, highly-trusted master key. It may be that the
master key needs to be kept physically secure and
is therefore inconvenient to access. By introducing
this extra level of hierarchy, however, the need for it
to be used to sign certificates on a regular basis is
negated. This approach also allows for a finer level
of control, as if the privileges of an entire depart-
ment needed to be revoked, for instance, it is simply
a matter of invalidating the associated departmen-
tal certificate.

5.2. Asymmetry vs. Symmetry

There are two obvious manners in which service
and stealth nodes may authenticate each other:
asymmetric (service or stealth node authentication
only) or symmetric (mutual authentication). To
clarify, service node authentication may be required
if a stealth node is placing sensitive information into
the network and wants to be sure of the recipient.
Conversely, stealth node authentication may be re-
quired if a service node needs to verify if a stealth
node is authorised to retrieve sensitive information
from it. Finally, mutual authentication may be re-
quired if a combination of these factors arises. By
taking this approach of authenticating the nodes
only as required, processing and messaging over-
head can therefore be minimised.

6

5.3. Authentication Granularity

Exactly how authentication is performed on the
DHT presents an issue of balance between over-
head and security. A fine-grained approach would
be to verify messages on a per-hop basis. For most
DHTs, this results in all required authentication op-
erations (such as retrieving appropriate certificates
or checking revocation lists) being performed on av-
erage logN times for each message, where N is the
number of service nodes in the network. However, it
also results in any invalid messages being dropped
almost immediately, making it difficult for unau-
thenticated malicious nodes to get service nodes to
pass invalid messages around; a tactic often used in
DHT denial of service attacks, typically resulting in
the network becoming overloaded with useless traf-
fic.

Considering a slightly coarser approach, if service
nodes were to simply validate messages upon re-
ceipt at their final destination, then all associated
authentication operations need only be performed
once per message. Obviously this means that any
messages from unauthorised nodes may be unnec-
essarily routed by multiple service nodes on their
journey, consuming bandwidth and processing time.
However, it also means that the number of authen-
tication operations performed may be significantly
reduced.

Beyond per-message authentication, service
nodes may make use of the coarse concept of “ses-
sions”. In other words, a typical stealth node may
be permitted to consume a certain amount of re-
sources, make use of a given service or be active on
the DHT for a pre-determined length of time. Ex-
amples here could include a node being permitted
to send or receive a set number of messages on the
network, being given the ability to download a par-
ticular number of pieces of content or being provided
with a “day-pass” to use the DHT, respectively.

Session-based authentication therefore requires
that some state be stored and validated for stealth
nodes. If the session is based on a length of time,
then this can be as simple as issuing a certificate
with a corresponding period of validity. Otherwise,
it is likely that a more complex system is required,
such as an accounting mechanism, as discussed in
Section 6.1 or a session authentication protocol
such as Kerberos [17].

Figs. 4 show results for simulations conducted
with a fixed number of 100 service nodes, where

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

Number of stealth nodes

In
cr

ea
se

 in
 n

um
be

r
of

 m
es

sa
ge

s
(%

) Per hop
Per message
Per hop with certificate chain
Per message with certificate chain

(a) Increase in the number of messages

0 200 400 600 800 1000
0

5

10

15

20

25

Number of stealth nodes

In
cr

ea
se

 in
 lo

ok
up

 la
te

nc
y

(%
)

Per hop
Per hop with certificate chain
Per message with certificate chain
Per message

(b) Increase in lookup latency

Fig. 4. Stealth DHT with 100 services nodes using an inter-

nal, fully distributed PKI relative to a Stealth DHT with no

authentication. Note that the certificate-chain simulations
are overlaid in these figures.

the number of stealth nodes was varied between 10
and 1,000. Every service node in the DHT initially
held its own certificate as well as several content
keys. During the simulation itself, stealth nodes per-
formed random get requests for these keys at regular
intervals. Authentication operations were performed
at the source and destination in the per-message re-
sults and also performed at each intermediate node
in the per-hop results. For both cases, simulations
were run with and without certificate chains con-
tained within messages.

Fig. 4(a) shows that both the per-hop and per-
message authentication schemes result in no increase
in the overall number of messages when certificate
chaining is used. This is because all the certificates
required to fully authenticate a message’s sender are
included within the message itself, thus increasing
the average message size, but resulting in no further
requests to the CR.

7

On the other hand, an increase in the number of
messages does exist when certificate chains are not
used. This increase is due to the distributed nature
of the Certificate Repository in an internal PKI; to
acquire a certificate in order to perform authentica-
tion, a node must retrieve it from the service nodes
through further DHT queries. Expectedly, per-hop
authentication results in markedly more messages
than per-message authentication. Also, as the num-
ber of stealth nodes increases, the percentage in-
crease in the number of messages relative to a system
without authentication falls. The reason for this is
that the increased number of stealth nodes results in
an accordingly increased number of requests for cer-
tificates. As all nodes cache certificates upon receipt,
there is no need for certificates to be re-acquired.

Fig. 4(b) shows how lookup latency (the time
elapsed between a node requesting, receiving and
fully verifying a key from the DHT.) is affected by
these factors. As expected, the cases which involved
querying the network (i.e. those without certificate
chains) result in increased lookup latencies. Note,
however, that the cases with certificate chains also
incur increased lookup latencies despite the lack of
extra authentication messages. This is attributed to
the larger average message size that occurs as a re-
sult of including certificate chains within messages.

The same conclusions can be drawn from Fig. 5,
which shows the CDF of lookup latencies for our im-
plementation running on PlanetLab. Simple certifi-
cation hierarchies of two and three levels were used
to ensure that certificate requests to an external
server either were or were not generated (“requests”
and “no requests” on the figure, respectively). We
again witness that when requests for certificates are
required, lookup latency is increased relative to a
system without authentication. The larger message
size required for authenticating messages also re-
sults in the “no request” scenario exhibiting slower
lookups, although the difference is minor for the ma-
jority of cases.

As seen in Fig. 4(a), the relative increase in
the number of required authentication messages
decreases with larger numbers of stealth nodes.
Fig. 4(b) therefore displays a correlated reduction in
lookup latency. As the cases with certificate chains
do not generate extra authentication message, they
remain unaffected by the number of stealth nodes
in the DHT.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Lookup latency (seconds)

C
D

F

Without Authentication
With Authentication (no requests)
With Authentication (requests)

Fig. 5. Impact of per-hop authentication upon lookup latency

with/without certificate requests

5.4. Processing Overhead

An inevitable overhead involved with providing a
PKI-based authentication system is the increase in
processing time required for signing and verifying
certificates. The effect this might have on a DHT is
difficult to realistically quantify through simulation
alone, and so we investigated the impact of using
authentication on the performance of our real-world
implementation.

As noted in Section 5.3, Fig. 5 shows the CDF of
lookup latencies for our implementation running on
PlanetLab, with and without authentication. From
the figure, it is clear that approximately a quarter of
the lookups made were noticeably slower when per-
hop authentication (without requests) was used, rel-
ative to a DHT with no authentication mechanism.
However, upon varying the authentication granu-
larity to per-message (not shown), no improvement
was witnessed. This infers that processing overhead
may not be a major factor in the performance de-
crease, as the amount of processing in per-message
authentication would be greatly decreased relative
to per-hop.

Further investigation involved repeatedly bench-
marking the authentication code on the PlanetLab
nodes used, and it was found that over 90% were
able to sign a message in less than 100 milliseconds
(and 70% less than 50 milliseconds). In compari-
son with network latency, it therefore seems unlikely
that processing overhead played an significant role
in the performance decrease observed. Also, note
that many of the values in this section are somewhat
indicative of the high load on PlanetLab: the same
test performed on a typical unloaded PC completed
in less than 3 milliseconds on average.

8

It appears the actual reason for the longer lookup
latencies is simply the delay involved in delivering
the extra authentication data. Without authentica-
tion, messages were around 256 bytes in length; with
authentication, messages were twice as large at 512
bytes. It is clear therefore, that a lack of processing
power is not a major problem; instead, minimising
the need to transmit certificates (e.g. by using suit-
able certification hierarchies) and ensuring network
links are suitably provisioned are more important
issues.

5.5. Certificate Revocation

Invalidating a given certificate at an arbitrary
point in time within a PKI structure (i.e. revoking
it) is traditionally a difficult problem, especially in
distributed environments. However, the need for the
ability to revoke certificate often outweighs the cost
of any associated overhead. In other words, being
able to remove a node from a network before it can
do any lasting damage may be worth the extra asso-
ciated costs. There are a number of possible meth-
ods for certificate revocation, each with advantages
and disadvantages (see [32]).

An obvious solution is for stealth nodes to be
simply issued with certificates with short expira-
tion times, resulting in a quasi-revocation scheme in
which a CA can simply refuse to re-issue a given cer-
tificate if it wishes to remove a given entity’s priv-
ileges within the system. Unfortunately, this intu-
itively has a high maintenance overhead, as every in-
dividual that continues to exist on the network will
require a new certificate to be generated and issued
at a regular interval.

Another common approach is to use a CRL, or
Certificate Revocation List. Any node verifying a
certificate must then check the list as part of its nor-
mal authentication process. The list itself may be
stored in one of a number of ways. For instance, and
as with many of the other issues considered so far,
a centralised server could be used. Again, the prob-
lems common to this sort of approach are that it
creates a central point of failure, and could poten-
tially result in the overloading of the server if many
requests are regularly made. A distributed approach
amongst service nodes could potentially be used to
alleviate the load placed upon any one node, but
this results in increased messaging overhead due to
the added complexity of maintaining and retrieving
the list. It is important to note that the list could

also be kept in its entirety on multiple nodes instead
of split between them (i.e. replication vs. division,
respectively).

There also exist several approaches for the manner
in which nodes access such lists. In general terms,
these fall into the pull and push distribution models.
As an example of the pull model, nodes may poll the
holder(s) of the CRL at regular intervals, or even for
every transaction, depending on the level of granu-
larity required. An example of the push model would
be the Certificate Revocation List being broadcast
to all nodes upon any update, or at a regular in-
terval. Obviously, such an approach may result in a
great deal of initialisation overhead if a large num-
ber of nodes which require the CRL exist; multicast
overlays may have to be built, and ideally with some
method of guaranteeing delivery. For small numbers
of nodes, however, the cost of broadcasting updates
and/or occasionally broadcasting the full list may
be lower than having nodes repeatedly request it un-
necessarily.

6. Optional Considerations

Beyond the mandatory decisions regarding the
structure of the Stealth DHT PKI, there are also a
number of additional considerations that may be re-
quired for certain applications, as discussed in the
following sections.

6.1. Permissions Management

Managing the permissions of nodes on the net-
work is yet another issue with multiple solutions.
One possibility is to simply place them within each
node’s corresponding certificate, but this has two
notable associated issues. Firstly, certificates are im-
mutable after they are signed, so altering the per-
missions for a node would require a certificate to be
re-issued. Secondly, the average DHT message size
would have to increase to accommodate the larger
certificates; exactly how large they are depends on
the volume of data required to represent all the rele-
vant details. However, such an approach does mean
that the relevant permissions are immediately avail-
able to any node receiving a message containing the
originating node’s certificate.

An alternative approach would be to store per-
missions data within the network somehow, thereby
avoiding the lack of flexibility and larger message
sizes associated with storing them within certifi-

9

cates. The inevitable cost, however, arises in the
form of extra messaging overhead; every time a
node needs to check an individual’s permissions,
they would have to look up and also validate the
relevant data.

The permissions for a given node in a system such
as those discussed may require that some state is
maintained for each individual. For instance, this
may be based on a record of how much network
resources the node has consumed. To provide such
functionality, an accounting mechanism of some sort
is therefore required.

As with most of the issues discussed so far, there
are numerous possible approaches to the problem of
providing an accounting mechanism for nodes in a
Stealth DHT, each with advantages and disadvan-
tages. Nevertheless, the common goal of each is iden-
tical: to provide a system which offers ACID prop-
erties. These are Atomicity (an action is either per-
formed completely or not at all), Consistency (an
action cannot place the data in an invalid state),
Isolation (actions cannot interfere with each other’s
intermediate states) and Durability (the result of an
action will persist).

The most straightforward approach is perhaps to
just have a simple centralised server handle all trans-
actions. This means messaging overhead is minimal,
although it also means that a single point of fail-
ure exists for the system. Furthermore, dependent
on the number of nodes considered, the server may
be placed under load beyond its capabilities.

Another possibility would be to improve load-
balancing by distributing the transaction process-
ing across multiple nodes. For instance, this could
be achieved by mapping a given node’s state to a
key in the DHT. However, it is important to note
that without replication, such a system would be
prone to losing data from time to time. With replica-
tion, however, the management overhead required to
maintain the aforementioned ACID properties will
intuitively increase due to the need for agreement
amongst the replicated nodes.

The classical approaches for distributed ac-
counting are divided into a few main categories,
local accounting, quorum-based [6] and token-
based [15,30,23]. Local accounting refers to the case
when nodes do not collaboratively maintain a count,
but only keep values locally instead. In contrast,
quorum-based systems require a group of nodes to
maintain the count in a cooperative fashion. Be-
fore the count is modified the quorum must reach
a consensus on its old and new value. The more

nodes that exist in the quorum the more robust the
system is to malicious nodes and network failures.

Token based systems may also use similar ap-
proaches, but the key difference is that each count is
represented by many immutable tokens. Each token
represents a currency that nodes can exchange for
service. These tokens are cryptographically signed to
restrict who can use them. Nodes acting as “banks”
may be used to store and certify the tokens to en-
sure that double spending does not take place. To-
kens have the benefit that they can either be self-
issued [30], or can be issued by the system [23].

Variations on mechanisms such as these may also
be used to provide logging functionality in the DHT,
thus making users accountable for their actions.

6.2. Node Promotion

A key function of a Stealth DHT with authen-
tication support is the strong separation between
stealth and service nodes. Sometimes, however, it
may be useful to allow nodes to alter their roles. For
instance, if a Stealth DHT with a small number of
service nodes is heavily loaded, the ability to ‘pro-
mote’ stealth nodes to a service role for offloading
purposes could be advantageous.

In most cases, it would perhaps be unwise to of-
fer a stealth node full privileges outright; without
a careful selection process and suitable permis-
sions management, the potential for abuse would
be high. Determining suitable stealth nodes would
most likely be a two stage process: first, discovering
which nodes have the required resources available,
and secondly, ascertaining which nodes within that
set can be classed as trustworthy.

Finding stealth nodes with spare resources would
not necessarily be difficult. On a heavily loaded
DHT, service and stealth nodes would be commu-
nicating often, and so service nodes could simply
attach a request for support to any replies they
send. A suitable stealth node could then reply to
this request, offering its spare capacity in what-
ever form it may take. Stealth nodes may also offer
their services, either due to incentives placed by the
service provider, or for altruistic reasons.

Exactly what resources are being offered has an
important bearing on how rigourous the service
node’s subsequent examination of the stealth node
should be. As a simple example, storing replicated
certificates requires little to no trust at all; the cer-
tificates cannot be maliciously altered without it

10

being obvious, and should the stealth node disap-
pear, the original certificate is not lost. In contrast,
if a stealth node were to be enlisted to store the
only copy of a piece of unprotected content, it would
have to be trusted not to alter it, or to disconnect
without replicating it. Note that neither of these
examples actually require the stealth node to be
part of the DHT’s routing, as the stealth node could
simply register with a service node as auxiliary
storage space.

In the case of a former stealth node becoming in-
volved in forwarding messages for the DHT, even
greater care is required when validating the node’s
trustworthiness. For instance, if a malicious node is
only used for storing protected data, the worst it can
do is deny service for that data alone. If, however,
the same malicious node is involved in DHT routing,
it could supply legitimate service nodes with false
routing data, potentially damaging the entire DHT.

Compromises are therefore required, and thus the
concept of promotion is inextricably linked with the
previous discussion on managing node permissions
(see Section 6.1). Furthermore, it is important that
any new privileges given to a stealth node can be
revoked easily, an issue discussed in Section 5.5.

6.3. Digital Rights Management

As has been previously noted, a Stealth DHT with
authentication support may prove to be a useful
platform for content distribution. However, while a
Stealth DHT as discussed thus far can ensure the
content is delivered safely, commercial services may
also require that the data be placed under certain
restrictions. A typical example would be copy pro-
tection, where users are prevented from accessing
content they are not licensed to use.

A common, generalised approach to this problem
involves the use of licensing servers. All content is
encrypted during the delivery process, and the li-
censes granted to users via the servers act as decryp-
tion keys. In some cases, every time the content is
played back, a license has to be acquired. Naturally,
this means that the license servers have to be reli-
able to ensure user satisfaction.

A natural extension for a Stealth DHT serving
such content could therefore be to distribute licens-
ing servers across the DHT. Many of the issues dis-
cussed thus far regarding Public Key Infrastructures
also apply to DRM systems, as PKIs are often used
within them. A Stealth DHT could therefore of-

fer both user authentication and content protection
within a single system.

7. Related Work

Many previous works have discussed the varied
problems associated with untrustworthy nodes in
DHTs, noting that security is an issue commonly
overlooked in algorithm proposals. For example, [27]
and [5] both discuss possible DHT attacks and de-
fenses. In the former, Sit and Morris broadly define
three types of malicious behaviour: routing, storage
and other miscellaneous attacks.

A commonly encountered technique often used in
all three categories is the “Sybil” attack, as origi-
nally described by Douceur [8]. This refers to the sit-
uation when a single malicious node is able to mas-
querade as multiple distinct entities within the net-
work in order to gain control of a substantial frac-
tion of it. The conclusion is drawn that a suitable
defense against such an attack is to have a logically
centralised authority which is capable of certifying
the identity of nodes in the network. Therefore, this
paper can be said to support our approach of imple-
menting a PKI in conjunction with a Stealth DHT.

Routing attacks in a DHT may refer to nodes de-
liberately providing incorrect lookups or producing
incorrect routing updates. More specifically, an ex-
ample could be the “Eclipse” strategy, as discussed
in detail by Singh et al. [26]. This involves multi-
ple malicious nodes deliberately attempting to par-
tition peer-to-peer overlays in a form of Distributed
Denial of Service (DDoS) attack. Again, the sugges-
tion is made of a certification scheme as a straight-
forward solution, as with our approach to such a
problem. Beyond this, the authors propose defenses
such as constraining the entries placed in routing
tables [5] or periodically auditing the connectivity
of other nodes to detect anomalies which are symp-
tomatic of those conducting such an attack.

Storage attacks may involve behaviour such as
nodes refusing to store objects, corrupting them or
simply denying their existence. More resourceful at-
tackers may also use multiple malicious nodes to at-
tempt to take control of specific pieces of content.
Some may even try to make it impossible to access
useful content by flooding the network with useless
data [14]. Srivatsa and Liu suggested the approach
to obfuscate the location on the DHT of specific keys
from those not authorised to access them [28], al-
though the most commonly suggested solution is to

11

make use of some sort of digital certification scheme,
such as the one we have proposed. Furthermore, a
Stealth DHT can ensure that potentially untrust-
worthy nodes are never even part of the DHT which
is responsible for storing keys, although they may
still access them if authorised to do so.

Of course, DHT-based storage systems have of-
ten considered security in their own right. PAST,
for instance, uses the concept of “smartcards”, with
which users hold associated public/private keys [9].
These smartcards are managed by brokers (trusted
third parties). In other words, PAST is yet another
system that takes the approach of using a Public
Key Infrastructure for security purposes; again, the
concept we have suggested and expanded upon in
this work.

In terms of miscellaneous attacks, Sit and Morris
also noted that an attacker may attempt to conduct
a DDoS attack by causing multiple nodes under their
control to rapidly join and leave the network, result-
ing in degradation of DHT performance [21,13]. Pos-
sible solutions to this problem are suggested in [5],
such as forcing nodes to solve crypto-puzzles be-
fore they may join as a means of slowing down at-
tackers attempting to run multiple logical nodes on
a single physical machine. However, such an ap-
proach merely makes carrying out an attack slightly
more difficult. Our Stealth DHT approach, however,
means that stealth node churn has a significantly re-
duced effect on DHT performance relative to nodes
churning in traditional DHTs.

Several works have also considered how such
authentication systems may be implemented in
a physically distributed fashion over peer-to-peer
networks. For example, Aberer et al. discussed
how a completely decentralised PKI based on a
statistical approach could be deployed on many
traditional DHTs (although they specifically use P-
Grid [19]) [2]. The key difference in comparison with
our work is that in this case, the authors consider a
method that can function with a network consisting
entirely of potentially untrustworthy nodes. How-
ever, they note that their system breaks down if
more than 25% of nodes are actually malicious, and
that it may not function with several DHTs, such
as CAN or Chord [20,29]. We, however, believe that
our system is implementable on any existing DHT,
and should function regardless of the percentage of
malicious stealth nodes.

8. Conclusion

The original goal of our Stealth DHT proposal was
to provide a distinction between nodes of greater
and lesser capabilities as a means of improving rout-
ing performance. Powerful nodes were responsible
for handling message forwarding within the DHT,
whereas the remaining, weaker nodes simply re-
quested services from them. We have demonstrated
that this separation can be extended to incorporate
both verifiably trustworthy and potentially untrust-
worthy nodes. By selectively limiting the privileges
of untrustworthy nodes on the network, on an in-
dividual basis if required, we can accordingly limit
the numerous security problems associated with
supplying service to them. By further augmenting
our approach with a suitable Public Key Infrastruc-
ture to enforce the separation between node types,
we have shown how a Stealth DHT can be used
to supply a secure, resilient overlay that caters to
both trustworthy and untrustworthy nodes simul-
taneously. Stealth DHTs do not necessarily need to
deny access to potentially untrustworthy nodes as
opposed to previous approaches that addressed se-
curity issues in DHTs. Instead, the operations that
such nodes can perform need only be selectively
limited. A Stealth DHT coupled with the authenti-
cation mechanisms described could therefore form
an ideal secure location substrate for the numerous
varied applications that DHTs can support.

References

[1] ITU-T Recommendation X.509, Information Technology

Open Systems Interconnection - The Directory:

Authentication Framework (August 1997).

[2] K. Aberer, A. Datta, M. Hauswirth, A decentralized
public key infrastructure for customer-to-customer e-

commerce, International Journal of Business Process

Integration and Management 1 (1) (2005) 26–33.

[3] A. Brampton, A. MacQuire, I. A. Rai, N. J. P.
Race, L. Mathy, Stealth Distributed Hash Table: A

robust and flexible super-peered DHT, in: Proc. of
the 2nd Conference on Future Networking Technologies

(CoNEXT), Lisbon, Portugal, 2006.

[4] K. L. Calvert, M. B. Doar, E. W. Zegura, Modeling
Internet topology, IEEE Communications Magazine

35 (6) (1997) 160–163.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, D. S.

Wallach, Secure routing for structured peer-to-peer
overlay networks, in: Proc. of the 5th Symposium on
Operating Systems Design and Implementation (OSDI),

2002.

12

[6] M. Castro, B. Liskov, Practical byzantine fault-

tolerance, in: Proc. of the 3rd Symposium on Operating

Systems Design and Implementation (OSDI), 1999.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris,
I. Stoica, Wide-area cooperative storage with CFS,

in: Proc. of the 18th ACM Symposium on Operating
Systems Principles (SOSP), 2001.

[8] J. R. Douceur, The Sybil attack, in: Proc. of the

1st International Workshop on Peer-to-Peer Systems

(IPTPS), 2002.

[9] P. Druschel, A. Rowstron, PAST: A large-scale,

persistent peer-to-peer storage utility, in: Proc. of the

8th Workshop on Hot Topics in Operating Systems
(HotOS), 2001.

[10] http://www.openssl.org, OpenSSL: The open source

toolkit for SSL/TLS.

[11] http://www.supremecourtus.gov/opinions/04pdf/04-
480.pdf, Supreme Court of the United States, no. 04.480.

Argued March 29, 2005. Decided June 27, 2005.

[12] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, B. Zhao,

OceanStore: An architecture for global-scale persistent
storage, in: Proc. of ACM ASPLOS, 2000.

[13] J. Li, J. Stribling, T. M. Gil, R. Morris, M. F. Kaashoek,

Comparing the performance of distributed hash tables

under churn, in: Proc. of the 3rd International Workshop
on Peer-to-Peer Systems (IPTPS), 2004.

[14] J. Liang, N. Naoumov, K. W. Ross, The index poisoning

attack in P2P file sharing systems, in: Proc. of IEEE
INFOCOM, 2006.

[15] N. Liebau, V. Darlagiannis, A. Mauthe, R. Steinmetz, A

token-based accounting scheme for p2p-systems, Tech.
Rep. TR-2004-05, Technische Universitt Darmstadt

(January 2004).

[16] A. T. Mizrak, Y. Cheng, V. Kumar, S. Savage,

Structured superpeers: Leveraging heterogeneity to
provide constant-time lookup, in: Proc. of the 3rd IEEE

Workshop on Internet Applications (WIAPP), 2003.

[17] B. C. Neuman, T. Ts’o, Kerberos: An authentication
service for computer networks, IEEE Communications

32 (9) (1994) 33–38.

[18] L. Peterson, D. Culler, T. Anderson, T. Roscoe, A
blueprint for introducing disruptive technology into the

Internet, in: Proc. of the 1st Workshop on Hot Topics

in Networks (HotNets-I), 2002.

[19] C. G. Plaxton, R. Rajaraman, A. W. Richa, Accessing
nearby copies of replicated objects in a distributed
environment, in: Proc. of the 9th Annual ACM

Symposium on Parallel Algorithms and Architectures,
1997.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp,

S. Shenker, A scalable content-addressable network, in:
Proc. of ACM SIGCOMM, 2001.

[21] S. Rhea, D. Geels, T. Roscoe, J. Kubiatowicz, Handling

churn in a DHT, in: Proc. of the USENIX Annual
Technical Conference, 2004.

[22] R. Rivest, A. Shamir, L. Adleman, A method

for obtaining digital signatures and public-key

cryptosystems, Communications of the ACM 21 (2)
(1978) 120–126.

[23] R. L. Rivest, A. Shamir, PayWord and MicroMint: Two
simple micropayment schemes, in: Security Protocols

Workshop, 1996.

[24] A. Rowstron, P. Druschel, Pastry: Scalable, distributed
object location and routing for large-scale peer-to-

peer systems, in: Proc. of the 18th IFIP/ACM
International Conference on Distributed Systems

Platforms (Middleware), 2001.

[25] A. Rowstron, A.-M. Kermarrec, M. Castro, P. Druschel,
SCRIBE: The design of a large-scale event notification

infrastructure, in: Proc. of the 3rd International

Workshop on Networked Group Communication (NGC),
2001.

[26] A. Singh, T. Ngan, P. Druschel, D. Wallach, Eclipse

attacks on overlay networks: Threats and defenses, in:
Proc. of IEEE INFOCOM, 2006.

[27] E. Sit, R. Morris, Security considerations for peer-

to-peer distributed hash tables, in: Proc. of the
1st International Workshop on Peer-to-Peer Systems

(IPTPS), 2002.

[28] M. Srivatsa, L. Liu, Countering targeted file attacks
using location keys, in: Proc. of the 14th USENIX

Security Symposium, 2005.
[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,

H. Balakrishnan, Chord: A scalable peer-to-peer lookup

service for Internet applications, in: Proc. of ACM
SIGCOMM, 2001.

[30] W. Thigpen, T. J. Hacker, L. F. McGinnis, B. D. Athey,

Distributed accounting on the grid, in: Proc. of the 6th
Joint Conference on Information Sciences, 2002.

[31] B. Y. Zhao, J. D. Kubiatowicz, A. D. Joseph, Tapestry:

An infrastructure for fault-tolerant wide-area location
and routing, Tech. Rep. UCB/CSD-01-1141, University

of California, Berkeley, USA (April 2001).

[32] P. Zheng, Tradeoffs in certificate revocation schemes,
ACM SIGCOMM Computer Communication Review

33 (2) (2003) 103–112.
[33] Y. Zhu, H. Wang, Y. Hu, A super-peer based lookup in

structured peer-to-peer systems, in: Proc. of the 16th

International Conference on Parallel and Distributed
Computing Systems (PDCS), 2003.

[34] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz,
J. Kubiatowicz, Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination, in: Proc.

of the 11th International Workshop on Network and

Operating Systems Support for Digital Audio and Video
(NOSSDAV), 2001.

13

