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ABSTRACT 1. INTRODUCTION

Recent activities in the IRTF (Internet Research Task Horce  The locator/ID separation paradigm is being discussed
and in particular in the Routing Research Group (RRG), fo- in the IRTF (Internet Research Task Force) Routing
cus on defining a new Internet architecture, in order to solve Research Group (RRG) in order to solve scalability
scalability issues related to interdomain routing. The re- issues that today’s Internet is facing ([11], [9], [10]).
search community has agreed that the separation of the endWorks like [12] clearly show that several benefits can be
systems’ addressing space (the identifiers) and the routingachieved with such an approach, not only in alleviating
locators’ space will alleviate the routing burden of the De- the routing burden of the Default Free Zone (DFZ).
fault Free Zone. Nevertheless, such approach, adding a new The Locator /ID Separation Protocol (LISP [5]) is one
level of indirection, implies the need of storing and disiti of the solutions being discussed within the RRG in order
ing mappings between identifiers and routing locators. In to provide the support for this new Internet architec-
this paper we present LISP-DHT, a mapping distribution sys- ture. A key problem faced by LISP, is that a mapping
tem based on Distributed Hash Tables (DHTS). LISP-DHT system will be required to distribute mappings between
is designed to take full advantage of the DHT architecture in identifiers and locators in a scalable way. In the LISP
order to build an efficient and secured mapping lookup sys- specification, for what is called LISP 3 variant, the use
tem while preserving the locality of the mapping. The paper of Distributed Hash Tables (DHTS) as mappings distri-

describes the overall architecture of LISP-DHT, explainin
its main points and how it works.
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bution system is suggested. In spite of this, none of the
mapping distribution systems proposed so far for LISP
(8], [3], [4], [2]) has a DHT-based approach.

LISP-DHT, our proposal, fills this gap by using a
DHT lookup infrastructure in order to efficiently re-
trieve mappings. DHTs exhibit several very interesting
properties, such as self-configuration, self-maintenance,
scalability and robustness that are clearly desirable for
an identifier-to-locators resolution service.

Given the importance of the mapping service for the
reachability of the hosts inside a domain, we expect that
domains will have the following requirements for their
mapping service:

1. A domain must be able to control the server that
provides the authoritative mappings for the identi-
fiers allocated to its hosts. Since mappings contain
important information not only concerning reach-
ability, but also traffic engineering, a domain needs
to have full control over them, thus delegation out-
side the owner domain is not possible.

2. A domain requires one (or more) redundant map-
ping server(s), which the domain must be able to
control. The purpose, for the domain, is to be
always able to provide its mappings, in order to
guarantee its own reachability.

These two requirements are similar to the requirements
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Figure 1: LISP Overview.

of today’s network operators concerning their DNS (Do-
main Name Service) servers. Since classical DHT's tend
to randomize which node is responsible for a key-value
pair (in our case a key-value pair would be a map-
ping), they do not directly meet the above requirements.
LISP-DHT is based on a modified version of Chord [13],
so to retain all its useful properties, while helping to
meet the two above-mentioned requirements. Thus,
LISP-DHT is able to preserve the locality of the map-
ping, i.e., the mapping is always stored on the LISP-
DHT nodes of the owner of the mapping.

The paper is organized as follows. In Section 2 we
give a short overview of the LISP protocol. In Section 3,
a brief summary of the Chord DHT is presented. Sec-
tion 4 describes the principals used in LISP-DHT to
preserve mapping locality allowing domain owners to
retain control of their mappings. Section 5 describes
how the fundamental separation of role between map-
ping servers and mapping resolvers (i.e. routers) can
be enforced in LISP-DHT, while Section 6 addresses
LISP-DHT reliability issues. A revision of the currently
proposed LISP-related mappings distribution systems is
presented in Section 7, before discussing the differences
in Section 8 and concluding the paper in Section 9.

2. LISPOVERVIEW

The Locator/ID Separation Protocol (LISP [5]) is
based on a simple IP-over-UDP tunneling approach,
implemented typically on border routers which act as
Routing LOCators (RLOCs) for the end-systems of the
local domain. End-systems still send and receive pack-
ets using IP addresses, which in the LISP terminology
are called Endpoint IDentifiers (EIDs). Remark that
since in a local domain there may be several border
routers, EIDs can be associated to several RLOCs.

The basic idea of LISP is to tunnel packets in the core
Internet from the RLOC of the source EID to the RLOC
of the destination EID, as depicted in Figure 1. Dur-
ing end-to-end packet exchange between two hosts, the
source host EIDy first issues a normal IP packet that
is normally routed in the source domain to reach one
of its border routers for tunneling. The border router,
or Ingress Tunnel Router (ITR), performs the EID-to-
RLOC lookup in its local cache, or queries the mapping

system if no mapping is available in the cache. The re-
sult of the lookup is the RLOC of the destination host
EID; which consist in a border router of EID,’s do-
main acting as Egress Tunnel Router (ETR). The ITR
prepends a new LISP header to the packet before for-
warding it, while the ETR strips this header on recep-
tion, before delivering the packet to EID,4. The eventual
reply of EID, follows the same rules. Remark that only
the first packet may trigger a query to the mapping sys-
tem. Indeed, LISP uses a local caching mechanism to
reduce the frequency of lookup and latency [5].

3. CHORD OVERVIEW

Chord [13] is a DHT using for each node a unique
k-bits identifier (called ChordID) and where the whole
space of ChordIDs is organized as a ring. A node owns
all the keys that precede it on the ring, up to, but ex-
cluding, the previous node, and any request sent to a
ChordID is routed to the node that owns that ID.

For consistent routing and operation, every Chord
node must maintain correct successor and predecessor
node pointers. For performance, nodes also keep a fin-
ger table (a list of nodes that are further and further
away — to be more precise, the i*" finger in the table
is the node that holds (i.e., succeeds) ChordID (n +
20=1)) where n is the node’s ChordID). These fingers
are not necessary to ensure correct operation of the pro-
tocol, however, they help in reducing lookup latency
(to O(log N), where N is the number of nodes on the
DHT), which can be a main concern in the context of lo-
cator/id separation. Reliability and consistency is also
increased if a node keeps pointers to several consecutive
successors and predecessors on the ring.

To join the DHT ring, a new node only has to know
another node on the ring, and use this existing node
to initialize its finger table (the first entry of the fin-
ger table is the successor to a node) and predecessor
pointer, by simply asking that node to look up the cor-
responding keys (IDs) on the ring. The joining node
also needs to then update its predecessor’s successor
pointer, its successor’s predecessor pointer, as well as
the finger pointers of other nodes that should now use
the joining node in their fingers (these can be easily
computed by the joining node). Then a key transfer
can take place.

4. MAPPINGSAUTHORITATIVE OWNER-
SHIP

Chord nodes are supposed to choose their ChordID
randomly. Also, keys associated with values should also
be random (they should be hash values of the associ-
ated value). In the context of the EID-to-RLOC map-
ping resolution application considered in this document,
such randomization is in contradiction with the kind of
control expected by domains on their mappings.
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Figure 2: Example of LISP-DHT infrastructure.

To meet the first requirement expressed in Section 1,
we propose to use EIDs as ChordIDs on the Chord ring,
and have domains create a Chord instance for each of
their EID-prefix. The ChordID of each Chord instance
would be the highest numerical EID inside EID-prefix.
Such a deterministic approach allows to ensure that the
domain owns and manages the parts of the Chord ring
that contains its identifiers (the domain can also actu-
ally own “unallocated” EIDs adjacent to EID-prefix) as
depicted in figure 2.

Of course, the value associated with a key (EID-
Prefix) on the Chord ring would be a mapping whose
granularity can vary from an EID-Prefix and the cor-
responding list of RLOCs, down to a single EID and a
list of RLOGCs. It is mainly because of the straightfor-
ward use of EIDs as ChordIDs and the associated own-
ership guarantee that we choose to base LISP-DHT on
Chord. Also, all Chord’s routing information (used by
Chord itself) should associate the (EID, RLOC) pair
of a Chord node (i.e., mapping server) with its cor-
responding ChordID, so nodes on the Chord ring can
communicate with each other.

Credentials may be needed before insertion of a new
node onto the ring. This could be needed, for instance,
to prevent a rogue node from trying to hijack the map-
ping for some EID-prefix it does not own. This could be
achieved by having the appropriate Internet Registries
issue EID owners with a signed “certificate of owner-
ship” for each prefix. The Secure Inter-Domain (SIDR)
working group is working on X.509 certificates for IP ad-
dress prefixes [7] that are very close to the certificates
that would be required by LISP-DHT. Such a certificate

To achieve good performance, Chord requires that all
Chord nodes be roughly uniformly distributed around the
ring. For simplicity, and without loss of generality, we as-
sume that EIDs have their own entire address space directly
mapped onto a full ring. If this is not the case, for instance
if EIDs were to be allocated as a block of a wider address
space, then the ChordID space could be chosen to be equiv-
alent to the varying suffix of the EID addresses, to preserve
the desired property. Other EID space to Chord space map-
ping are also possible, but these are not explored in the
present paper.

can be logically defined in the following manner:

M,wn = (EID-prefix, owner, expiry);

Cown = Mown, Reg, Epriv(Reg, HMpwn)));
Where M, represents a message containing the EID-
Prefix and a description of its owner, Reg is a descrip-
tion of the Internet Registry responsible for allocat-
ing the EID-Prefix, expiry is the expiry date of the
certificate, H(Myyp) is a hash of message My, and
Epriv(Entity, D) is the encryption, using Entity’s pri-
vate key (a registry in our case) of data D (the hash
of Myyn in our case). As the owner of an EID-Prefix
will often be an organization, this organization must is-
sue the authoritative mapping for its EID-Prefix with a
certificate of authority:

Mgur, = (ChordID, server, Cooppn, €Xpiry);

Cauth = (Mauthu Epl"iV(OWIleK Mauth));
where ChordID is the Chord node ID (last address in
the EID-prefix) and server is the (EID, RLOC) pair
identifying the server. By including this certificate of
authority in all Chord messages that trigger an update
of routing information in other Chord nodes, a mapping
server willing to join the ring can prove its right to be
inserted in the corresponding place on the Chord ring.
Note that for the system to be trusted, this Public Key
Infrastructure (PKI) should be supported by the use of
digital certificates and that any description of entities
that may need to be authenticated should include a link
to that entity’s digital certificate.

Finally, unless a re-allocation of EID-prefixes is tak-
ing place, no key transfer should happen, as a joining
mapping server is simply claiming the part of the Chord
space for which it owns the mapping.

5. STEALTH CHORD FOR LISP-DHT

The users of mappings (e.g., ITR) will not necessar-
ily also serve as mapping servers. Indeed, it is actually
very likely that network providers will deploy a server
infrastructure dedicated to mapping resolution, reliev-
ing the routers from the burden of answering mapping
requests (this mirrors the DNS system where servers
and resolvers play different roles). This situation, how-
ever, poses a dilemma: to send a request onto a DHT,
a node must have joined the DHT, while every node
on the DHT must relay DHT messages, manage part
of the key space, and answer requests for keys in this
space. On the one hand, letting routers join the DHT is
clearly not an option, as they would fragment and cap-
ture part of the mapping space for which they would
have no authority, nor sufficient knowledge, to answer
requests. On the other hand, using a router’s local map-
ping server (i.e., the mapping server that manages the
mappings for addresses local to the router’s network)
as a proxy onto the DHT poses a reliability issue. In-
deed, if the local mapping server becomes unavailable,
the corresponding ITRs would become unable to find



new mappings (even when those mappings could reside
on multiple mapping servers that are distant and alive).
To solve this problem, we propose to use the concept
of Stealth DHT [1]. Stealth DHT separates the nodes
on the DHT ring into two distinct types:
1. the service nodes, which behave like fully-fledged

DHT nodes,
2. the stealth nodes, which can inject messages onto

the DHT, but are never used for routing or key
management.
Stealth DHT works on the observation that the joining
procedure of a DHT is composed of two distinct phases:
1. a state gathering phase at the end of which the
joining node will have received enough information
(e.g., routing, etc) to take part in the DHT;
2. an announcement phase through which the joining
node advertises its presence to other nodes in the
DHT and acquires part of the key space.

Service nodes complete both of these phases, while stealth

nodes only complete the state gathering phase. In Chord,
this would mean that stealth nodes would acquire suc-
cessor and predecessor pointers, as well as finger tables,
but they would never appear as predecessor, successor
or in finger tables of any other nodes (service and stealth
nodes alike). In other words, the stealth nodes, which
in our case are ITRs/ETRs, do have all the necessary
information to inject lookup messages directly into the
DHT. This is a much more eflicient solution than having
ITRs/ETRs outside the DHT sending lookup messages
only to the local DHT node, thus introducing a single
point of failure. A stealth node will never receive any
DHT requests or be used for relaying messages. As a re-
sult, they cannot store keys (i.e. EID-RLOC mappings)
nor reply to any request sent into the DHT, and receive
replies to their requests, directly from the destination
mapping server (through the DHT infrastructure).

In an EID-to-RLOC mapping scenario, the role of the
respective types of nodes can be enforced by the use of
credentials. Without appropriate proof of identity (e.g.
certificate of authority or of authority transfer) a node
would only be allowed to complete the state gathering
phase and join as a stealth node.

6. LISP-DHT ROBUSTNESS

For increased reliability (cf., Section 1), several copies
of a mapping should be somehow present on the Chord
ring, in case the authoritative server for that mapping
fails. The classical approach to this problem on DHTs
is to replicate key-value pairs on nodes neighboring the
node that owns them. However, such an approach would
violate the first domain’s requirement for mappings: the
domain, who can’t choose its neighbors on the ring,
would loose control of who is managing its mappings.

As an alternative solution meeting the two main do-
main requirements (i.e., control and redundancy), we

propose to build redundancy into the DHT structure
itself. We propose to let several Chord entities share a
same ChordID and say that such entities form a redun-
dancy group. In other words, all routing information,
such as predecessor, successor and finger table informa-
tion, must now be ready to accommodate and manage
several chord entities per ChordID. These entities will
be differentiated by their (EID, RLOC) address pairs,
used to send IP packets.

When sending a message to a ChordID, a node can
choose any of the Chord entities in the redundancy
group to be the message recipient. Some form of topol-
ogy awareness could, and should, be used to choose the
nodes from a redundancy group in proximity order. If
finer redundancy control is required, state information
can even be associated with every member of the re-
dundancy group to indicate when and how the member
should be used. For instance, a surrogate state could
indicate that the node will route and answer requests as
ChordID at any time, while a back-up state could indi-
cate that the node will only route and answer requests
as ChordID when all the surrogate nodes have left the
DHT. The first node of a redundancy group joins the
Chord space as a “classic” Chord node (see Section 4
and Section 5). However, the join requests from subse-
quent redundancy group members trigger a demand for
predecessor (resp. successor) update at the node that
succeeds (resp. preceeds) the joining ChordID on the
ring. Indeed, these nodes are aware that some redun-
dant members are already present and should then send
to the joining node a list of (some) other known nodes
in the redundancy group (and the corresponding certifi-
cates proving the authority of the nodes (if need be), see
Cuuth, above and Cyp.qp below), along with the required
routing information. The successor and predecessor of
the joining node will add information about this node in
their Chord routing information, but will refrain from
deleting their existing information (existing Chord rout-
ing information is only changed when the joining node
is the first to join at the specified ChordID).

In general, to facilitate management of structural in-
formation, members of a redundancy group should im-
plement a distributed monitoring and structural infor-
mation data exchange protocol, based on gossiping for
instance. Through such a system, they not only cooper-
atively monitor each other’s availability, but also prop-
agate known changes to the redundancy group (such as
the addition or removal of a member) and to the routing
information (such as the addition of a new successor).
The key-value pairs (in our case EID-to-RLOC map-
pings) are exchanged from the authoritative server for
the EID block to members of its redundancy group by
an out-of-band method.

In cases like EID-to-RLOC mappings, where tight
control may be needed over which nodes can join as a



member in a redundancy group, a mechanism for node
credentials will be required. Building on the concept of
“certificate of authority” in Section 4, the authoritative
server for an EID-prefix can issue members of its redun-
dancy group with “certificate of authority transfer”:
Miran = (ChordID, member, Cgyytn, expiry);
Ciran = Miran, Epriv(server, H(Myyqn)));
where member is a description of the redundancy group
member (i.e., the <EID, RLOC> pair), and server the
description of the authoritative server.

7. LISPMAPPING SYSTEMS

As stated in Section 1, there are already several map-
ping distribution systems and mapping query infras-
tructures proposed for LISP.2 Here we review these sys-
tems highlighting their main features.

7.1 LISP-NERD

The simplest mapping distribution system proposed

insofar is NERD (Not-so-novel EID RLOC Database [8]).

NERD is based on a monolithic database, on each xTR3,
refreshed at regular intervals of time and containing all
available mappings, which are assumed to be published
by a centralized authority. This means that LISP-NERD
follows a push distribution model, since it proactively

“pushes” all available mappings toward all existing xTRs.

On the one hand, this offers the advantage of reduc-
ing the signaling overhead, since LISP-NERD uses a
HTTP-based incremental updates approach. On the
other hand, LISP router needs to store all existing map-
pings, even the ones that are never used, putting a
heavy limitation on the scalability of such an approach,
since the database may grow to very large sizes. Fur-
thermore, the bootstrap operation can be very long in
time, since the whole database needs to be downloaded.

7.2 LISP-CONS

The Content distribution Overlay Network Service for
LISP (or LISP-CONS [2]) operates on a distributed
database hierarchically organized in a tree-like fashion.
LISP-CONS is a hybrid push/pull approach. The EID-
Prefixes (not the whole mapping) are “pushed” toward
the root of the hierarchy. While propagating toward the
root EID-Prefixes are aggregated. When a mapping is
needed, this is “pulled” from the LISP-CONS hierar-
chy by sending a query. The message is recursively for-
warded up into the hierarchy until a node knows who
the owner of the mapping is, then the request is for-
warded to the latter. The owner will reply directly.
This design is similar to the DNS system, however, un-
like DNS, LISP-CONS maintains a full mesh at each
level in order to improve its responsiveness.

2Non-LISP solutions are out of the scope of this paper.
3By xTR we indicate a node that can be an ITR, an ETR,
or both.

7.3 LISP-EMACS

The EID Mappings Multicast Across Cooperating Sys-
tems for LISP (or LISP-EMACS [3]) proposes to use
the PIM [6] multicast protocol in order to build a set
of trees through which distributing the mappings. An
xTR joins an appropriate multicast group based on the
owned EID-Prefix. Once joined, other xTR can pull
the mapping from it by simply sending a request on
the multicast group. LISP-EMACS proposes to forward
packets, for which no mapping is available on the lo-
cal cache, directly on the LISP-EMACS infrastructure.
This will introduce some added delay for those pack-
ets, but avoids packet drops. The main issue with the
LISP-EMACS approach is the complexity in putting in
place and maintaining the multicast infrastructure and
coordinate lookups on the several different trees build
for the different sets of EID blocks.

74 LISP-ALT

The LISP ALternative Topology (or LISP-ALT [4])
proposes to use an overlay (the alternative topology)
based on GRE tunnels among BGP routers that adver-
tise EID-Prefixes. The basic approach is very similar to
LISP-CONS, EID-Prefixes are announced on the over-
lay in a broadcast fashion, i.e., they are pushed toward
every node of the overlay, while performing aggregation
when possible. Such a solution may raise scalability
concerns since, like in NERD, each node of the overlay
stores also information that is never used. In case of a
missing mapping in the local cache, LISP routers can
query the overlay and (similarly to LISP-EMACS) ask
the overlay to deliver the packet on its behalf.

8. DISCUSSION

Among the above described proposals, none is based
on DHTs. The one that is closer, in the design, to
LISP-DHT is LISP-ALT, since both rely on an over-
lay. Nevertheless, LISP-ALT is totally unstructured
and based on manual configuration of BGP, while LISP-
DHT has the same ring structure of Chord, on which it
is based. Thus, LISP-DHT maintains the properties of
self-organization and robustness of Chord, offering sev-
eral additional benefits when compared to LISP-ALT.
LISP-DHT is a complete distributed database, where
each node stores only its own mappings, thus not rais-
ing any scalability concern, while efficient lookups are
possible thanks to the DHT infrastructure.

Table 1 summarizes the main features of all the exist-
ing mapping systems proposals, including LISP-DHT.
The only proposal based on a full push approach is
LISP-NERD, which pushes the whole mapping database
toward all existing xTRs. LISP-CONS and LISP-ALT
use a hybrid approach; the EID-Prefixes are pushed in
the system, while the mapping is pulled on demand (cf.,
third column Table 1). The fact that only EID-Prefixes



System

| Distribution Model | Propagated Information | Aggregation | Sensitive to Churn |

LISP-NERD Push Entire Mapping
LISP-CONS Hybrid Push/Pull EID-Prefix
LISP-EMACS Pull -

LISP-ALT Hybrid Push/Pull EID-Prefix
LISP-DHT Pull -

No No (updates follow a fixed time schedule)
Yes Yes
No No
Yes Yes
No No

Table 1: Summary of existing Mappings Distribution/Lookup Systems.

are announced on the distribution infrastructure allows
performing prefix aggregation, thus improving scala-
bility and reducing the amount of signaling overhead.
LISP-DHT and LISP-EMACS both use a full pull ap-
proach. Their infrastructure is built in such a way that
the mapping request is automatically forwarded to the
owner.* This means that no specific advertisement is
performed (cf., third column Table 1). This has the
main advantage of not raising any churn issue. Other
approaches, even partially based on push model, can
suffer of such a problem since some updates can perco-
late globally. Further, since there is no specific informa-
tion advertised on the distribution infrastructure, ag-
gregation cannot be performed in the context of LISP-
DHT and LISP-EMACS. This does not cause any issue
in the case of LISP-DHT, since its DHT infrastructure is
designed to be scalable. On the contrary, LISP-EMACS
is based on a complex multi-tree infrastructure that can
raise several issues to scalability and more than other
approaches can suffer from churn problems.

Compared to all other approaches, LISP-DHT seems
a promising solution, offering high scalability and self-
management by design, thanks to the DHT paradigm.
Further, the infrastructure is insensitive to churn, pro-
viding an efficient lookup mechanism.

9. CONCLUSION AND FUTURE WORK

Recent work in the research community has focused
on the Locator/ID separation paradigm to improve the
scalability of the current Internet. A critical task in
such a context is the mapping system, necessary to
maintain the binding between locators and identifiers.
The present paper proposes a DHT-based mapping look-
up system for the LISP protocol. To the best of our
knowledge, this is the first work introducing DHTSs in
the context of LISP Locator/ID separation. On the
one hand, the advantage of LISP-DHT is that robust-
ness and scalability is naturally guaranteed by the DHT
infrastructure. On the other hand, LISP-DHT has been
designed to leave the control of the mapping to the do-
main that owns it. Future steps on LISP-DHT are the
evaluation of the protocol and its performance in terms
of reliability and effectiveness.

4 Actually, for LISP-EMACS, the message is delivered to all
nodes of the multicast group on which the query has been
issued, but only the owner of the mapping will reply.
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