UNIVERSITE DE LIÈGE MÉHODES DE FABRICATION Rapport LMF/D53

Pseudo-articulations à col hyperbolique

J.F. Debongnie

30 janvier 2013

1 Introduction

Le Laboratoire de Méhodes de Fabrication de l'Université de Liège s'était déjà consacré dans le passé à l'étude des pseudo-articulations à col *circulaire* (Merken et Debongnie, [5, 4]). Ces travaux ont été étendus récemment par l'auteur au cas du col *elliptique* [1] et au col *parabolique* [2].

La démarche suivie dans ces travaux a consisté à calculer par la résistance des matériaux la solution exacte pour les différentes sollicitations de base. Comme ces solutions sont souvent des expressions algébriques compliquées, nous avons systématiquement suivi la voie suivante :

- Tout d'abord, on calcule la solution exacte.

- On dégage de celle-ci la solution asymptotique pour de très faibles épaisseurs de col.
- On présente alors la solution générale sous forme d'une correction de la solution asymptotique par un facteur dépendant de l'épaisseur relative du col.
- On dégage, par une analyse numérique, une approximation simple du facteur correctif.

Cette démarche originale fournit des solutions très bien approchées et beaucoup plus simples à utiliser que celles de la littérature [7, 6, 3], ce qui constitue un argument appréciable au niveau de la conception.

Nous avons conservé ce schéma général dans le présent travail, qui est consacré à la théorie du col *hyperbolique*. Les calculs sont présentés dans leur détail.

2 Géométrie

Nous nous proposons dans ce qui suit d'étudier le comportement élastique de cols hyperboliques tels que celui de la figure 1. le col a une épaisseur minimale h_0 . Pour l'obtenir, on a découpé d'un bloc rectangulaire, symétriquement de

chaque côté, des paraboles de profondeur a et de longueur 2ℓ . Il est supposé que le rapport h_0/a est relativement petit et, en tout cas, que $h_0/a \leq 0, 5$, ce qui suffit à tous les besoins pratiques. Nous utiliserons la coordonnée x prise suivant l'axe moyen de la pseudo-articulation, avec comme origine le point le plus étroit du col. Cette coordonnée varie donc entre $-\ell$ et ℓ . L'épaisseur du col perpendiculairement au dessin est notée b.

FIGURE 1 - Col hyperbolique

2.1 Paramétrisation

Nous introduirons la variable varphi en fonction de laquelle un col hyperbolique peut être paramétrisé comme suit :

$$h = h_0 \operatorname{ch} \varphi, \quad x = A \operatorname{sh} \varphi \tag{1}$$

En $x = \ell$, on a $h = h_0 + 2a$ et, par définition, $\varphi = \varphi^*$. Dès lors,

$$ch \varphi^* = \frac{h_0 + 2a}{h_0} = 1 + \frac{2a}{h_0}$$
$$sh \varphi^* = \frac{\ell}{A}$$

De la relation générale $\operatorname{ch}^2 \varphi^* = 1 + \operatorname{sh}^2 \varphi^*,$ on déduit

$$1 + \frac{4a}{h_0} + \frac{4a^2}{h_0^2} = 1 + \frac{\ell^2}{A^2}$$

 soit

$$\frac{\ell^2}{A^2} = \frac{4a}{h_0} \left(1 + \frac{a}{h_0} \right) = \frac{4a^2}{h_0^2} \left(1 + \frac{h_0}{a} \right)$$

ce qui donne

$$\frac{A}{\ell} = \frac{h_0}{2a} \frac{1}{\sqrt{1 + \frac{h_0}{a}}} \tag{2}$$

Une autre forme utile de ce résultat est

$$\frac{A}{h_0} = \frac{\ell}{2a} \frac{1}{\sqrt{1 + \frac{h_0}{a}}} \tag{3}$$

Enfin,

$$\operatorname{sh}\varphi^* = \frac{\ell}{A} = \frac{2a}{h_0}\sqrt{1 + \frac{h_0}{a}} \tag{4}$$

2.2 Valeur de φ^*

Nous aurons besoin de pouvoir exprimer φ^* en fonction des données géométriques du col. On sait que

$$\varphi^* = \operatorname{arcch}\left(1 + \frac{2a}{h_0}\right)$$

Rappelant la formule générale

$$\operatorname{arcch} y = \ln\left(y + \sqrt{y^2 - 1}\right)$$

on a donc

$$\varphi^{*} = \ln \left[1 + \frac{2a}{h_{0}} + \sqrt{\left(1 + \frac{2a}{h_{0}}\right)^{2} - 1} \right]$$

$$= \ln \left(1 + \frac{2a}{h_{0}} + \sqrt{1 + \frac{4a}{h_{0}} + \frac{4a^{2}}{h_{0}^{2}} - 1} \right)$$

$$= \ln \left(1 + \frac{2a}{h_{0}} + \frac{2a}{h_{0}}\sqrt{1 + \frac{h_{0}}{a}} \right)$$

$$= \ln \left[\frac{2a}{h_{0}} \left(1 + \sqrt{1 + \frac{h_{0}}{a}} + \frac{h_{0}}{2a} \right) \right]$$
(5)

Dans le cas des très faibles épaisseurs de cols, on notera que

$$\lim_{h_0/a \to 0} \varphi^* = \ln\left(1 + \frac{4a}{h_0}\right) \tag{6}$$

2.3 Asymptotes du col

Pour les grandes valeurs de $\varphi,$ on a $\operatorname{sh}\varphi\approx\operatorname{ch}\varphi$ et, par conséquent,

$$\frac{h}{h_0} \approx \frac{x}{A}$$

 soit

$$\frac{h}{2} \approx \frac{x}{2} \frac{h_0}{a} = \frac{ax}{\ell} \sqrt{1 + \frac{h_0}{a}} = x \operatorname{tg} \alpha \tag{7}$$

avec

$$\operatorname{tg}\alpha = \frac{a}{\ell}\sqrt{1 + \frac{h_0}{a}} \tag{8}$$

2.4 Courbure à l'origine

Rappelons que la courbure d'une courbe paramétrée $\{x(\varphi),y(\varphi)\}$ est donnée par

$$\frac{1}{\rho} = \frac{d^2ydx - d^2xdy}{(dx^2 + dy^2)^{3/2}}$$

Dans notre cas, on a

$$dx = A \operatorname{ch} \varphi d\varphi \quad ; \quad dy = \frac{h_0}{2} \operatorname{sh} \varphi d\varphi$$
$$d^2 x = aA \operatorname{sh} \varphi (d\varphi)^2 \quad ; \quad d^2 y = \frac{h_0}{2} \operatorname{ch} \varphi (d\varphi)^2$$

ce qui donne

$$\frac{1}{\rho(\varphi)} = \frac{\frac{h_0}{2}\operatorname{ch}\varphi d\varphi^2 A \operatorname{ch}\varphi d\varphi - A \operatorname{sh}\varphi d\varphi^2 \frac{h_0}{2} \operatorname{sh}\varphi d\varphi}{\left(A^2 \operatorname{ch}^2 \varphi + \frac{h_0^2}{4} \operatorname{sh}^2 \varphi\right)^{3/2} d\varphi^3}$$
$$= \frac{\frac{Ah_0}{2}}{\left(A^2 \operatorname{ch}^2 \varphi + \frac{h_0^2}{4} \operatorname{sh}^2 \varphi\right)^{3/2}}$$

En $\varphi=0,$ cela donne

$$\frac{1}{\rho} = \frac{\frac{Ah_0}{2}}{A^3} = \frac{h_0}{A^3} = \frac{h_0}{2\frac{h_0^2\ell^2}{4a^2}} \left(1 + \frac{h_0}{a}\right) = \frac{2a^2}{h_0\ell^2} \left(1 + \frac{h_0}{a}\right)$$

 soit

$$\rho = \frac{h_0 \ell^2}{2a^2} \frac{1}{1 + \frac{h_0}{a}} \tag{9}$$

Pour $h_0/a \to 0$, cela donne

$$\lim_{h_0/a \to 0} \rho = \frac{h_0 \ell^2}{2a^2}$$
(10)

3 Flexion pure dans le plan du dessin

FIGURE 2 – Moment constant dans le plan du dessin

3.1 Forme générale

Sous l'effet d'un moment uniforme $M_f,$ la rotation α_f est régie par l'équation

$$\frac{d\alpha_f}{dx} = \frac{12M_f}{Ebh^3}$$

où b est l'épaisseur du col. La rotation d'extrémité vaut donc

$$\alpha_{f}(\ell) = \frac{12M_{f}}{Eb} \int_{-\ell}^{\ell} \frac{dx}{h^{3}} = \frac{12M_{f}}{Eb} \int_{-\varphi^{*}}^{\varphi^{*}} \frac{A \operatorname{ch} \varphi d\varphi}{h_{0}^{3} \operatorname{ch}^{3} \varphi}$$

$$= \frac{24M_{f}}{Eb} \frac{A}{h_{0}^{3}} \int_{0}^{\varphi^{*}} \frac{d\varphi}{\operatorname{ch}^{2} \varphi} = \frac{24M_{f}}{Eb} \frac{A}{h_{0}^{3}} \operatorname{th} \varphi^{*}$$

$$= \frac{24M_{f}}{Ebh_{0}^{3}} \frac{A \operatorname{sh} \varphi^{*}}{\operatorname{ch} \varphi^{*}} = \frac{24M_{f}}{Ebh_{0}^{3}} \frac{\ell}{1 + \frac{2a}{h_{0}}}$$

$$= \frac{24M_{f}\ell}{Ebh_{0}^{3}\frac{2a}{h_{0}} \left(1 + \frac{h_{0}}{2a}\right)} = \frac{12M_{f}\ell}{Ebh_{0}^{2}} \frac{\ell}{a} \frac{1}{1 + \frac{h_{0}}{2a}}$$
(11)

3.2 Valeur asymptotique pour $h_0/a \rightarrow 0$

Pour les très faibles valeurs du rapport h_0/a , on a

$$\alpha_f(\ell) \to \frac{12M_f}{Eb} \frac{\ell}{ah_0^2} \tag{12}$$

Or, dans ce cas,

$$\sqrt{\rho} o rac{\ell \sqrt{h_0}}{\sqrt{2}a}$$

ce qui donne

$$\frac{\ell}{a} \approx \sqrt{\frac{2\rho}{h_0}} \tag{13}$$

Il en découle

$$\alpha_f(\ell)_{as} = 12\sqrt{2}\frac{M_f}{Eb}\frac{\sqrt{\rho}}{h_0^{5/2}}$$
(14)

3.3 Coefficient correcteur

Pour des valeurs usuelles de h_0/a , c'est-à-dire allant jusqu'à $h_0/a = 1/2$, proposons-nous d'écrire la solution sous la forme

$$\alpha_f(\ell) = \alpha_f(\ell)_{as} \cdot \frac{1}{K_1(h_0/a)}$$

Il est clair que

$$K_1 = 1 + \frac{h_0}{2a} \tag{15}$$

4 Raideur en torsion

Pour un moment de torsion M_t appliqué à l'extrémité du col, la rotation de torsion ψ vérifie l'équation

$$\frac{d\psi}{dx} = \frac{M_t}{\frac{1}{3}Gbh^3}$$

Intégrant, on obtient

$$\psi(\ell) = \int_{-\ell}^{\ell} \frac{3M_t}{Gbh^3} = \frac{3M_t}{Gb} \int_{-\ell}^{\ell} \frac{dx}{h^3}$$

Figure 3 - Torsion

On retrouve la même intégrale qu'en flexion pure, ce qui permet d'écrire immédiatement

$$\psi(\ell) = \frac{3M_t}{Gbh_0^2} \frac{\ell}{a} \cdot \frac{1}{K_1} \tag{16}$$

avec le même K_1 que ci-dessus.

5 Raideur en extension

FIGURE 4 - Extension

5.1 Expression générale

Sous l'effet d'un effort normal N, le déplacement u est régi par l'équation

$$\frac{du}{dx} = \frac{N}{Ebh}$$

si bien que

$$u(\ell) = \frac{N}{Eb} \int_{-\ell}^{\ell} \frac{dx}{h} = \frac{2N}{Eb} \frac{A}{h_0} \int_{0}^{\varphi^*} \frac{\operatorname{ch} \varphi d\varphi}{\operatorname{ch} \varphi} = \frac{2N}{Eb} \frac{A}{h_0} \varphi^*$$

Tenant compte de (3), on obtient

$$u(\ell) = \frac{N}{Eb} \frac{\ell}{a} \frac{1}{\sqrt{1 + \frac{h_0}{a}}} \varphi^*$$

Il ne reste plus qu'à exprimer φ^* par (5), ce qui donne

$$u(\ell) = \frac{N}{Eb} \frac{\ell}{a} \frac{1}{\sqrt{1 + \frac{h_0}{a}}} \cdot \ln\left[\frac{2a}{h_0}\left(1 + \sqrt{1 + \frac{h_0}{a}} + \frac{h_0}{2a}\right)\right]$$
(17)

5.2 Valeur asymptotique

Pour les faibles valeurs de $h_0/a,$ la valeur asymptotique du déplacement d'extrémité est

$$u(\ell)_{as} = \frac{N}{Eb} \frac{\ell}{a} \ln\left(\frac{4a}{h_0}\right) \tag{18}$$

5.3 Coefficient correcteur

A nouveau, nous écrirons

$$u(\ell) = u(\ell)_{as} \cdot \frac{1}{K_2} \tag{19}$$

ce qui revient à dire

$$K_{2} = \frac{\ln \frac{4a}{h_{0}} \cdot \sqrt{1 + \frac{h_{0}}{a}}}{\ln \left[\frac{2a}{h_{0}} \left(1 + \sqrt{1 + \frac{h_{0}}{a}} + \frac{h_{0}}{2a}\right)\right]}$$
(20)

On peut écrire

$$K_2 \approx K_{2,app} = 1 + 0, 11 \sin\left(\pi \frac{h_0}{a}\right) \tag{21}$$

ce qui donne, pour $h_0/a \leq 0,5,$ une erreur relative inférieure à 0,21%, comme le montre le tableau suivant :

h_0/a	0,01	0,02	$0,\!05$	$_{0,1}$	0,2	0,5
K_2	1,004153	1,008062	1,018988	$1,\!035275$	1,062380	1,110954
$K_{2,app}$	1,003455	1,006907	1,017208	$1,\!033992$	1,064656	1,110000
$\Delta\%$	-0,07	-0,11	-0,17	-0,12	0,21	-0,09

6 Raideur en flexion pure dans le plan transverse

La rotation $\beta(\ell)$ due à un moment uniforme M_{fT} dans le plan perpendiculaire à celui du dessin est donnée par

$$\beta(\ell) = \frac{12M_{fT}}{Eb^3} \int_{-\ell}^{\ell} \frac{dx}{h}$$
(22)

Il s'agit de la même intégrale qu'en extension, ce qui nous permet d'écrire directement

$$\beta(\ell)_{as} = \frac{12M_{fT}}{Eb^3} \frac{\ell}{a} \ln\left(\frac{4a}{h_0}\right) \tag{23}$$

 et

$$\beta(\ell) = \beta(\ell)_{as} \cdot \frac{1}{K_2} \tag{24}$$

avec le même ${\cal K}_2$ que ci-dessus.

FIGURE 5 – Obtention d'une translation la térale pure d'une extrémité dans le plan

7 Raideur en translation latérale pure dans le plan

On peut obtenir une translation d'une extrémité sans rotation parasite en appliquant une charge latérale Q au droit du col, ce qui se réalise par l'artifice illustré en figure 5. Le moment de flexion a alors pour expression $M_f = -Qx$. La déformée inclut un terme de flexion et un terme de cisaillement : $v = v_f + v_c$.

7.1 Contribution de la flexion

7.1.1 Expression générale

L'équation régissant la rotation de flexion α_f est

$$\frac{d\alpha_f}{dx} = \frac{12M_f}{Ebh^3} = -\frac{12Qx}{Ebh^3} \tag{25}$$

On en déduit

$$v_f(\ell) = \int_{-\ell}^{\ell} \alpha_f dx = [x\alpha_f]_{-\ell}^{\ell} - \int_{-\ell}^{\ell} x \frac{d\alpha_f}{dx} dx$$

Le second membre de (21) étant impair, on se ramène à

$$v_f = -\int_{-\ell}^{\ell} x \frac{d\alpha_f}{dx} dx = \frac{12Q}{Eb} \int_{-\ell}^{\ell} \frac{x^2}{h^3} dx = \frac{Q}{Eb} \cdot 24 \int_0^{\ell} \frac{x^2}{h^3} dx = \frac{Q}{Eb} \mathcal{I}_3$$
(26)

7.1.2 Calcul de l'intégrale \mathcal{I}_3

On a

$$\mathcal{I}_{3} = \frac{12A^{3}}{h_{0}^{3}} \int_{-\varphi^{*}}^{\varphi^{*}} \frac{\operatorname{sh}^{2} \varphi \operatorname{ch} \varphi d\varphi}{\operatorname{ch}^{3} \varphi} = \frac{12A^{3}}{h_{0}^{3}} \int_{-\varphi^{*}}^{\varphi^{*}} \operatorname{th}^{2} \varphi d\varphi
= \frac{24A^{3}}{h_{0}^{3}} \int_{0}^{\varphi^{*}} \left(1 - \frac{1}{\operatorname{ch}^{2} \varphi}\right) d\varphi = \frac{24A^{3}}{h_{0}^{3}} (\varphi^{*} - \operatorname{th} \varphi^{*})
= 24 \frac{\ell^{3}}{8a^{3}} \frac{1}{\left(1 + \frac{h_{0}}{a}\right)^{3/2}} \left\{ \ln \left[\frac{2a}{h_{0}} \left(1 + \sqrt{1 + \frac{h_{0}}{a}} + \frac{h_{0}}{2a} \right) \right] - \frac{\frac{2a}{h_{0}} \sqrt{1 + \frac{h_{0}}{a}}}{1 + \frac{2a}{h_{0}}} \right\}
= 3 \frac{\ell^{3}}{a^{3}} \frac{1}{\left(1 + \frac{h_{0}}{a}\right)^{3/2}} \left\{ \ln \left[\frac{2a}{h_{0}} \left(1 + \sqrt{1 + \frac{h_{0}}{a}} + \frac{h_{0}}{2a} \right) \right] - \frac{\sqrt{1 + \frac{h_{0}}{a}}}{1 + \frac{h_{0}}{2a}} \right\} \quad (27)$$

7.1.3 Forme asymptotique

Pour les très faibles valeurs de h_0/a , on obtient la valeur asymptotique suivante de \mathcal{I}_3 :

$$\mathcal{I}_{3,as} = 3\frac{\ell^3}{a^3} \left[\ln\left(\frac{4a}{h_0}\right) - 1 \right] \tag{28}$$

 soit

$$v_f(\ell)_{as} = \frac{3Q}{Eb} \left(\frac{\ell}{a}\right)^3 \left[\ln\left(\frac{4a}{h_0}\right) - 1\right]$$
(29)

7.1.4 Coefficient correcteur

Suivant toujours la même démarche, nous écrirons dans le cas général

$$v_f(\ell) = v_f(\ell)_{as} \cdot \frac{1}{K_3} \tag{30}$$

 ${\cal K}_3$ étant défini par

$$K_{3} = \frac{\left[\ln\left(\frac{4a}{h_{0}}\right) - 1\right] \left(1 + \frac{h_{0}}{a}\right)^{3/2}}{\ln\left[\frac{2a}{h_{0}}\left(1 + \sqrt{1 + \frac{h_{0}}{a}} + \frac{h_{0}}{2a}\right)\right] - \frac{\sqrt{1 + \frac{h_{0}}{a}}}{1 + \frac{h_{0}}{2a}}}$$
(31)

On peut approcher ce coefficient par l'expression simple

$$K_{3,app} = \frac{1+2,29\frac{h_0}{a}}{1+0,84\frac{h_0}{a}}$$
(32)

avec une erreur inférieure à 0,41% pour $h_0/a \leq 0,5,$ comme le montre le tableau suivant :

h_0/a	0,01	0,02	0,05	0,1	0,2	0,5
K_3	1,014023	1,027764	1,068085	1,132894	1,253378	1,510747
$K_{3,app}$	1,014379	1,028521	1,069578	$1,\!133764$	1,248288	1,510563
$\Delta\%$	0,04	0,07	0,14	0,08	-0,41	-0,01

7.2 Contribution du cisaillement

7.2.1 Expression générale

L'équation est ici

$$\frac{dv_c}{dx} = \frac{Q}{\frac{5}{6}Gbh}$$

ce qui donne, à l'extrémité,

$$v_c(\ell) = \frac{6Q}{5Gb} \int_{-\ell}^{\ell} \frac{dx}{h}$$

On retrouve encore la même intégrale qu'en extension, ce qui permet d'écrire directement

$$v_c(\ell)_{as} = \frac{6Q}{5Gb} \frac{\ell}{a} \ln\left(\frac{4a}{h_0}\right)$$
(33)

$$v_c(\ell) = v_c(\ell)_{as} \cdot \frac{1}{K_2}$$
(34)

7.3 Remarque

Le rapport entre le terme de cisaillement et le terme de flexion s'écrit, si h_0/a est petit,

$$\frac{v_c(\ell)}{v_f(\ell)} = \frac{\frac{6}{5} \frac{Q}{Gb} \frac{\ell}{a} \ln\left(\frac{4a}{h_0}\right)}{3\frac{Q}{Eb} \left(\frac{\ell}{a}\right)^3 \left[\ln\left(\frac{4a}{h_0}\right) - 1\right]} = \frac{2}{5} \frac{E}{G} \left(\frac{a}{\ell}\right)^2 \frac{\ln\left(\frac{4a}{h_0}\right)}{\ln\left(\frac{4a}{h_0}\right) - 1}$$
(35)

Pour $h_0/a \leq 0, 5$, le dernier rapport varie entre 1 et 1,93. Tout dépend donc du rapport

$$\left(\frac{a}{\ell}\right)^2 = \frac{h_0}{\rho}$$

Le terme v_c ne sera donc négligeable que si h_0/ρ est petit.

8 Raideur en translation latérale pure hors plan

Il s'agit du même type de sollicitation que ci-dessus, mais dans la direction transversale au plan du dessin. La charge appliquée sera ici notée R, et le déplacement correspondant w se décomposer encore en un terme de flexion w_f et un terme de cisaillement w_c . La rotation sera notée β .

8.1 Contribution de la flexion

8.1.1 Expression générale

Partant de la relation de base donnant la rotation

$$\frac{d\beta}{dx} = \frac{12M_{fT}}{dx} = -12\frac{Rx}{Eb^3h} \tag{36}$$

on a

 soit

$$w_f(\ell) = \int_{-\ell}^{\ell} \beta dx = [x\beta]_{-\ell}^{\ell} - \int_{-\ell}^{\ell} x \frac{d\beta}{dx} dx$$
$$w_f(\ell) = \frac{12R}{Eb^3} \int_{-\ell}^{\ell} \frac{x^2 dx}{h} = \frac{R}{b^3} \mathcal{I}_4$$
(37)

8.1.2 Calcul de l'intégrale \mathcal{I}_4

On a

$$\begin{split} \mathcal{I}_{4} &= 12 \int_{-\ell}^{\ell} \frac{x^{2} dx}{h} = 24 \frac{A^{3}}{h_{0}} \int_{0}^{\varphi^{*}} \frac{\operatorname{sh}^{2} \varphi \operatorname{ch} \varphi d\varphi}{\operatorname{ch} \varphi} = 24 \frac{A^{3}}{h_{0}} \int_{0}^{\varphi^{*}} \operatorname{sh}^{2} \varphi d\varphi \\ &= 12 \frac{A^{3}}{h_{0}} \int_{0}^{\varphi^{*}} (\operatorname{ch} 2\varphi - 1) d\varphi = \frac{12A^{3}}{h_{0}} \left(\frac{\operatorname{sh} 2\varphi^{*}}{2} - \varphi^{*} \right) \\ &= \frac{12A^{3}}{h_{0}} \left(\operatorname{sh} \varphi^{*} \operatorname{ch} \varphi^{*} - \varphi^{*} \right) \\ &= \frac{12A^{3}}{h_{0}} \left\{ \frac{2a}{h_{0}} \sqrt{1 + \frac{h_{0}}{a}} \left(1 + \frac{2a}{h_{0}} \right) - \ln \left[\frac{2a}{h_{0}} \left(1 + \sqrt{1 + \frac{h_{0}}{a}} + \frac{h_{0}}{2a} \right) \right] \right\} \\ &= \frac{12A^{3}}{h_{0}} \left\{ \frac{4a^{2}}{h_{0}^{2}} \sqrt{1 + \frac{h_{0}}{a}} \left(1 + \frac{h_{0}}{2a} \right) - \ln \left[\frac{2a}{h_{0}} \left(1 + \sqrt{1 + \frac{h_{0}}{a}} + \frac{h_{0}}{2a} \right) \right] \right\} \\ &= \frac{48A^{3}a^{2}}{h_{0}^{3}} \left\{ \sqrt{1 + \frac{h_{0}}{a}} \left(1 + \frac{h_{0}}{2a} \right) - \frac{h_{0}^{2}}{4a^{2}} \ln \left[\frac{2a}{h_{0}} \left(1 + \sqrt{1 + \frac{h_{0}}{a}} + \frac{h_{0}}{2a} \right) \right] \right\} \end{split}$$

Le coefficient de l'expression entre accolades vaut par (3)

$$\frac{48A^3a^2}{h_0^3} = 48\frac{\ell^3}{8a^3}\frac{1}{\left(1+\frac{h_0}{a}\right)^{3/2}}a^2 = \frac{6\ell^3}{a}\frac{1}{\left(1+\frac{h_0}{a}\right)^{3/2}}$$

Au total, on obtient

$$w_f(\ell) = \frac{6R\ell^3}{Eab^3} \frac{1}{\left(1 + \frac{h_0}{a}\right)^{3/2}} \cdot \left\{ \sqrt{1 + \frac{h_0}{a}} \left(1 + \frac{h_0}{2a}\right) - \frac{h_0^2}{4a^2} \ln\left[\frac{2a}{h_0}\left(1 + \sqrt{1 + \frac{h_0}{a}} + \frac{h_0}{2a}\right)\right] \right\}$$
(38)

8.1.3 Valeur asymptotique

Pour les très faible valeurs de h_0/a , on obtient l'expression asymptotique suivante :

$$w_f(\ell)_{as} = 6 \frac{R\ell^3}{Eab^3} \tag{39}$$

8.1.4 Coefficient correcteur

Dans le cas général, on peut écrire

$$w_f(\ell) = w_f(\ell)_{as} \cdot \frac{1}{K_4} \tag{40}$$

où K_4 est défini par

$$K_4 = \frac{\left(1 + \frac{h_0}{a}\right)^{3/2}}{\sqrt{1 + \frac{h_0}{a}}\left(1 + \frac{h_0}{2a}\right) - \frac{h_0^2}{4a^2}\ln\left[\frac{2a}{h_0}\left(1 + \sqrt{1 + \frac{h_0}{a}} + \frac{h_0}{2a}\right)\right]}$$
(41)

Ce coefficient peut être approché par l'expression suivante :

$$K_{4,app} = 1 + 0,63\frac{h_0}{a} \tag{42}$$

conduisant, pour $h_0/a \le 0,5$ à une erreur relative inférieure à 0,67%, comme le montre le tableau suivant :

h_0/a	0,01	0,02	0,05	0,1	0,2	0,5
K_4	1,005124	1,010427	1,027083	$1,\!056583$	1,119610	1,323901
$K_{4,app}$	1,006300	1,012600	1,031500	1,063000	1,126000	1,315000
$\Delta\%$	0,12	0,22	0,43	0,61	0,57	-0,67

8.2 Contribution du cisaillement

Le déplacement dû à la déformation de cisaillement vaut

$$w_c(\ell) = \frac{6R}{5Gb} \int_{-\ell}^{\ell} \frac{dx}{h}$$

où l'on retrouve encore l'intégrale \mathcal{I}_2 que nous avons rencontrée en extension. On a donc immédiatement

$$w_c(\ell)_{as} = \frac{6R}{5Gb} \frac{\ell}{a} \ln\left(\frac{4a}{h_0}\right) \tag{43}$$

et en général,

$$w_c(\ell) = w_c(\ell)_{as} \cdot \frac{1}{K_2} \tag{44}$$

avec K_2 donné par (21).

8.3 Rapport entre le terme de cisaillement et le terme de flexion

Pour h_0/a petit, on a

$$\frac{w_c(\ell)}{w_f(\ell)} = \frac{\frac{6}{5}\frac{R}{Gb}\frac{\ell}{a}\ln\frac{4a}{h_0}}{\frac{6P\ell^3}{Gab^3}} = \frac{1}{5}\frac{E}{G}\frac{b^2}{\ell^2}\ln\frac{4a}{h_0}$$

Pour h_0/a petit, $\ln\left(\frac{4a}{h_0}\right)$ peut être relativement grand. Ainsi, pour $h_0/a = 10^{-3}$, ce logarithme vaut 8,294. Tout dépend alors du rapport b/ℓ .

Références

- J. F. DEBONGNIE « Comportement des articulations flexibles à col elliptique », VII èmes journées d'études techniques 2012, Marrakech, mai 2012, http://hdl.handle.net/2268/121676.
- J. F. DEBONGNIE « Pseudo-articulations à col parabolique », Rapport LMF/D52, Université de Liège, 2012, http://hdl.handle.net/2268/126088.
- [3] N. LOBUNTIU Compliant mechanisms design of flexure hinges, CRC press, Boca Raton, Florida, 2002.
- [4] P. MERKEN « La fonction guidage en micromécanique », Thèse de D.E.A., Université de Liège, 2006, http://hdl.handle.net/2268/33713.
- [5] P. MERKEN et J. F. DEBONGNIE « Le col circulaire comme articulation flexible », 6ème congrès national de mécanique théorique et appliquée, Gent, mai 2003.
- [6] J. M. PAROS et L. WEISBORD « How to design flexure hinges », Machine Design 25 (1965), p. 151–156.
- [7] S.HENEIN Conception des guidages flexibles, Presses polytechniques et universitaires romandes, collection META, Lausanne, 2001.