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tCurrent trends seem to a

redit gait as a sensible biometri
 feature forhuman identi�
ation, at least in a multimodal system. In addition to beinga robust feature, gait is hard to fake and requires no 
ooperation from theuser. As in many video systems, the re
ognition 
on�den
e relies on theangle of view of the 
amera and on the lightening 
onditions, indu
ing asensitivity to operational 
onditions that one may wish to lower.In this paper we present an e�
ient approa
h 
apable of re
ognizingpeople in frontal-view video sequen
es. The approa
h uses an intra-framedes
ription of silhouettes whi
h 
onsists of a set of re
tangles that will�t into any 
losed silhouette. A dynami
, inter-frame, dimension is thenadded by aggregating the size distributions of these re
tangles over multi-ple su

essive frames. For ea
h new frame, the inter-frame gait signatureis updated and used to estimate the identity of the person dete
ted in thes
ene. Finally, in order to smooth the de
ision on the identity, a majorityvote is applied to previous results. In the �nal part of this arti
le, weprovide experimental results and dis
uss the a

ura
y of the 
lassi�
ationfor our own database of 21 known persons, and for a publi
 database of25 persons.1 Introdu
tionThe number of video-surveillan
e 
ameras has in
reased dramati
ally over thelast few years. It has therefore be
ome unrealisti
 to pro
ess manually or evenvisually the giganti
 amount of information gathered by surveillan
e 
ameras,whi
h explains why the automation of real-time visual surveillan
e tasks is 
ur-rently one of the most a
tive topi
s in 
omputer vision. Visual surveillan
e hasa wide spe
trum of promising appli
ations, in
luding 
ontrol of a

ess to 
er-tain areas, human identi�
ation, 
rowd �ux statisti
s, dete
tion of anomalousbehaviors, et
 [12℄. This paper fo
uses on one of these tasks, i.e. automati
human identi�
ation.Automati
 human identi�
ation 
an be a
hieved through a variety of bio-metri
s using di�erent kinds of sensors: �ngerprint readers, iris s
anners, mi-
rophones for voi
e re
ognition, and video 
ameras. One advantage of video1




ameras is that they are not intrusive; also subje
ts 
an be �lmed without their
ooperation. Fa
e re
ognition through the use of a video 
amera is a widelyused biometri
, although its e�
ien
y is 
onditioned by the need for a rela-tively 
onstrained image of the person's fa
e. Un
onstrained fa
e re
ognitionis possible (see [28℄) but is almost useless for strong identi�
ation in pra
ti
e.Asking a person to 
ooperate 
an also be an issue; not everyone is going to helpthe system. Gait re
ognition is therefore a viable alternative; in this 
ase, it isneither ne
essary to restri
t the �eld of view to 
onstrained environment, nor toask for 
ooperation. Gait re
ognition is not (yet?) as e�e
tive as the best fa
ere
ognition algorithm but, a
ting as a 
omplementary form of identi�
ation, itmight reinfor
e a de
ision made in a multi-modal biometri
 system.Gait as a biometri
 is quite a re
ent topi
 for dis
ussion, whi
h has gainedin popularity sin
e its introdu
tion in [22℄. Its robustness against poor imaging
onditions makes it appli
able to a wide range of real-world s
enarios. Images
an be a
quired from a great distan
e, even in 
hanging illumination 
onditions(i.e. outdoor, as shown in [18℄). Furthermore, absolutely no kind of 
ooperationfrom the subje
ts is required. Gait is also di�
ult (if not impossible?) to fake.Yet, gait re
ognition te
hniques are still not a

urate enough to use gait as thesole biometri
 of a real surveillan
e system. These re
ognition te
hniques arebetter used to reinfor
e a de
ision in a multi-modal biometri
 system (see [20,21, 29℄).Gait re
ognition te
hniques are usually 
lassi�ed in two 
ategories: model-based and holisti
/silhouette approa
hes [3℄.Model-based approa
hes make use of expli
it gait models whose parametersare to be estimated by pro
essing sequen
es of images, hereafter referred to asimage frames or frames. The identi�
ation is performed entirely on the basisof the estimated values of the expli
it gait model. Model-based approa
hesare generally s
ale and view invariant, as long as the parameters estimationis feasible given the imaging 
on�guration. This is a major advantage, sin
etraining 
onditions are likely to di�er from 
onditions of pra
ti
al use. Onthe other hand, these methods often need high de�nition images in order towork properly. They also exhibit a signi�
antly higher 
omputational 
ost.Te
hniques in this 
ategory in
lude modeling the thighs as a pair of thi
k lines,as in [7℄, modeling the silhouette of a walking person as a group of seven ellipsesas in [10℄, or modeling the legs as two penduli joined in series, as in [27℄.Holisti
 approa
hes do not assume any expli
it model for the walking hu-man. They extra
t information dire
tly from the gait image sequen
es. Gaitsignatures are, for example derived from time series of binary silhouettes ex-tra
ted from the original sequen
e with a ba
kground subtra
tion algorithm.This brings a suitable invarian
e to 
olor, texture or illumination 
onditions(assuming that the used ba
kground subtra
tion algorithm is robust). A sim-ple approa
h that uses areas of raw (re-sized) silhouettes as a gait signatureis des
ribed in [8℄. The 
ontours of silhouettes have also been used, either di-re
tly [26℄ or through their Fourier des
riptors [19℄. An angular transform ofthe silhouette is proposed in [4℄. This is said to be more robust than the raw
ontour des
riptions. In [2℄, the gait dynami
s are 
aptured using prin
ipal
omponents analysis of self-similarity plots. Feature ve
tors derived from thebinary silhouettes 
an also be used to train HMM's, as in [15℄.Other authors have used horizontal and verti
al proje
tions of the silhou-ettes [14℄. In [17℄, time series of horizontal and verti
al proje
tions of silhouettes2



(a) Lateral view (b) Frontal viewFigure 1: Lateral and frontal views of a walker.are treated as frieze patterns. The framework of frieze patterns leads the au-thors to estimate the viewing dire
tion of the walking humans and to align gaitsequen
es from similar viewpoints both spatially and over time. The identi�
a-tion is then performed using 
ross-
orrelation and nearest neighbor 
lassi�
ationbetween frieze patterns. In [16℄, a similar algorithm is used to 
ompare friezepatterns of frame di�eren
es between a key silhouette and a series of su

essivesilhouettes. The method is 
laimed to be more robust to silhouette di�eren
esbetween the training and test sets.Nearly all silhouette-based approa
hes are designed to deal with image frames
aptured from the side of a person (see Figure 1(a)). While it is reasonable toassume that the lateral view 
aptures an appropriate amount of gait and walkinginformation, it is not easy to 
apture these image frames in pra
ti
al s
enarios.In order to obtain a su�
iently long sequen
e of images of a person walking (i.e.
ontaining several gait 
y
les), 
ameras need to be put at a long distan
e. Thishinders re
ognition, sin
e small silhouettes are hard to dis
riminate. In hallways(see the example in Figure 1(b)), frames are rarely 
aptured from the side, butfrom the front or the ba
k of the walker (see Figure 1(a)). Front-view 
ameras,as opposed to lateral-view 
ameras, 
apture longer sequen
es of walkers, whi
hresults in more gait 
y
les. However front-view 
ameras are thought to be lesse�
ient for gait re
ognition as they 
apture geometri
 and s
ale transforma-tions of the silhouettes. But the human 
apa
ity to re
ognize people using onlya frontal view of their walking silhouettes tends to prove that a frontal view
ontains enough information to perform automati
 re
ognition. This is 
on-�rmed by Soriano et al. [24℄. In an arti
le in whi
h gait signatures are derivedfrom series of Freeman en
oding of the re-sized silhouette shape, these authorsshowed that frontal view gait re
ognition is possible [24℄.In [13℄, the gait template of a walking human is 
omputed by averagingthe 
orresponding binary silhouettes. The 
lassi�
ation is then a
hieved usinga nearest neighbor te
hnique. The authors use the MoBo database [11℄ fromthe CMU to 
ompare the 
lassi�
ation results obtained by their method with3



sequen
es 
aptured from di�erent viewpoints. The best single viewpoint resultsare obtained using the frontal view. But better 
lassi�
ation s
ores are a
hievedby 
ombining the frontal view with the lateral view.This paper presents a gait re
ognition algorithm 
apable of re
ognizing per-sons from image frames 
aptured in real-time with surveillan
e 
ameras lo
atedin hallways. Unlike many te
hniques in the literature whi
h pro
ess 
ompletegait sequen
es, our algorithm identi�es a previously known person as soon as itobtains a 
omplete gait 
y
le, whi
h a

ounts for about 1 se
ond or 25 frames.Requirements for our method are that (1) low image resolution (like 640× 480)su�
e, (2) walkers 
an wander at quite a long distan
e from the 
ameras, and(3) the algorithm should run in real time on any 
omputer.For noisy surveillan
e video frames, a pre
ise dete
tion of moving obje
ts andtheir 
ontours is di�
ult. In order to a
hieve a better resilien
e to noise, we 
hosea surfa
i
 representation of the silhouettes in terms of a des
riptor 
alled �Coverby Re
tangles�, introdu
ed in [1℄. This des
riptor provides a pie
ewise surfa
i
des
ription of silhouettes whi
h, unlike horizontal and verti
al proje
tions, isreversible and therefore does not indu
e any information loss. In addition,
overs by re
tangles limits the e�e
t of noise to a lo
al neighborhood as noisewill impa
t lo
ally on the des
ription of the silhouette, in 
ontrast with globalsurfa
i
 measures. Se
tion 2 derives a new silhouette representation based onthe 
over by re
tangles approa
h. This representation serves to 
hara
terizegait silhouettes for ea
h frame separately; we therefore 
all this an intra-framedes
riptor. Se
tion 2 also explains how we 
onsider temporal and dynami
information by introdu
ing inter-frame dependen
ies in order to derive a gaitsignature. We des
ribe the 
omplete gait identi�
ation algorithm in Se
tion 3.Experimental results and an evaluation of our method are presented in Se
tion 4.We show that gait re
ognition is possible, e�
ient, and a
hievable in real time,even for front-view video frames.2 A surfa
i
 gait representationIn order to identify a walking person, a time series of his silhouettes is extra
tedfrom the raw video frames, at a rate of one silhouette per frame. For ea
h frame,the silhouette is 
onverted into a set of features, whi
h are used to update a gaitsignature. The gait signature is fed into a 
lassi�er whi
h will output the 
lasslabel 
orresponding to a parti
ular person. Hereafter we present the intra-framedes
ription of a silhouette.2.1 Cover by re
tangles of a binary silhouetteThe 
over by re
tangles, proposed in [1℄, is a morphologi
al des
riptor. Considera binary silhouette S. The 
over by re
tangles, denoted C (S), is de�ned asthe union of all the largest re
tangles that 
an �t inside of S (see Figure 2for an example). This union is unique and the 
over C (S) has the followinguseful properties: (1) the elements of the set overlap ea
h other, introdu
ingredundan
y (i.e. robustness), (2) ea
h element (re
tangle) of C (S) 
overs atleast one pixel that belongs to no other re
tangle, and (3) when displayed in theframe, the union of all re
tangles re
onstru
ts S so that no information is everlost. 4



Figure 2: The 
over by re
tangles C (S) is the union of all the largest re
tanglesthat 
an be wedged inside of the silhouette.Other morphologi
al surfa
i
 des
riptors, su
h as the morphologi
al skele-ton [23℄, have been developed to represent shapes. However, sin
e they providean isotropi
 des
ription of the silhouettes through, for example, the union ofopen balls in
luded in S, they are unsuited for the des
ription of gait. More-over, it is important to ensure that a lo
al modi�
ation of the silhouette doesnot lead to a global 
hange in its des
ription. Figure 3 
ompares the e�e
t of aslight modi�
ation of the shape in the 
ase of the skeleton and features (widthsor heights) derived from the re
tangles of C (S). In Se
tion 4.2, we show thata gait signature based on the 
over by re
tangles of the silhouettes of a walk-ing human is robust and allows the 
orre
t identi�
ation of people from noisysilhouettes (see Figure 6) through a set of experiments.2.2 Re
tangle size probability distributionsThe number of largest wedged re
tangles that will �t inside a binary silhouette
an be very high (more than a thousand). It is thus impra
ti
al to use allthe re
tangles dire
tly as a set of features. In order to �nd a more 
ompa
trepresentation, we 
an operate on one of the size distribution densities, as shownin Figure 4. These distributions o�er di�erent but suitable interpretations ofa silhouette. For example, the largest number of re
tangles 
ontaining a givenpixel is to be found inside the torso (Figure 4(b)), and the tallest re
tanglespass through both the legs and the head (Figure 4(d)).As 
an be seen, mu
h of the information resides in the distributions of thenormalized sizes (width or height). These distributions 
an be estimated as adis
rete histogram whose bins 
orrespond to the ratios of re
tangles that fallwithin given size intervals.From a formal point of view, let α be the 
ardinality of a 
over by re
tangles
C (S), i.e. α = ♯ {C(S)}. We index the re
tangles of C (S) with a parameter
d, so that Rd (d = 1, . . . , α) are the re
tangles of C(S). The width and heightof Rd are respe
tively denoted by wd and hd; they are upper-bounded by wmaxand hmax: ∀d, wd ≤ wmax and hd ≤ hmax. In order to build histograms, we5



Originalsilhouettes Morphologi
alskeletons Widths of thewidest re
tangles Heights of thetallest re
tangles

Figure 3: The �rst 
olumn shows three original images. The morphologi
alskeletons (shown in gray in the se
ond 
olumn) are modi�ed by the presen
e ofa small hole in the silhouette: a lo
al perturbation leads to a global modi�
ationof the skeleton. The images the two right-hand 
olumns represent the sizedistributions of the re
tangles 
ontained in C (S). In these images, the graylevel of pixels is proportional to the width (resp. height) of the widest (resp.tallest) re
tangle 
omprising the given pixel.
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(a) (b) (
) (d)Figure 4: Illustration of several size distributions based on the des
ription pro-vided by the 
over C (S) of a binary silhouette S. A gray level of pixel p inimages (b), (
), and (d) displays respe
tively the density of re
tangles, the widthof the widest re
tangle, and the height of the tallest re
tangle where all thesere
tangles 
ontain pixel p.
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partition the widths and heights of the re
tangles Rd respe
tively into M bins
BW (i) and N bins BH(j)

BW (i) =

]

i
wmax

M
, (i + 1)

wmax

M

] (1)
BH(j) =

]

j
hmax

N
, (j + 1)

hmax

N

] (2)where i = 0, . . . , M − 1 and j = 0, . . . , N − 1.Following the above notations, we de�ne the histogram histW (i) of the nor-malized widths as histW (i) =
1

α
♯
{

Rd|wd ∈ BW (i)
}

, (3)the histogram of the normalized heights similarly ashistH(j) =
1

α
♯
{

Rd|hd ∈ BH(j)
}

, (4)and the two-dimensional histogram histW×H(i, j) ashistW×H(i, j) =
1

α
♯
{

Rd|wd ∈ BW (i), hd ∈ BH(j)
}

. (5)Note that these histograms are normalized with respe
t to the largest re
t-angle of the 
over of the silhouette. In a 
ontinuous spa
e, they would be s
aleinvariant. Su
h a normalization might seem 
ounter-intuitive; mu
h of the in-terpretation of the motion of a gait derives from the size of a silhouette, andit would not be good for frontal 
ameras to lose motion information. A �neranalysis shows however that size information is still present in a normalizedhistogram. Indeed the 
over of a s
aled down version of a silhouette S 
ontainsfewer re
tangles (α is always lower than the number of 
ontour points) than itsoriginal 
ounterpart. Therefore the histograms have a distribution that adaptsto both the shape and the size of a silhouette. In addition, if noise is added tothe 
ontour of the silhouette, it will modify the positions of the re
tangles butnot so mu
h their size or number.Of the three histW (i), histH(j), histW×H(i, j) histograms, the last one bestdes
ribes S. However, its dimensionality is proportional to the produ
t of thenumbers of bins (M × N), whi
h is a

eptable for an intra-frame des
riptionbut might be too high for embedded systems if the features are to be fed into a
lassi�er for inter-frame gait re
ognition. In order to solve this tra
tability issue,we introdu
e the 
omposite histogram histW+H(k) with k = 0, . . . , M + N − 1de�ned as the stri
t 
on
atenation of histW (i) and histH(j). histW+H(k) hasa dimensionality of M + N , and a

ounts for both the verti
al and horizontal
hara
teristi
s of the silhouette. Experiments detailed in Se
tion 4 show thatboth histW×H(i, j) and histW+H(k) are suitable des
riptors.2.3 Gait as an inter-frame re
tangle distributionSo far we have 
onsidered a single intra-frame silhouette, but a gait sequen
eis a temporal series of binary silhouettes. In order to 
apture the dynami
s ofa walking person we introdu
e an inter-frame dependen
y by de�ning a gait8



signature based on the temporal series of the silhouettes S of a walker. Weassume that t refers to the time of the 
urrent frame, and that hist(i, j, t) is ahistogram for S at time t. We introdu
e two gait signatures, denoted G, whi
h
onsist of n-uples of L 
onse
utive histograms. We propose the following gaitsignature
G

W×H(i, j, t)=
{histW×H

(i, j, t−(L−1)), ..., histW×H

(i, j, t−1),histW×H

(i, j, t)
}

, (6)and a shortened version as
G

W+H(k, t)=
{histW+H

(k, t−(L−1)), ..., histW+H

(k, t−1),histW+H

(k, t)
}

. (7)3 Gait re
ognition algorithmThe gait re
ognition pro
ess is shown in Figure 5. For every frame of a gaitsequen
e, it predi
ts the identity of the walking human. The algorithm 
onsistsof three steps, further detailed in this se
tion:1. extra
tion of a silhouette by a ba
kground subtra
tion te
hnique at time
t,2. 
omputation of a histogram at time t, whi
h is used to update the gaitsignature, and3. 
lassi�
ation of a gait signature by a ma
hine learning algorithm whi
houtputs the identity of one of the persons known to the system.3.1 Silhouette extra
tionThe quality and the 
hanging nature of the illumination 
onditions en
ounteredwhen using real surveillan
e 
ameras led us to adopt an advan
ed ba
kgroundsubtra
tion te
hnique whi
h 
an deal with 
hanging illumination, noisy sensorsand 
ast shadows. This ba
kground te
hnique was proposed by Zivkovi
 in [30℄.It extends the widely used Mixture Of Gaussian algorithm ([25℄) by sele
tingautomati
ally and dynami
ally the optimal number of Gaussian distributionsto use for ea
h pixel. The result of this ba
kground extra
tion te
hnique isillustrated in Figure 6. It 
an be seen that despite the use of an advan
ed ba
k-ground subtra
tion te
hnique, the silhouette is not perfe
tly dete
ted. Mu
h ofthe gait re
ognition e�
ien
y will therefore rely on the robustness of the gaitsignature.3.2 Intra-frame silhouette des
ription and gait signatureby re
tangle size distributionsIn order to 
hara
terize a gait, we use one of the gait signatures introdu
edin Se
tion 2.3. These are updated frame by frame, as soon as a silhouettehistogram is 
omputed at time t. Figure 7 displays a graphi
al representationof GW+H(k, t) to show the quantity of information gathered in the signature.9



Gait signature update

Gait signature classification

by machine learning

signature generation

Intra−frame silhouette

Video Frame

Background subtraction

Person’s identity

S

GW×H(i, j, t)

GW×H(i, j, t − 1)

histW×H(i, j, t)

Figure 5: Steps of our gait re
ognition algorithm.
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Figure 6: Example of binary silhouette extra
ted with the algorithm of Zivkovi
,as des
ribed in [30℄.Sin
e we do not perform any kind of tra
king, we restri
t ourselves to only oneperson being present at a time in the �eld of view of the 
amera. The 
hoi
e ofusing histW+H() or histW×H() depends on the amount of training data availableas the dimensionality of histW×H() is usually larger than the one of histW+H().It is important to note that our method 
omprises no gait 
y
le dete
tionor normalization algorithm, unlike many te
hniques des
ribed in the literature(see [3℄); our tests have proven that these te
hniques 
an be unne
essary.3.3 Gait 
lassi�
ationThe gait signature obtained at time t is the feature set used for re
ognition.There is no spe
ial di�
ulty involved in mapping a gait signature to a 
lasslabel, ex
ept that it must be fast, versatile, and a

urate. Another 
riterion forthe 
lassi�er is its ability to handle sets of features having high dimensionalities((M +N)×L or even M×N×L in our 
ase). We 
hose a 
lassi�er, 
alled extra-trees (for EXtremely RAndomized TREES) for its ability to handle featuresspa
es of high dimensionality. Without going into detail, extra-trees is a kind of
rossover between bagging [5℄ and random forests [6℄. The goal of extra-trees isto redu
e the varian
e by using a forest of independent trees instead of a singletree, and to redu
e the bias by using a random sele
tion of the thresholds atthe splits of the trees (see [9℄ for a full des
ription).3.3.1 Majority vote poli
y on a sliding temporal windowOur gait re
ognition algorithm is syn
hronous: it provides the name for theperson in the �eld of view whatever the time t might be. This is less restri
tivethan many te
hniques des
ribed in the literature whi
h have to pro
ess the
omplete gait sequen
e before produ
ing a single 
lass label. On the otherhand, this guarantees no temporal 
onsisten
y, and a new, possibly di�erent,
lass label might be 
omputed by the system for ea
h new frame, on the basis11



bins

time

histH(j)

t − (L − 1) t

histW (i)

Figure 7: A graphi
al representation of GW+H(k, t). All these displayed binvalues are part of the feature set given to the gait 
lassi�
ation algorithm.of the previous L frames. In order to smooth the result over time, we add astep that performs a majority vote on the previous V 
lass labels produ
edby the 
lassi�er. Sin
e the gait signatures already a

ount for the information
ontained in the previous L frames, this brings a total delay of L + V frames ina
hieving a reliable identi�
ation of a person on
e he has entered into the �eldof view of a 
amera.4 Experimental resultsIn this se
tion, we present results of multiple experiments that were run inreal time on 640 × 480 pixels wide video sequen
es. Our algorithm 
an handlehigher resolutions as well, but we haven't noti
ed any signi�
ant performan
eimprovements when using higher resolutions.Let us �rst determine appropriate values for all the parameters of the method.Afterward, we will present the pre
ision of the 
lassi�
ation on our database of21 persons and then test our algorithm on a publi
 database 
omprising videosof 25 persons.We ran a �rst series of experiments on a dataset, hereafter 
alled LAB5,whi
h 
ontains 4 sets of walking sequen
es for 5 persons. These sequen
es ofthe LAB5 data set were 
aptured in our lab (see Figure 8) under stri
t and
onstant illumination. Videos were obtained from a 
onsumer market web
amin order to get a realisti
 noise level and to ensure similar a
quisition 
onditionsto those of 
ommon situations. The goal of this set-up and this �rst series ofvideos was to determine appropriate values for the few parameters of our system.The parameters to be re�ned were:
• whi
h gait signature to use: either GW×H(i, j, t) or GW+H(k, t),
• the numbers of bins M and N ,
• the number of frames L aggregated in a single gait signature, and12



Figure 8: Examples of frames of the LAB5 and LAB21 datasets 
aptured in ourlab.
• the length V of the sliding temporal window used for the majority votepoli
y.The de
ision to use GW×H(i, j, t) or GW+H(k, t) depends on the amount oftraining data and memory available to the 
lassi�
ation pro
ess. If all otherparameters are kept un
hanged, the use of GW×H(i, j, t) generally leads tobetter results. However, the dimensionality of the 
orresponding feature spa
eis M × N × L instead of (M + N) × L. As a result, a larger amount of datais ne
essary to train the system and the resulting extra-trees model that has tobe loaded into memory at run-time is signi�
antly larger.In order to determine M and N , the numbers of bins, we tested values rang-ing from 2 to 40. It was observed that higher values of M or N (or both)generally leads to a better performan
e. However, the performan
e starts to bea

eptable for 10 bins and then saturates with 20 bins and above. It is thereforere
ommended to use a value in the interval range [10, 20] for M and N . De-pending on the size of the training dataset and the dimensions of its silhouettes,the statisti
al signi�
an
e of all the bins of the histograms needs to be taken intoa

ount. Indeed, from small training sets of small silhouettes, it is impossible topopulate a large histogram with enough statisti
al signi�
an
e. Consequently avalue 
loser to 10 needs to be 
hosen. By 
ontrast, larger training sets of largersilhouettes would in
line us to take values of 
loser to 20.A similar reasoning applies to the number of silhouettes L aggregated ina gait signature: the higher, the better. Sin
e the value of L impa
ts on therea
tivity of the system and no signi�
ant gain in performan
e is observed forvalues of L larger than 20, taking L = 20 o�ers an appropriate 
ompromise.Note that this parameter may be re�ned a

ording the framerate of the 
amerasused. Typi
al 
ameras have a framerate of 25 images per se
ond: L = 20
orresponds to a signature of about 1 se
ond whi
h roughly mat
hes the lengthof a gait 
y
le. For slower framerates, L has to be adapted.The dis
ussion regarding the appropriate value for V , the length of the slidingtemporal window used for the majority vote poli
y, is again similar to the oneregarding L. With V at a high level, the results are better but the drawba
kis that this in
reases the number of frames needed to identify a person. From13



a pra
ti
al point of view, a majority vote regarding 10 
onse
utive frames issu�
ient; it improves the performan
e of the system to a satisfa
tory level. If
L = 20 and V = 10, the algorithm delays its answer for 30 frames, i.e. 1 se
ondfor 
ommonly-used 
ameras.4.1 Tests on a database of 21 personsIn order to estimate performan
e of our system, we used a se
ond dataset, 
alledLAB21, whi
h was 
omposed of 4 sets of laboratory sequen
es of 21 di�erentsubje
ts. All the 
lassi�
ation tests were 
ondu
ted by training the algorithmusing 3 of the 4 sequen
es available for ea
h subje
t and testing it on the left outone. We used the ratio of 
orre
tly 
lassi�ed gait signatures as a performan
e
riterion. This ratio was 
omputed for di�erent numbers of frame per gaitsignature and for di�erent histogram resolutions. For the sake of simpli
ity, werestri
ted ourselves to the 
ase where M = N , and disabled the majority voteon the previous V frames (or to equivalently set V to 1) in the �rst instan
e.This allowed us to assess the raw 
lassi�
ation pre
ision of the system, regardlessof whether the majority vote improved the performan
e, as shown further on.The results of the �rst series of tests are shown in Figure 9. The ratioof 
orre
tly 
lassi�ed gait signatures rea
hed 74% for histW×H() and 72% forhistW+H(). Both histW+H() and histW×H() obtained the best results for anumber of bins of 10 and a number of frames per gait signature (that is L) of20. We also noti
ed that the performan
e of histW×H() was generally betterthan that of histW+H(), espe
ially for small values of the parameters M , N ,and L.One 
ould be misled by the relatively average examples of performan
e givenby �gures around the 75% mark. Remember that the examples of performan
ere�e
t all the syn
hronous de
isions individually. Should a single 
lass labelbe assigned to a test sequen
e as the average of the 
omplete set of individualde
isions, the performan
e ratio would overstep 95% of 
orre
tly 
lassi�ed gaitsequen
es!The se
ond series of tests was limited to histW×H() in order to fo
us on theperforman
e improvement brought about by the majority vote on the previous
V frames. The 
urves displayed in Figure 10 show that the use of the majorityvote improves the performan
e of the system. For high values of V , the ratioof 
orre
t 
lassi�
ations peaks at 97%. In the same way as in the dis
ussionon parameter L, we observe that an in
rease in the length of the majority votetime window improves pre
ision. Interestingly, we also noti
ed that the 
hoi
eof M = N = 15 outperformed the results of the 
hoi
e of M = N = 20.This presumably originates from the small size of some silhouettes, whi
h only
ontained a few wedged re
tangles α. If α is too small, whi
h typi
ally o

urswhen a person stands too far from the 
amera, it is impossible to estimate ahistogram split into 20 × 20 bins with a good statisti
al signi�
an
e; this poorestimation negatively impa
ts on performan
e.4.2 Tests on frames a
quired with surveillan
e 
amerasThe third data set used was named HW5. This 
onsisted of frames 
aptured withsurveillan
e 
ameras lo
ated in hallways for �ve di�erent persons and involving 314



4 6 8 10 20
50

60

70

80

90

100

Number of frames in a gait signature (L)

C
or

re
ct

 id
en

tif
ic

at
io

n 
ra

te

 

 

M=N=7
M=N=10
M=N=15
M=N=20

(a) histW+H(k)
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(b) histW×H(i, j)Figure 9: Performan
e of GW×H(i, j, t) on the LAB21 dataset with no majorityvote poli
y (more pre
isely V = 1) using (a) histW+H(k) and (b) histW×H(i, j).15
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Figure 10: Performan
e of GW×H(i, j, t) on the LAB21 database usinghistW×H(i, j) for di�erent lengths V of the majority vote window (L is setto 10).sequen
es per person. In 
ontrast with the previous sequen
es, the environmentwas totally un
onstrained and some frames had a poor signal to noise ratio.The results of this last series of experiments are shown in Figure 11. Asexpe
ted, the pre
ision of the 
lassi�
ation su�ered from the poor quality of theextra
ted silhouettes (remember the example of Figure 6). Nevertheless, thanksto the robustness of the proposed gait signature, the system still managed toidentify 
orre
tly the persons in up to 81% of 
ases (one should 
ompare thiswith the previous 97%). The 81% of 
orre
t 
lassi�
ations were obtained fora majority vote window of 55 frames, whi
h 
orresponded to an identi�
ationdelay of 2 se
onds (or L + V = 65 frames).4.3 Tests on the CMU MoBo databaseTo further evaluate the performan
e, our algorithm was tested on the publi
lyavailable MoBo database [11℄. The MoBo database 
onsists in video sequen
esof 25 subje
ts walking on a treadmill. Six 
alibrated and syn
hronized 
am-eras were used to 
apture the subje
ts from six di�erent viewpoints performingfour di�erent walking a
tivities: slow walk, fast walk, in
line walk, and walkwith a ball. The database also 
omprises binary segmentation maps for ea
hsequen
e. By using these segmentation maps, we are able to assess the perfor-man
es of the features extra
tion and 
lassi�
ation pro
ess ex
lusively (withoutany interferen
e from the ba
kground subtra
tion algorithm).To a
hieve a fair 
omparison with other te
hniques evaluated on the MoBo16
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Figure 11: Performan
e on the HW5 dataset, whi
h 
ontained frames a
quiredwith 
ameras lo
ated in hallways (M and N are set to 20).Our algorithm Slow Fast
GW×H(i, j, t) with M = N = 10, L = 10 100% 100%
GW×H(i, j, t) with M = N = 10, L = 20 100% 100%
GW×H(i, j, t) with M = N = 20, L = 10 100% 100%
GW×H(i, j, t) with M = N = 20, L = 20 100% 100%Table 1: Results obtained on non-overlapping parts of sequen
es from the same
ategory of a
tivity (training and testing sequen
es are both taken in the �slowwalk� or �fast walk� subparts of the MoBo database).database, we used exa
tly the same experimental set-up. For example, ea
h
omplete walking sequen
e is given a unique 
lass label; this is equivalent tosetting V to the total number of frames 
ontained in the 
orresponding videosequen
e. Additionally, ea
h sequen
e is divided in two non-overlapping parts ofequal size. One part serves to train the algorithm, the other is used to evaluateit. We tested the method against the �slow walk� and the �fast walk� sequen
esseparately. The results given in Table 1 show that the algorithm is able to su
-
essfully re
ognize every single person present in the database a
ross the wholeadvised ranges of values of its parameters. For the sake of 
ompleteness, we alsotested the method (with no adaptations) on the lateral sequen
es 
ontained inthe MoBo database using the same pro
edure. Interestingly, we observed identi-
al s
ores (100% in all the 
ases). Future work will investigate the performan
eof our algorithm on lateral-view sequen
es.Finally, we 
he
ked if the method was able to deal with greater dis
repan
ies17



Comparison of two methods Slow/Fast Fast/SlowOur algorithm:- GW×H(i, j, t) with M = N = 10, L = 10 96% 96%- GW×H(i, j, t) with M = N = 10, L = 20 96% 96%- GW×H(i, j, t) with M = N = 20, L = 10 96% 96%- GW×H(i, j, t) with M = N = 20, L = 20 96% 96%Algorithm proposed in [13℄:- frontal view ∅ 88%- 6 views ∅ 92%- frontal and lateral views ∅ 96%Table 2: Results when training on one 
ategory of a
tivity and testing on theother. Slow/Fast means that slow walking sequen
es were used for trainingwhile the tests were performed on fast walking sequen
es, and vi
e versa.between training and test sequen
es on frontal views. Therefore our algorithmwas trained on all the �slow walk� sequen
es and evaluated against all the �fastwalk� sequen
es, and vi
e versa. From the results provided in Table 2, we seethat the algorithm is able to su

essfully re
ognize persons even if the walkingspeed 
hanges between the training and the testing steps. We also noti
e thatour method outperforms that of [13℄ when using a single frontal 
amera; the best
lassi�
ation s
ore presented in [13℄ was obtained by 
ombining the frontal andthe lateral views. In our 
ase, sequen
es a
quired with a single frontal 
amerasu�
e to produ
e the best re
ognition s
ores.5 Con
lusionsGait identi�
ation is 
urrently an intensive topi
 for resear
h. Most te
hniquesdes
ribed in the literature are based on lateral views of walking persons. It isknown that lateral views 
ontain appropriate information regarding the gait.However, using lateral views in indoor environments might be unfeasible, espe-
ially in hallways where a frontal view is almost inevitable.This paper proposes a real-time frontal-view gait re
ognition system. A ma-jor 
ontribution is introdu
ed by de�ning a gait signature of a walking person.Su

essive binary silhouettes are extra
ted with a ba
kground subtra
tion al-gorithm. Ea
h silhouette is then 
onverted to an intra-frame histogram whi
h
ompa
ts the width and height distributions of the set of all the re
tangles that
an be wedged inside the silhouette. Afterward, a given number L of su

essivehistograms is 
ombined into a single spatio-temporal (inter-frame) gait signa-ture. The identi�
ation of the persons is then 
omputed by a 
lassi�
ation ofthis signature by a ma
hine learning algorithm 
alled extra-trees. Finally, su
-
essive de
isions are 
ombined along several frames using a majority vote poli
yto determine the identity of the person 
urrently present in the �eld of view ofthe 
amera.Four series of experiments were 
ondu
ted on di�erent databases. The �rstseries helped to determine the parameter values needed to optimize the per-forman
e of the overall system. The se
ond series was intended to evaluatethe pre
ision of the 
lassi�
ation for di�erent ranges of values of the parame-18



ters. It was shown that the ratio of 
orre
t 
lassi�
ations 
ould rea
h 97% for adatabase of 21 persons. The third series of experiments served as a show
ase fora pra
ti
al s
enario. Frames were 
aptured with hallway surveillan
e 
amerasat our institute. Despite the noise and the unavoidable phenomena in su
h anun
onstrained environment, the system was still able to identify the persons
orre
tly in up to 81% of 
ases. Finally, we tested our algorithm on the publi
lyavailable MoBo database. Our method was able to su

essfully re
ognize thepersons from video sequen
es taken in the MoBo database rea
hing a s
ore ashigh as 96% to 100%, depending on the training and testing 
onditions.A
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