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Abstract

Current trends seem to accredit gait as a sensible biometric feature for
human identification, at least in a multimodal system. In addition to being
a robust feature, gait is hard to fake and requires no cooperation from the
user. As in many video systems, the recognition confidence relies on the
angle of view of the camera and on the lightening conditions, inducing a
sensitivity to operational conditions that one may wish to lower.

In this paper we present an efficient approach capable of recognizing
people in frontal-view video sequences. The approach uses an intra-frame
description of silhouettes which consists of a set of rectangles that will
fit into any closed silhouette. A dynamic, inter-frame, dimension is then
added by aggregating the size distributions of these rectangles over multi-
ple successive frames. For each new frame, the inter-frame gait signature
is updated and used to estimate the identity of the person detected in the
scene. Finally, in order to smooth the decision on the identity, a majority
vote is applied to previous results. In the final part of this article, we
provide experimental results and discuss the accuracy of the classification
for our own database of 21 known persons, and for a public database of
25 persons.

1 Introduction

The number of video-surveillance cameras has increased dramatically over the
last few years. It has therefore become unrealistic to process manually or even
visually the gigantic amount of information gathered by surveillance cameras,
which explains why the automation of real-time visual surveillance tasks is cur-
rently one of the most active topics in computer vision. Visual surveillance has
a wide spectrum of promising applications, including control of access to cer-
tain areas, human identification, crowd flux statistics, detection of anomalous
behaviors, etc [12]. This paper focuses on one of these tasks, i.e. automatic
human identification.

Automatic human identification can be achieved through a variety of bio-
metrics using different kinds of sensors: fingerprint readers, iris scanners, mi-
crophones for voice recognition, and video cameras. One advantage of video



cameras is that they are not intrusive; also subjects can be filmed without their
cooperation. Face recognition through the use of a video camera is a widely
used biometric, although its efficiency is conditioned by the need for a rela-
tively constrained image of the person’s face. Unconstrained face recognition
is possible (see [28]) but is almost useless for strong identification in practice.
Asking a person to cooperate can also be an issue; not everyone is going to help
the system. Gait recognition is therefore a viable alternative; in this case, it is
neither necessary to restrict the field of view to constrained environment, nor to
ask for cooperation. Gait recognition is not (yet?) as effective as the best face
recognition algorithm but, acting as a complementary form of identification, it
might reinforce a decision made in a multi-modal biometric system.

Gait as a biometric is quite a recent topic for discussion, which has gained
in popularity since its introduction in [22]. Its robustness against poor imaging
conditions makes it applicable to a wide range of real-world scenarios. Images
can be acquired from a great distance, even in changing illumination conditions
(i.e. outdoor, as shown in [18]). Furthermore, absolutely no kind of cooperation
from the subjects is required. Gait is also difficult (if not impossible?) to fake.
Yet, gait recognition techniques are still not accurate enough to use gait as the
sole biometric of a real surveillance system. These recognition techniques are
better used to reinforce a decision in a multi-modal biometric system (see [20,
21, 29)).

Gait recognition techniques are usually classified in two categories: model-
based and holistic/silhouette approaches [3].

Model-based approaches make use of explicit gait models whose parameters
are to be estimated by processing sequences of images, hereafter referred to as
image frames or frames. The identification is performed entirely on the basis
of the estimated values of the explicit gait model. Model-based approaches
are generally scale and view invariant, as long as the parameters estimation
is feasible given the imaging configuration. This is a major advantage, since
training conditions are likely to differ from conditions of practical use. On
the other hand, these methods often need high definition images in order to
work properly. They also exhibit a significantly higher computational cost.
Techniques in this category include modeling the thighs as a pair of thick lines,
as in [7], modeling the silhouette of a walking person as a group of seven ellipses
as in [10], or modeling the legs as two penduli joined in series, as in [27].

Holistic approaches do not assume any explicit model for the walking hu-
man. They extract information directly from the gait image sequences. Gait
signatures are, for example derived from time series of binary silhouettes ex-
tracted from the original sequence with a background subtraction algorithm.
This brings a suitable invariance to color, texture or illumination conditions
(assuming that the used background subtraction algorithm is robust). A sim-
ple approach that uses areas of raw (re-sized) silhouettes as a gait signature
is described in [8]. The contours of silhouettes have also been used, either di-
rectly [26] or through their Fourier descriptors [19]. An angular transform of
the silhouette is proposed in [4]. This is said to be more robust than the raw
contour descriptions. In [2], the gait dynamics are captured using principal
components analysis of self-similarity plots. Feature vectors derived from the
binary silhouettes can also be used to train HMM’s, as in [15].

Other authors have used horizontal and vertical projections of the silhou-
ettes [14]. In [17], time series of horizontal and vertical projections of silhouettes



(a) Lateral view (b) Frontal view

Figure 1: Lateral and frontal views of a walker.

are treated as frieze patterns. The framework of frieze patterns leads the au-
thors to estimate the viewing direction of the walking humans and to align gait
sequences from similar viewpoints both spatially and over time. The identifica-
tion is then performed using cross-correlation and nearest neighbor classification
between frieze patterns. In [16], a similar algorithm is used to compare frieze
patterns of frame differences between a key silhouette and a series of successive
silhouettes. The method is claimed to be more robust to silhouette differences
between the training and test sets.

Nearly all silhouette-based approaches are designed to deal with image frames
captured from the side of a person (see Figure 1(a)). While it is reasonable to
assume that the lateral view captures an appropriate amount of gait and walking
information, it is not easy to capture these image frames in practical scenarios.
In order to obtain a sufficiently long sequence of images of a person walking (i.e.
containing several gait cycles), cameras need to be put at a long distance. This
hinders recognition, since small silhouettes are hard to discriminate. In hallways
(see the example in Figure 1(b)), frames are rarely captured from the side, but
from the front or the back of the walker (see Figure 1(a)). Front-view cameras,
as opposed to lateral-view cameras, capture longer sequences of walkers, which
results in more gait cycles. However front-view cameras are thought to be less
efficient for gait recognition as they capture geometric and scale transforma-
tions of the silhouettes. But the human capacity to recognize people using only
a frontal view of their walking silhouettes tends to prove that a frontal view
contains enough information to perform automatic recognition. This is con-
firmed by Soriano et al. [24]. In an article in which gait signatures are derived
from series of Freeman encoding of the re-sized silhouette shape, these authors
showed that frontal view gait recognition is possible [24].

In [13], the gait template of a walking human is computed by averaging
the corresponding binary silhouettes. The classification is then achieved using
a nearest neighbor technique. The authors use the MoBo database [11] from
the CMU to compare the classification results obtained by their method with



sequences captured from different viewpoints. The best single viewpoint results
are obtained using the frontal view. But better classification scores are achieved
by combining the frontal view with the lateral view.

This paper presents a gait recognition algorithm capable of recognizing per-
sons from image frames captured in real-time with surveillance cameras located
in hallways. Unlike many techniques in the literature which process complete
gait sequences, our algorithm identifies a previously known person as soon as it
obtains a complete gait cycle, which accounts for about 1 second or 25 frames.
Requirements for our method are that (1) low image resolution (like 640 x 480)
suffice, (2) walkers can wander at quite a long distance from the cameras, and
(3) the algorithm should run in real time on any computer.

For noisy surveillance video frames, a precise detection of moving objects and
their contours is difficult. In order to achieve a better resilience to noise, we chose
a surfacic representation of the silhouettes in terms of a descriptor called “Cover
by Rectangles”, introduced in [1]. This descriptor provides a piecewise surfacic
description of silhouettes which, unlike horizontal and vertical projections, is
reversible and therefore does not induce any information loss. In addition,
covers by rectangles limits the effect of noise to a local neighborhood as noise
will impact locally on the description of the silhouette, in contrast with global
surfacic measures. Section 2 derives a new silhouette representation based on
the cover by rectangles approach. This representation serves to characterize
gait silhouettes for each frame separately; we therefore call this an intra-frame
descriptor. Section 2 also explains how we consider temporal and dynamic
information by introducing inter-frame dependencies in order to derive a gait
signature. We describe the complete gait identification algorithm in Section 3.
Experimental results and an evaluation of our method are presented in Section 4.
We show that gait recognition is possible, efficient, and achievable in real time,
even for front-view video frames.

2 A surfacic gait representation

In order to identify a walking person, a time series of his silhouettes is extracted
from the raw video frames, at a rate of one silhouette per frame. For each frame,
the silhouette is converted into a set, of features, which are used to update a gait
signature. The gait signature is fed into a classifier which will output the class
label corresponding to a particular person. Hereafter we present the intra-frame
description of a silhouette.

2.1 Cover by rectangles of a binary silhouette

The cover by rectangles, proposed in [1], is a morphological descriptor. Consider
a binary silhouette S. The cover by rectangles, denoted C (5), is defined as
the union of all the largest rectangles that can fit inside of S (see Figure 2
for an example). This union is unique and the cover C'(S) has the following
useful properties: (1) the elements of the set overlap each other, introducing
redundancy (i.e. robustness), (2) each element (rectangle) of C (S) covers at
least one pixel that belongs to no other rectangle, and (3) when displayed in the
frame, the union of all rectangles reconstructs S so that no information is ever
lost.



Figure 2: The cover by rectangles C (.S) is the union of all the largest rectangles
that can be wedged inside of the silhouette.

Other morphological surfacic descriptors, such as the morphological skele-
ton [23], have been developed to represent shapes. However, since they provide
an isotropic description of the silhouettes through, for example, the union of
open balls included in S, they are unsuited for the description of gait. More-
over, it is important to ensure that a local modification of the silhouette does
not lead to a global change in its description. Figure 3 compares the effect of a
slight modification of the shape in the case of the skeleton and features (widths
or heights) derived from the rectangles of C' (S). In Section 4.2, we show that
a gait signature based on the cover by rectangles of the silhouettes of a walk-
ing human is robust and allows the correct identification of people from noisy
silhouettes (see Figure 6) through a set of experiments.

2.2 Rectangle size probability distributions

The number of largest wedged rectangles that will fit inside a binary silhouette
can be very high (more than a thousand). It is thus impractical to use all
the rectangles directly as a set of features. In order to find a more compact
representation, we can operate on one of the size distribution densities, as shown
in Figure 4. These distributions offer different but suitable interpretations of
a silhouette. For example, the largest number of rectangles containing a given
pixel is to be found inside the torso (Figure 4(b)), and the tallest rectangles
pass through both the legs and the head (Figure 4(d)).

As can be seen, much of the information resides in the distributions of the
normalized sizes (width or height). These distributions can be estimated as a
discrete histogram whose bins correspond to the ratios of rectangles that fall
within given size intervals.

From a formal point of view, let « be the cardinality of a cover by rectangles
C(9), i.e. o =4{C(S)}. We index the rectangles of C (S) with a parameter
d, so that Rg (d =1, ..., «) are the rectangles of C'(S). The width and height
of Ry are respectively denoted by wy and hg; they are upper-bounded by w™**
and A" Vd, wg < w™* and hg < A", In order to build histograms, we
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Figure 3: The first column shows three original images. The morphological
skeletons (shown in gray in the second column) are modified by the presence of
a small hole in the silhouette: a local perturbation leads to a global modification
of the skeleton. The images the two right-hand columns represent the size
distributions of the rectangles contained in C'(S). In these images, the gray
level of pixels is proportional to the width (resp. height) of the widest (resp.
tallest) rectangle comprising the given pixel.
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Figure 4: Tllustration of several size distributions based on the description pro-
vided by the cover C (S) of a binary silhouette S. A gray level of pixel p in
images (b), (c), and (d) displays respectively the density of rectangles, the width
of the widest rectangle, and the height of the tallest rectangle where all these
rectangles contain pixel p.



partition the widths and heights of the rectangles Ry respectively into M bins
BY (i) and N bins B (3)

BY (i) = ]zw;; (z’+1)w;;1 (1)
BG) = |it G0 ©)

where i =0, ..., M —1land =0, ..., N —1.
Following the above notations, we define the histogram hist" (i) of the nor-
malized widths as

hist™ (1) = éﬁ {Ra|wq € BV (i)}, (3)

the histogram of the normalized heights similarly as

. , 1 .
hist" (j) = o0 {Ralha € B"(j)}, (4)
and the two-dimensional histogram hist" > (i, j) as
1
hist™ > H (4, ) = . {Ralwq € BV (i), hg € BH(j)} . (5)

Note that these histograms are normalized with respect to the largest rect-
angle of the cover of the silhouette. In a continuous space, they would be scale
invariant. Such a normalization might seem counter-intuitive; much of the in-
terpretation of the motion of a gait derives from the size of a silhouette, and
it would not be good for frontal cameras to lose motion information. A finer
analysis shows however that size information is still present in a normalized
histogram. Indeed the cover of a scaled down version of a silhouette S contains
fewer rectangles (« is always lower than the number of contour points) than its
original counterpart. Therefore the histograms have a distribution that adapts
to both the shape and the size of a silhouette. In addition, if noise is added to
the contour of the silhouette, it will modify the positions of the rectangles but
not so much their size or number.

Of the three hist" (), hist” (5), hist" *# (i, ) histograms, the last one best
describes S. However, its dimensionality is proportional to the product of the
numbers of bins (M x N), which is acceptable for an intra-frame description
but might be too high for embedded systems if the features are to be fed into a
classifier for inter-frame gait recognition. In order to solve this tractability issue,
we introduce the composite histogram hist"V *# (k) with k =0, ..., M + N —1
defined as the strict concatenation of hist'” (i) and hist™ (5). hist" ™ (k) has
a dimensionality of M + N, and accounts for both the vertical and horizontal
characteristics of the silhouette. Experiments detailed in Section 4 show that
both hist™ *# (i, j) and hist" (k) are suitable descriptors.

2.3 Gait as an inter-frame rectangle distribution

So far we have considered a single intra-frame silhouette, but a gait sequence
is a temporal series of binary silhouettes. In order to capture the dynamics of
a walking person we introduce an inter-frame dependency by defining a gait



signature based on the temporal series of the silhouettes S of a walker. We
assume that ¢ refers to the time of the current frame, and that hist (i, j, t) is a
histogram for S at time . We introduce two gait signatures, denoted G, which
consist of n-uples of L consecutive histograms. We propose the following gait
signature

GWxH (i j t):{hiStWXH(i, j, t—(L=1)),..., hist"™ 7@, j, t—1) hist™ *" (i, j, t)}, (6)

and a shortened version as
QW+H(k,t):{hiStW+H(k, t—(L—1)), ..., hist" ™" (k, t—1), hist™ "k, 1) }. (7)

3 Gait recognition algorithm

The gait recognition process is shown in Figure 5. For every frame of a gait
sequence, it predicts the identity of the walking human. The algorithm consists
of three steps, further detailed in this section:

1. extraction of a silhouette by a background subtraction technique at time
t

2. computation of a histogram at time ¢, which is used to update the gait
signature, and

3. classification of a gait signature by a machine learning algorithm which
outputs the identity of one of the persons known to the system.

3.1 Silhouette extraction

The quality and the changing nature of the illumination conditions encountered
when using real surveillance cameras led us to adopt an advanced background
subtraction technique which can deal with changing illumination, noisy sensors
and cast shadows. This background technique was proposed by Zivkovic in [30].
It extends the widely used Mixture Of Gaussian algorithm ([25]) by selecting
automatically and dynamically the optimal number of Gaussian distributions
to use for each pixel. The result of this background extraction technique is
illustrated in Figure 6. It can be seen that despite the use of an advanced back-
ground subtraction technique, the silhouette is not perfectly detected. Much of
the gait recognition efficiency will therefore rely on the robustness of the gait
signature.

3.2 Intra-frame silhouette description and gait signature
by rectangle size distributions

In order to characterize a gait, we use one of the gait signatures introduced
in Section 2.3. These are updated frame by frame, as soon as a silhouette
histogram is computed at time t. Figure 7 displays a graphical representation
of GWHH (k, t) to show the quantity of information gathered in the signature.
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Figure 5: Steps of our gait recognition algorithm.
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Figure 6: Example of binary silhouette extracted with the algorithm of Zivkovic,
as described in [30].

Since we do not perform any kind of tracking, we restrict ourselves to only one
person being present at a time in the field of view of the camera. The choice of
using hist" () or hist"” *# () depends on the amount of training data available
as the dimensionality of hist"” ** () is usually larger than the one of hist"’ ™ ().

It is important to note that our method comprises no gait cycle detection
or normalization algorithm, unlike many techniques described in the literature
(see [3]); our tests have proven that these techniques can be unnecessary.

3.3 Gait classification

The gait signature obtained at time t is the feature set used for recognition.
There is no special difficulty involved in mapping a gait signature to a class
label, except that it must be fast, versatile, and accurate. Another criterion for
the classifier is its ability to handle sets of features having high dimensionalities
((M+N)xLoreven M xN x L in our case). We chose a classifier, called extra-
trees (for EXtremely RAndomized TREES) for its ability to handle features
spaces of high dimensionality. Without going into detail, extra-trees is a kind of
crossover between bagging [5] and random forests [6]. The goal of extra-trees is
to reduce the variance by using a forest of independent trees instead of a single
tree, and to reduce the bias by using a random selection of the thresholds at
the splits of the trees (see [9] for a full description).

3.3.1 Majority vote policy on a sliding temporal window

Our gait recognition algorithm is synchronous: it provides the name for the
person in the field of view whatever the time ¢ might be. This is less restrictive
than many techniques described in the literature which have to process the
complete gait sequence before producing a single class label. On the other
hand, this guarantees no temporal consistency, and a new, possibly different,
class label might be computed by the system for each new frame, on the basis

11
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Figure 7: A graphical representation of GV (k, t). All these displayed bin
values are part of the feature set given to the gait classification algorithm.

of the previous L frames. In order to smooth the result over time, we add a
step that performs a majority vote on the previous V class labels produced
by the classifier. Since the gait signatures already account for the information
contained in the previous L frames, this brings a total delay of L 4+ V frames in
achieving a reliable identification of a person once he has entered into the field
of view of a camera.

4 Experimental results

In this section, we present results of multiple experiments that were run in
real time on 640 x 480 pixels wide video sequences. Our algorithm can handle
higher resolutions as well, but we haven’t noticed any significant performance
improvements when using higher resolutions.

Let us first determine appropriate values for all the parameters of the method.
Afterward, we will present the precision of the classification on our database of
21 persons and then test our algorithm on a public database comprising videos
of 25 persons.

We ran a first series of experiments on a dataset, hereafter called LABS5,
which contains 4 sets of walking sequences for 5 persons. These sequences of
the LAB5 data set were captured in our lab (see Figure 8) under strict and
constant, illumination. Videos were obtained from a consumer market webcam
in order to get a realistic noise level and to ensure similar acquisition conditions
to those of common situations. The goal of this set-up and this first series of
videos was to determine appropriate values for the few parameters of our system.

The parameters to be refined were:

e which gait signature to use: either GV *H (i, j, t) or GWTH (k. 1),
e the numbers of bins M and N,

e the number of frames L aggregated in a single gait signature, and

12



Figure 8: Examples of frames of the LAB5 and LAB21 datasets captured in our
lab.

e the length V of the sliding temporal window used for the majority vote
policy.

The decision to use GWV>H (i, j, t) or GW+H (k, t) depends on the amount of
training data and memory available to the classification process. If all other
parameters are kept unchanged, the use of GW*# (i, j, t) generally leads to
better results. However, the dimensionality of the corresponding feature space
is M x N x L instead of (M + N) x L. As a result, a larger amount of data
is necessary to train the system and the resulting extra-trees model that has to
be loaded into memory at run-time is significantly larger.

In order to determine M and N, the numbers of bins, we tested values rang-
ing from 2 to 40. It was observed that higher values of M or N (or both)
generally leads to a better performance. However, the performance starts to be
acceptable for 10 bins and then saturates with 20 bins and above. It is therefore
recommended to use a value in the interval range [10, 20] for M and N. De-
pending on the size of the training dataset and the dimensions of its silhouettes,
the statistical significance of all the bins of the histograms needs to be taken into
account. Indeed, from small training sets of small silhouettes, it is impossible to
populate a large histogram with enough statistical significance. Consequently a
value closer to 10 needs to be chosen. By contrast, larger training sets of larger
silhouettes would incline us to take values of closer to 20.

A similar reasoning applies to the number of silhouettes L aggregated in
a gait signature: the higher, the better. Since the value of L impacts on the
reactivity of the system and no significant gain in performance is observed for
values of L larger than 20, taking L. = 20 offers an appropriate compromise.
Note that this parameter may be refined according the framerate of the cameras
used. Typical cameras have a framerate of 25 images per second: L = 20
corresponds to a signature of about 1 second which roughly matches the length
of a gait cycle. For slower framerates, L has to be adapted.

The discussion regarding the appropriate value for V', the length of the sliding
temporal window used for the majority vote policy, is again similar to the one
regarding L. With V' at a high level, the results are better but the drawback
is that this increases the number of frames needed to identify a person. From

13



a practical point of view, a majority vote regarding 10 consecutive frames is
sufficient; it improves the performance of the system to a satisfactory level. If
L =20 and V = 10, the algorithm delays its answer for 30 frames, i.e. 1 second
for commonly-used cameras.

4.1 Tests on a database of 21 persons

In order to estimate performance of our system, we used a second dataset, called
LAB21, which was composed of 4 sets of laboratory sequences of 21 different
subjects. All the classification tests were conducted by training the algorithm
using 3 of the 4 sequences available for each subject and testing it on the left out
one. We used the ratio of correctly classified gait signatures as a performance
criterion. This ratio was computed for different numbers of frame per gait
signature and for different histogram resolutions. For the sake of simplicity, we
restricted ourselves to the case where M = N , and disabled the majority vote
on the previous V frames (or to equivalently set V' to 1) in the first instance.
This allowed us to assess the raw classification precision of the system, regardless
of whether the majority vote improved the performance, as shown further on.

The results of the first series of tests are shown in Figure 9. The ratio
of correctly classified gait signatures reached 74% for hist" () and 72% for
hist™ "7 (). Both hist" () and hist'"*# () obtained the best results for a
number of bins of 10 and a number of frames per gait signature (that is L) of
20. We also noticed that the performance of hist"V *# () was generally better
than that of hist'" (), especially for small values of the parameters M, N,
and L.

One could be misled by the relatively average examples of performance given
by figures around the 75% mark. Remember that the examples of performance
reflect all the synchronous decisions individually. Should a single class label
be assigned to a test sequence as the average of the complete set of individual
decisions, the performance ratio would overstep 95% of correctly classified gait
sequences!

The second series of tests was limited to his in order to focus on the
performance improvement brought about by the majority vote on the previous
V frames. The curves displayed in Figure 10 show that the use of the majority
vote improves the performance of the system. For high values of V', the ratio
of correct classifications peaks at 97%. In the same way as in the discussion
on parameter L, we observe that an increase in the length of the majority vote
time window improves precision. Interestingly, we also noticed that the choice
of M = N = 15 outperformed the results of the choice of M = N = 20.
This presumably originates from the small size of some silhouettes, which only
contained a few wedged rectangles «. If « is too small, which typically occurs
when a person stands too far from the camera, it is impossible to estimate a
histogram split into 20 x 20 bins with a good statistical significance; this poor
estimation negatively impacts on performance.

tWXH()

4.2 Tests on frames acquired with surveillance cameras

The third data set used was named HW5. This consisted of frames captured with
surveillance cameras located in hallways for five different persons and involving 3

14
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Figure 10: Performance of GW*H(i j t) on the LAB21 database using
hist™ *# (i, j) for different lengths V of the majority vote window (L is set
to 10).

sequences per person. In contrast with the previous sequences, the environment
was totally unconstrained and some frames had a poor signal to noise ratio.

The results of this last series of experiments are shown in Figure 11. As
expected, the precision of the classification suffered from the poor quality of the
extracted silhouettes (remember the example of Figure 6). Nevertheless, thanks
to the robustness of the proposed gait signature, the system still managed to
identify correctly the persons in up to 81% of cases (one should compare this
with the previous 97%). The 81% of correct classifications were obtained for
a majority vote window of 55 frames, which corresponded to an identification
delay of 2 seconds (or L + V = 65 frames).

4.3 Tests on the CMU MoBo database

To further evaluate the performance, our algorithm was tested on the publicly
available MoBo database [11]. The MoBo database consists in video sequences
of 25 subjects walking on a treadmill. Six calibrated and synchronized cam-
eras were used to capture the subjects from six different viewpoints performing
four different walking activities: slow walk, fast walk, incline walk, and walk
with a ball. The database also comprises binary segmentation maps for each
sequence. By using these segmentation maps, we are able to assess the perfor-
mances of the features extraction and classification process exclusively (without
any interference from the background subtraction algorithm).

To achieve a fair comparison with other techniques evaluated on the MoBo

16
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Figure 11: Performance on the HW5 dataset, which contained frames acquired
with cameras located in hallways (M and N are set to 20).

| Our algorithm Slow Fast |
GWXH(i 4 t) with M =N =10, L =10 100% 100%
GW>XH(i 4 t) with M = N =10, L =20 100% 100%

( )
GWxH (i j t) with M = N =20, L =10 100% 100%
GWxH (i j t) with M = N =20, L =20 100% 100%

Table 1: Results obtained on non-overlapping parts of sequences from the same
category of activity (training and testing sequences are both taken in the “slow
walk” or “fast walk” subparts of the MoBo database).

database, we used exactly the same experimental set-up. For example, each
complete walking sequence is given a unique class label; this is equivalent to
setting V' to the total number of frames contained in the corresponding video
sequence. Additionally, each sequence is divided in two non-overlapping parts of
equal size. One part serves to train the algorithm, the other is used to evaluate
it. We tested the method against the “slow walk” and the “fast walk” sequences
separately. The results given in Table 1 show that the algorithm is able to suc-
cessfully recognize every single person present in the database across the whole
advised ranges of values of its parameters. For the sake of completeness, we also
tested the method (with no adaptations) on the lateral sequences contained in
the MoBo database using the same procedure. Interestingly, we observed identi-
cal scores (100% in all the cases). Future work will investigate the performance
of our algorithm on lateral-view sequences.

Finally, we checked if the method was able to deal with greater discrepancies
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| Comparison of two methods Slow /Fast  Fast/Slow |

Our algorithm:

- GWXH (G 4 t) with M = N =10, L = 10 96% 96%
- GWXH (G 4 t) with M = N =10, L = 20 96% 96%
- GWXH (G g t) with M = N =20, L = 10 96% 96%
- GWXH (G g t) with M = N =20, L = 20 96% 96%

Algorithm proposed in [13]:

- frontal view 1] 88%
- 6 views 1] 92%
- frontal and lateral views 1] 96%

Table 2: Results when training on one category of activity and testing on the
other. Slow/Fast means that slow walking sequences were used for training
while the tests were performed on fast walking sequences, and vice versa.

between training and test sequences on frontal views. Therefore our algorithm
was trained on all the “slow walk” sequences and evaluated against all the “fast
walk” sequences, and vice versa. From the results provided in Table 2, we see
that the algorithm is able to successfully recognize persons even if the walking
speed changes between the training and the testing steps. We also notice that
our method outperforms that of [13] when using a single frontal camera; the best
classification score presented in [13] was obtained by combining the frontal and
the lateral views. In our case, sequences acquired with a single frontal camera
suffice to produce the best recognition scores.

5 Conclusions

Gait identification is currently an intensive topic for research. Most techniques
described in the literature are based on lateral views of walking persons. It is
known that lateral views contain appropriate information regarding the gait.
However, using lateral views in indoor environments might be unfeasible, espe-
cially in hallways where a frontal view is almost inevitable.

This paper proposes a real-time frontal-view gait recognition system. A ma-
jor contribution is introduced by defining a gait signature of a walking person.
Successive binary silhouettes are extracted with a background subtraction al-
gorithm. Each silhouette is then converted to an intra-frame histogram which
compacts the width and height distributions of the set of all the rectangles that
can be wedged inside the silhouette. Afterward, a given number L of successive
histograms is combined into a single spatio-temporal (inter-frame) gait signa-
ture. The identification of the persons is then computed by a classification of
this signature by a machine learning algorithm called extra-trees. Finally, suc-
cessive decisions are combined along several frames using a majority vote policy
to determine the identity of the person currently present in the field of view of
the camera.

Four series of experiments were conducted on different databases. The first
series helped to determine the parameter values needed to optimize the per-
formance of the overall system. The second series was intended to evaluate
the precision of the classification for different ranges of values of the parame-
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ters. It was shown that the ratio of correct classifications could reach 97% for a
database of 21 persons. The third series of experiments served as a showcase for
a practical scenario. Frames were captured with hallway surveillance cameras
at our institute. Despite the noise and the unavoidable phenomena in such an
unconstrained environment, the system was still able to identify the persons
correctly in up to 81% of cases. Finally, we tested our algorithm on the publicly
available MoBo database. Our method was able to successfully recognize the
persons from video sequences taken in the MoBo database reaching a score as
high as 96% to 100%, depending on the training and testing conditions.
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