
Frontal-view gait reognition by intra- andinter-frame retangle size distributionOlivier Barnih, and Mar Van DroogenbroekO. Barnih�ulg.a.be, M.VanDroogenbroek�ulg.a.beTel: 32 (0)4 366 26 93 (ser. +32 (0)4 366 26 91), Fax: +32 (0)4 366 29 89Laboratory for Signal and Image Exploitation (IntelSig), University of LiègeInstitut Monte�ore, Grande Traverse 10, Sart Tilman, B-4000 Liège, BelgiumAbstratCurrent trends seem to aredit gait as a sensible biometri feature forhuman identi�ation, at least in a multimodal system. In addition to beinga robust feature, gait is hard to fake and requires no ooperation from theuser. As in many video systems, the reognition on�dene relies on theangle of view of the amera and on the lightening onditions, induing asensitivity to operational onditions that one may wish to lower.In this paper we present an e�ient approah apable of reognizingpeople in frontal-view video sequenes. The approah uses an intra-framedesription of silhouettes whih onsists of a set of retangles that will�t into any losed silhouette. A dynami, inter-frame, dimension is thenadded by aggregating the size distributions of these retangles over multi-ple suessive frames. For eah new frame, the inter-frame gait signatureis updated and used to estimate the identity of the person deteted in thesene. Finally, in order to smooth the deision on the identity, a majorityvote is applied to previous results. In the �nal part of this artile, weprovide experimental results and disuss the auray of the lassi�ationfor our own database of 21 known persons, and for a publi database of25 persons.1 IntrodutionThe number of video-surveillane ameras has inreased dramatially over thelast few years. It has therefore beome unrealisti to proess manually or evenvisually the giganti amount of information gathered by surveillane ameras,whih explains why the automation of real-time visual surveillane tasks is ur-rently one of the most ative topis in omputer vision. Visual surveillane hasa wide spetrum of promising appliations, inluding ontrol of aess to er-tain areas, human identi�ation, rowd �ux statistis, detetion of anomalousbehaviors, et [12℄. This paper fouses on one of these tasks, i.e. automatihuman identi�ation.Automati human identi�ation an be ahieved through a variety of bio-metris using di�erent kinds of sensors: �ngerprint readers, iris sanners, mi-rophones for voie reognition, and video ameras. One advantage of video1



ameras is that they are not intrusive; also subjets an be �lmed without theirooperation. Fae reognition through the use of a video amera is a widelyused biometri, although its e�ieny is onditioned by the need for a rela-tively onstrained image of the person's fae. Unonstrained fae reognitionis possible (see [28℄) but is almost useless for strong identi�ation in pratie.Asking a person to ooperate an also be an issue; not everyone is going to helpthe system. Gait reognition is therefore a viable alternative; in this ase, it isneither neessary to restrit the �eld of view to onstrained environment, nor toask for ooperation. Gait reognition is not (yet?) as e�etive as the best faereognition algorithm but, ating as a omplementary form of identi�ation, itmight reinfore a deision made in a multi-modal biometri system.Gait as a biometri is quite a reent topi for disussion, whih has gainedin popularity sine its introdution in [22℄. Its robustness against poor imagingonditions makes it appliable to a wide range of real-world senarios. Imagesan be aquired from a great distane, even in hanging illumination onditions(i.e. outdoor, as shown in [18℄). Furthermore, absolutely no kind of ooperationfrom the subjets is required. Gait is also di�ult (if not impossible?) to fake.Yet, gait reognition tehniques are still not aurate enough to use gait as thesole biometri of a real surveillane system. These reognition tehniques arebetter used to reinfore a deision in a multi-modal biometri system (see [20,21, 29℄).Gait reognition tehniques are usually lassi�ed in two ategories: model-based and holisti/silhouette approahes [3℄.Model-based approahes make use of expliit gait models whose parametersare to be estimated by proessing sequenes of images, hereafter referred to asimage frames or frames. The identi�ation is performed entirely on the basisof the estimated values of the expliit gait model. Model-based approahesare generally sale and view invariant, as long as the parameters estimationis feasible given the imaging on�guration. This is a major advantage, sinetraining onditions are likely to di�er from onditions of pratial use. Onthe other hand, these methods often need high de�nition images in order towork properly. They also exhibit a signi�antly higher omputational ost.Tehniques in this ategory inlude modeling the thighs as a pair of thik lines,as in [7℄, modeling the silhouette of a walking person as a group of seven ellipsesas in [10℄, or modeling the legs as two penduli joined in series, as in [27℄.Holisti approahes do not assume any expliit model for the walking hu-man. They extrat information diretly from the gait image sequenes. Gaitsignatures are, for example derived from time series of binary silhouettes ex-trated from the original sequene with a bakground subtration algorithm.This brings a suitable invariane to olor, texture or illumination onditions(assuming that the used bakground subtration algorithm is robust). A sim-ple approah that uses areas of raw (re-sized) silhouettes as a gait signatureis desribed in [8℄. The ontours of silhouettes have also been used, either di-retly [26℄ or through their Fourier desriptors [19℄. An angular transform ofthe silhouette is proposed in [4℄. This is said to be more robust than the rawontour desriptions. In [2℄, the gait dynamis are aptured using prinipalomponents analysis of self-similarity plots. Feature vetors derived from thebinary silhouettes an also be used to train HMM's, as in [15℄.Other authors have used horizontal and vertial projetions of the silhou-ettes [14℄. In [17℄, time series of horizontal and vertial projetions of silhouettes2



(a) Lateral view (b) Frontal viewFigure 1: Lateral and frontal views of a walker.are treated as frieze patterns. The framework of frieze patterns leads the au-thors to estimate the viewing diretion of the walking humans and to align gaitsequenes from similar viewpoints both spatially and over time. The identi�a-tion is then performed using ross-orrelation and nearest neighbor lassi�ationbetween frieze patterns. In [16℄, a similar algorithm is used to ompare friezepatterns of frame di�erenes between a key silhouette and a series of suessivesilhouettes. The method is laimed to be more robust to silhouette di�erenesbetween the training and test sets.Nearly all silhouette-based approahes are designed to deal with image framesaptured from the side of a person (see Figure 1(a)). While it is reasonable toassume that the lateral view aptures an appropriate amount of gait and walkinginformation, it is not easy to apture these image frames in pratial senarios.In order to obtain a su�iently long sequene of images of a person walking (i.e.ontaining several gait yles), ameras need to be put at a long distane. Thishinders reognition, sine small silhouettes are hard to disriminate. In hallways(see the example in Figure 1(b)), frames are rarely aptured from the side, butfrom the front or the bak of the walker (see Figure 1(a)). Front-view ameras,as opposed to lateral-view ameras, apture longer sequenes of walkers, whihresults in more gait yles. However front-view ameras are thought to be lesse�ient for gait reognition as they apture geometri and sale transforma-tions of the silhouettes. But the human apaity to reognize people using onlya frontal view of their walking silhouettes tends to prove that a frontal viewontains enough information to perform automati reognition. This is on-�rmed by Soriano et al. [24℄. In an artile in whih gait signatures are derivedfrom series of Freeman enoding of the re-sized silhouette shape, these authorsshowed that frontal view gait reognition is possible [24℄.In [13℄, the gait template of a walking human is omputed by averagingthe orresponding binary silhouettes. The lassi�ation is then ahieved usinga nearest neighbor tehnique. The authors use the MoBo database [11℄ fromthe CMU to ompare the lassi�ation results obtained by their method with3



sequenes aptured from di�erent viewpoints. The best single viewpoint resultsare obtained using the frontal view. But better lassi�ation sores are ahievedby ombining the frontal view with the lateral view.This paper presents a gait reognition algorithm apable of reognizing per-sons from image frames aptured in real-time with surveillane ameras loatedin hallways. Unlike many tehniques in the literature whih proess ompletegait sequenes, our algorithm identi�es a previously known person as soon as itobtains a omplete gait yle, whih aounts for about 1 seond or 25 frames.Requirements for our method are that (1) low image resolution (like 640× 480)su�e, (2) walkers an wander at quite a long distane from the ameras, and(3) the algorithm should run in real time on any omputer.For noisy surveillane video frames, a preise detetion of moving objets andtheir ontours is di�ult. In order to ahieve a better resiliene to noise, we hosea surfai representation of the silhouettes in terms of a desriptor alled �Coverby Retangles�, introdued in [1℄. This desriptor provides a pieewise surfaidesription of silhouettes whih, unlike horizontal and vertial projetions, isreversible and therefore does not indue any information loss. In addition,overs by retangles limits the e�et of noise to a loal neighborhood as noisewill impat loally on the desription of the silhouette, in ontrast with globalsurfai measures. Setion 2 derives a new silhouette representation based onthe over by retangles approah. This representation serves to haraterizegait silhouettes for eah frame separately; we therefore all this an intra-framedesriptor. Setion 2 also explains how we onsider temporal and dynamiinformation by introduing inter-frame dependenies in order to derive a gaitsignature. We desribe the omplete gait identi�ation algorithm in Setion 3.Experimental results and an evaluation of our method are presented in Setion 4.We show that gait reognition is possible, e�ient, and ahievable in real time,even for front-view video frames.2 A surfai gait representationIn order to identify a walking person, a time series of his silhouettes is extratedfrom the raw video frames, at a rate of one silhouette per frame. For eah frame,the silhouette is onverted into a set of features, whih are used to update a gaitsignature. The gait signature is fed into a lassi�er whih will output the lasslabel orresponding to a partiular person. Hereafter we present the intra-framedesription of a silhouette.2.1 Cover by retangles of a binary silhouetteThe over by retangles, proposed in [1℄, is a morphologial desriptor. Considera binary silhouette S. The over by retangles, denoted C (S), is de�ned asthe union of all the largest retangles that an �t inside of S (see Figure 2for an example). This union is unique and the over C (S) has the followinguseful properties: (1) the elements of the set overlap eah other, introduingredundany (i.e. robustness), (2) eah element (retangle) of C (S) overs atleast one pixel that belongs to no other retangle, and (3) when displayed in theframe, the union of all retangles reonstruts S so that no information is everlost. 4



Figure 2: The over by retangles C (S) is the union of all the largest retanglesthat an be wedged inside of the silhouette.Other morphologial surfai desriptors, suh as the morphologial skele-ton [23℄, have been developed to represent shapes. However, sine they providean isotropi desription of the silhouettes through, for example, the union ofopen balls inluded in S, they are unsuited for the desription of gait. More-over, it is important to ensure that a loal modi�ation of the silhouette doesnot lead to a global hange in its desription. Figure 3 ompares the e�et of aslight modi�ation of the shape in the ase of the skeleton and features (widthsor heights) derived from the retangles of C (S). In Setion 4.2, we show thata gait signature based on the over by retangles of the silhouettes of a walk-ing human is robust and allows the orret identi�ation of people from noisysilhouettes (see Figure 6) through a set of experiments.2.2 Retangle size probability distributionsThe number of largest wedged retangles that will �t inside a binary silhouettean be very high (more than a thousand). It is thus impratial to use allthe retangles diretly as a set of features. In order to �nd a more ompatrepresentation, we an operate on one of the size distribution densities, as shownin Figure 4. These distributions o�er di�erent but suitable interpretations ofa silhouette. For example, the largest number of retangles ontaining a givenpixel is to be found inside the torso (Figure 4(b)), and the tallest retanglespass through both the legs and the head (Figure 4(d)).As an be seen, muh of the information resides in the distributions of thenormalized sizes (width or height). These distributions an be estimated as adisrete histogram whose bins orrespond to the ratios of retangles that fallwithin given size intervals.From a formal point of view, let α be the ardinality of a over by retangles
C (S), i.e. α = ♯ {C(S)}. We index the retangles of C (S) with a parameter
d, so that Rd (d = 1, . . . , α) are the retangles of C(S). The width and heightof Rd are respetively denoted by wd and hd; they are upper-bounded by wmaxand hmax: ∀d, wd ≤ wmax and hd ≤ hmax. In order to build histograms, we5



Originalsilhouettes Morphologialskeletons Widths of thewidest retangles Heights of thetallest retangles

Figure 3: The �rst olumn shows three original images. The morphologialskeletons (shown in gray in the seond olumn) are modi�ed by the presene ofa small hole in the silhouette: a loal perturbation leads to a global modi�ationof the skeleton. The images the two right-hand olumns represent the sizedistributions of the retangles ontained in C (S). In these images, the graylevel of pixels is proportional to the width (resp. height) of the widest (resp.tallest) retangle omprising the given pixel.
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(a) (b) () (d)Figure 4: Illustration of several size distributions based on the desription pro-vided by the over C (S) of a binary silhouette S. A gray level of pixel p inimages (b), (), and (d) displays respetively the density of retangles, the widthof the widest retangle, and the height of the tallest retangle where all theseretangles ontain pixel p.
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partition the widths and heights of the retangles Rd respetively into M bins
BW (i) and N bins BH(j)
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] (2)where i = 0, . . . , M − 1 and j = 0, . . . , N − 1.Following the above notations, we de�ne the histogram histW (i) of the nor-malized widths as histW (i) =
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, (4)and the two-dimensional histogram histW×H(i, j) ashistW×H(i, j) =
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. (5)Note that these histograms are normalized with respet to the largest ret-angle of the over of the silhouette. In a ontinuous spae, they would be saleinvariant. Suh a normalization might seem ounter-intuitive; muh of the in-terpretation of the motion of a gait derives from the size of a silhouette, andit would not be good for frontal ameras to lose motion information. A �neranalysis shows however that size information is still present in a normalizedhistogram. Indeed the over of a saled down version of a silhouette S ontainsfewer retangles (α is always lower than the number of ontour points) than itsoriginal ounterpart. Therefore the histograms have a distribution that adaptsto both the shape and the size of a silhouette. In addition, if noise is added tothe ontour of the silhouette, it will modify the positions of the retangles butnot so muh their size or number.Of the three histW (i), histH(j), histW×H(i, j) histograms, the last one bestdesribes S. However, its dimensionality is proportional to the produt of thenumbers of bins (M × N), whih is aeptable for an intra-frame desriptionbut might be too high for embedded systems if the features are to be fed into alassi�er for inter-frame gait reognition. In order to solve this tratability issue,we introdue the omposite histogram histW+H(k) with k = 0, . . . , M + N − 1de�ned as the strit onatenation of histW (i) and histH(j). histW+H(k) hasa dimensionality of M + N , and aounts for both the vertial and horizontalharateristis of the silhouette. Experiments detailed in Setion 4 show thatboth histW×H(i, j) and histW+H(k) are suitable desriptors.2.3 Gait as an inter-frame retangle distributionSo far we have onsidered a single intra-frame silhouette, but a gait sequeneis a temporal series of binary silhouettes. In order to apture the dynamis ofa walking person we introdue an inter-frame dependeny by de�ning a gait8



signature based on the temporal series of the silhouettes S of a walker. Weassume that t refers to the time of the urrent frame, and that hist(i, j, t) is ahistogram for S at time t. We introdue two gait signatures, denoted G, whihonsist of n-uples of L onseutive histograms. We propose the following gaitsignature
G

W×H(i, j, t)=
{histW×H

(i, j, t−(L−1)), ..., histW×H

(i, j, t−1),histW×H

(i, j, t)
}

, (6)and a shortened version as
G

W+H(k, t)=
{histW+H

(k, t−(L−1)), ..., histW+H

(k, t−1),histW+H

(k, t)
}

. (7)3 Gait reognition algorithmThe gait reognition proess is shown in Figure 5. For every frame of a gaitsequene, it predits the identity of the walking human. The algorithm onsistsof three steps, further detailed in this setion:1. extration of a silhouette by a bakground subtration tehnique at time
t,2. omputation of a histogram at time t, whih is used to update the gaitsignature, and3. lassi�ation of a gait signature by a mahine learning algorithm whihoutputs the identity of one of the persons known to the system.3.1 Silhouette extrationThe quality and the hanging nature of the illumination onditions enounteredwhen using real surveillane ameras led us to adopt an advaned bakgroundsubtration tehnique whih an deal with hanging illumination, noisy sensorsand ast shadows. This bakground tehnique was proposed by Zivkovi in [30℄.It extends the widely used Mixture Of Gaussian algorithm ([25℄) by seletingautomatially and dynamially the optimal number of Gaussian distributionsto use for eah pixel. The result of this bakground extration tehnique isillustrated in Figure 6. It an be seen that despite the use of an advaned bak-ground subtration tehnique, the silhouette is not perfetly deteted. Muh ofthe gait reognition e�ieny will therefore rely on the robustness of the gaitsignature.3.2 Intra-frame silhouette desription and gait signatureby retangle size distributionsIn order to haraterize a gait, we use one of the gait signatures introduedin Setion 2.3. These are updated frame by frame, as soon as a silhouettehistogram is omputed at time t. Figure 7 displays a graphial representationof GW+H(k, t) to show the quantity of information gathered in the signature.9
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Figure 5: Steps of our gait reognition algorithm.
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Figure 6: Example of binary silhouette extrated with the algorithm of Zivkovi,as desribed in [30℄.Sine we do not perform any kind of traking, we restrit ourselves to only oneperson being present at a time in the �eld of view of the amera. The hoie ofusing histW+H() or histW×H() depends on the amount of training data availableas the dimensionality of histW×H() is usually larger than the one of histW+H().It is important to note that our method omprises no gait yle detetionor normalization algorithm, unlike many tehniques desribed in the literature(see [3℄); our tests have proven that these tehniques an be unneessary.3.3 Gait lassi�ationThe gait signature obtained at time t is the feature set used for reognition.There is no speial di�ulty involved in mapping a gait signature to a lasslabel, exept that it must be fast, versatile, and aurate. Another riterion forthe lassi�er is its ability to handle sets of features having high dimensionalities((M +N)×L or even M×N×L in our ase). We hose a lassi�er, alled extra-trees (for EXtremely RAndomized TREES) for its ability to handle featuresspaes of high dimensionality. Without going into detail, extra-trees is a kind ofrossover between bagging [5℄ and random forests [6℄. The goal of extra-trees isto redue the variane by using a forest of independent trees instead of a singletree, and to redue the bias by using a random seletion of the thresholds atthe splits of the trees (see [9℄ for a full desription).3.3.1 Majority vote poliy on a sliding temporal windowOur gait reognition algorithm is synhronous: it provides the name for theperson in the �eld of view whatever the time t might be. This is less restritivethan many tehniques desribed in the literature whih have to proess theomplete gait sequene before produing a single lass label. On the otherhand, this guarantees no temporal onsisteny, and a new, possibly di�erent,lass label might be omputed by the system for eah new frame, on the basis11
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Figure 7: A graphial representation of GW+H(k, t). All these displayed binvalues are part of the feature set given to the gait lassi�ation algorithm.of the previous L frames. In order to smooth the result over time, we add astep that performs a majority vote on the previous V lass labels produedby the lassi�er. Sine the gait signatures already aount for the informationontained in the previous L frames, this brings a total delay of L + V frames inahieving a reliable identi�ation of a person one he has entered into the �eldof view of a amera.4 Experimental resultsIn this setion, we present results of multiple experiments that were run inreal time on 640 × 480 pixels wide video sequenes. Our algorithm an handlehigher resolutions as well, but we haven't notied any signi�ant performaneimprovements when using higher resolutions.Let us �rst determine appropriate values for all the parameters of the method.Afterward, we will present the preision of the lassi�ation on our database of21 persons and then test our algorithm on a publi database omprising videosof 25 persons.We ran a �rst series of experiments on a dataset, hereafter alled LAB5,whih ontains 4 sets of walking sequenes for 5 persons. These sequenes ofthe LAB5 data set were aptured in our lab (see Figure 8) under strit andonstant illumination. Videos were obtained from a onsumer market webamin order to get a realisti noise level and to ensure similar aquisition onditionsto those of ommon situations. The goal of this set-up and this �rst series ofvideos was to determine appropriate values for the few parameters of our system.The parameters to be re�ned were:
• whih gait signature to use: either GW×H(i, j, t) or GW+H(k, t),
• the numbers of bins M and N ,
• the number of frames L aggregated in a single gait signature, and12



Figure 8: Examples of frames of the LAB5 and LAB21 datasets aptured in ourlab.
• the length V of the sliding temporal window used for the majority votepoliy.The deision to use GW×H(i, j, t) or GW+H(k, t) depends on the amount oftraining data and memory available to the lassi�ation proess. If all otherparameters are kept unhanged, the use of GW×H(i, j, t) generally leads tobetter results. However, the dimensionality of the orresponding feature spaeis M × N × L instead of (M + N) × L. As a result, a larger amount of datais neessary to train the system and the resulting extra-trees model that has tobe loaded into memory at run-time is signi�antly larger.In order to determine M and N , the numbers of bins, we tested values rang-ing from 2 to 40. It was observed that higher values of M or N (or both)generally leads to a better performane. However, the performane starts to beaeptable for 10 bins and then saturates with 20 bins and above. It is thereforereommended to use a value in the interval range [10, 20] for M and N . De-pending on the size of the training dataset and the dimensions of its silhouettes,the statistial signi�ane of all the bins of the histograms needs to be taken intoaount. Indeed, from small training sets of small silhouettes, it is impossible topopulate a large histogram with enough statistial signi�ane. Consequently avalue loser to 10 needs to be hosen. By ontrast, larger training sets of largersilhouettes would inline us to take values of loser to 20.A similar reasoning applies to the number of silhouettes L aggregated ina gait signature: the higher, the better. Sine the value of L impats on thereativity of the system and no signi�ant gain in performane is observed forvalues of L larger than 20, taking L = 20 o�ers an appropriate ompromise.Note that this parameter may be re�ned aording the framerate of the amerasused. Typial ameras have a framerate of 25 images per seond: L = 20orresponds to a signature of about 1 seond whih roughly mathes the lengthof a gait yle. For slower framerates, L has to be adapted.The disussion regarding the appropriate value for V , the length of the slidingtemporal window used for the majority vote poliy, is again similar to the oneregarding L. With V at a high level, the results are better but the drawbakis that this inreases the number of frames needed to identify a person. From13



a pratial point of view, a majority vote regarding 10 onseutive frames issu�ient; it improves the performane of the system to a satisfatory level. If
L = 20 and V = 10, the algorithm delays its answer for 30 frames, i.e. 1 seondfor ommonly-used ameras.4.1 Tests on a database of 21 personsIn order to estimate performane of our system, we used a seond dataset, alledLAB21, whih was omposed of 4 sets of laboratory sequenes of 21 di�erentsubjets. All the lassi�ation tests were onduted by training the algorithmusing 3 of the 4 sequenes available for eah subjet and testing it on the left outone. We used the ratio of orretly lassi�ed gait signatures as a performaneriterion. This ratio was omputed for di�erent numbers of frame per gaitsignature and for di�erent histogram resolutions. For the sake of simpliity, werestrited ourselves to the ase where M = N , and disabled the majority voteon the previous V frames (or to equivalently set V to 1) in the �rst instane.This allowed us to assess the raw lassi�ation preision of the system, regardlessof whether the majority vote improved the performane, as shown further on.The results of the �rst series of tests are shown in Figure 9. The ratioof orretly lassi�ed gait signatures reahed 74% for histW×H() and 72% forhistW+H(). Both histW+H() and histW×H() obtained the best results for anumber of bins of 10 and a number of frames per gait signature (that is L) of20. We also notied that the performane of histW×H() was generally betterthan that of histW+H(), espeially for small values of the parameters M , N ,and L.One ould be misled by the relatively average examples of performane givenby �gures around the 75% mark. Remember that the examples of performanere�et all the synhronous deisions individually. Should a single lass labelbe assigned to a test sequene as the average of the omplete set of individualdeisions, the performane ratio would overstep 95% of orretly lassi�ed gaitsequenes!The seond series of tests was limited to histW×H() in order to fous on theperformane improvement brought about by the majority vote on the previous
V frames. The urves displayed in Figure 10 show that the use of the majorityvote improves the performane of the system. For high values of V , the ratioof orret lassi�ations peaks at 97%. In the same way as in the disussionon parameter L, we observe that an inrease in the length of the majority votetime window improves preision. Interestingly, we also notied that the hoieof M = N = 15 outperformed the results of the hoie of M = N = 20.This presumably originates from the small size of some silhouettes, whih onlyontained a few wedged retangles α. If α is too small, whih typially ourswhen a person stands too far from the amera, it is impossible to estimate ahistogram split into 20 × 20 bins with a good statistial signi�ane; this poorestimation negatively impats on performane.4.2 Tests on frames aquired with surveillane amerasThe third data set used was named HW5. This onsisted of frames aptured withsurveillane ameras loated in hallways for �ve di�erent persons and involving 314
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(b) histW×H(i, j)Figure 9: Performane of GW×H(i, j, t) on the LAB21 dataset with no majorityvote poliy (more preisely V = 1) using (a) histW+H(k) and (b) histW×H(i, j).15
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Figure 10: Performane of GW×H(i, j, t) on the LAB21 database usinghistW×H(i, j) for di�erent lengths V of the majority vote window (L is setto 10).sequenes per person. In ontrast with the previous sequenes, the environmentwas totally unonstrained and some frames had a poor signal to noise ratio.The results of this last series of experiments are shown in Figure 11. Asexpeted, the preision of the lassi�ation su�ered from the poor quality of theextrated silhouettes (remember the example of Figure 6). Nevertheless, thanksto the robustness of the proposed gait signature, the system still managed toidentify orretly the persons in up to 81% of ases (one should ompare thiswith the previous 97%). The 81% of orret lassi�ations were obtained fora majority vote window of 55 frames, whih orresponded to an identi�ationdelay of 2 seonds (or L + V = 65 frames).4.3 Tests on the CMU MoBo databaseTo further evaluate the performane, our algorithm was tested on the publilyavailable MoBo database [11℄. The MoBo database onsists in video sequenesof 25 subjets walking on a treadmill. Six alibrated and synhronized am-eras were used to apture the subjets from six di�erent viewpoints performingfour di�erent walking ativities: slow walk, fast walk, inline walk, and walkwith a ball. The database also omprises binary segmentation maps for eahsequene. By using these segmentation maps, we are able to assess the perfor-manes of the features extration and lassi�ation proess exlusively (withoutany interferene from the bakground subtration algorithm).To ahieve a fair omparison with other tehniques evaluated on the MoBo16
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Figure 11: Performane on the HW5 dataset, whih ontained frames aquiredwith ameras loated in hallways (M and N are set to 20).Our algorithm Slow Fast
GW×H(i, j, t) with M = N = 10, L = 10 100% 100%
GW×H(i, j, t) with M = N = 10, L = 20 100% 100%
GW×H(i, j, t) with M = N = 20, L = 10 100% 100%
GW×H(i, j, t) with M = N = 20, L = 20 100% 100%Table 1: Results obtained on non-overlapping parts of sequenes from the sameategory of ativity (training and testing sequenes are both taken in the �slowwalk� or �fast walk� subparts of the MoBo database).database, we used exatly the same experimental set-up. For example, eahomplete walking sequene is given a unique lass label; this is equivalent tosetting V to the total number of frames ontained in the orresponding videosequene. Additionally, eah sequene is divided in two non-overlapping parts ofequal size. One part serves to train the algorithm, the other is used to evaluateit. We tested the method against the �slow walk� and the �fast walk� sequenesseparately. The results given in Table 1 show that the algorithm is able to su-essfully reognize every single person present in the database aross the wholeadvised ranges of values of its parameters. For the sake of ompleteness, we alsotested the method (with no adaptations) on the lateral sequenes ontained inthe MoBo database using the same proedure. Interestingly, we observed identi-al sores (100% in all the ases). Future work will investigate the performaneof our algorithm on lateral-view sequenes.Finally, we heked if the method was able to deal with greater disrepanies17



Comparison of two methods Slow/Fast Fast/SlowOur algorithm:- GW×H(i, j, t) with M = N = 10, L = 10 96% 96%- GW×H(i, j, t) with M = N = 10, L = 20 96% 96%- GW×H(i, j, t) with M = N = 20, L = 10 96% 96%- GW×H(i, j, t) with M = N = 20, L = 20 96% 96%Algorithm proposed in [13℄:- frontal view ∅ 88%- 6 views ∅ 92%- frontal and lateral views ∅ 96%Table 2: Results when training on one ategory of ativity and testing on theother. Slow/Fast means that slow walking sequenes were used for trainingwhile the tests were performed on fast walking sequenes, and vie versa.between training and test sequenes on frontal views. Therefore our algorithmwas trained on all the �slow walk� sequenes and evaluated against all the �fastwalk� sequenes, and vie versa. From the results provided in Table 2, we seethat the algorithm is able to suessfully reognize persons even if the walkingspeed hanges between the training and the testing steps. We also notie thatour method outperforms that of [13℄ when using a single frontal amera; the bestlassi�ation sore presented in [13℄ was obtained by ombining the frontal andthe lateral views. In our ase, sequenes aquired with a single frontal amerasu�e to produe the best reognition sores.5 ConlusionsGait identi�ation is urrently an intensive topi for researh. Most tehniquesdesribed in the literature are based on lateral views of walking persons. It isknown that lateral views ontain appropriate information regarding the gait.However, using lateral views in indoor environments might be unfeasible, espe-ially in hallways where a frontal view is almost inevitable.This paper proposes a real-time frontal-view gait reognition system. A ma-jor ontribution is introdued by de�ning a gait signature of a walking person.Suessive binary silhouettes are extrated with a bakground subtration al-gorithm. Eah silhouette is then onverted to an intra-frame histogram whihompats the width and height distributions of the set of all the retangles thatan be wedged inside the silhouette. Afterward, a given number L of suessivehistograms is ombined into a single spatio-temporal (inter-frame) gait signa-ture. The identi�ation of the persons is then omputed by a lassi�ation ofthis signature by a mahine learning algorithm alled extra-trees. Finally, su-essive deisions are ombined along several frames using a majority vote poliyto determine the identity of the person urrently present in the �eld of view ofthe amera.Four series of experiments were onduted on di�erent databases. The �rstseries helped to determine the parameter values needed to optimize the per-formane of the overall system. The seond series was intended to evaluatethe preision of the lassi�ation for di�erent ranges of values of the parame-18
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