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Abstract

Our laboratory has previously identified an important intragenic region in the human immunodeficiency virus type 1 (HIV-1)
genome, whose complete functional unit is composed of the 5103 fragment, the DNaseI-hypersensitive site HS7 and the
5105 fragment. These fragments (5103 and 5105) both exhibit a phorbol 12-myristate 13-acetate (PMA)-inducible enhancer
activity on the herpes simplex virus thymidine kinase promoter. Here, we characterized the three previously identified AP-1
binding sites of fragment 5103 by showing the PMA-inducible in vitro binding and in vivo recruitment of c-Fos, JunB and
JunD to this fragment located at the end of the pol gene. Functional analyses demonstrated that the intragenic AP-1
binding sites are fully responsible for the PMA-dependent enhancer activity of fragment 5103. Moreover, infection of T-
lymphoid Jurkat and promonocytic U937 cells with wild-type and mutant viruses demonstrated that mutations of the
intragenic AP-1 sites individually or in combination altered HIV-1 replication. Importantly, mutations of the three intragenic
AP-1 sites led to a decreased in vivo recruitment of RNA polymerase II to the viral promoter, strongly supporting that the
deleterious effect of these mutations on viral replication occurs, at least partly, at the transcriptional level. Single-round
infections of monocyte-derived macrophages confirmed the importance of intragenic AP-1 sites for HIV-1 infectivity.
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Introduction

Human immunodeficiency virus type 1 (HIV-1) gene expression

is regulated at the transcriptional level by cis-acting elements

located in the viral 59 long terminal repeat (59LTR) and leader

region, by trans-acting factors including the viral transactivating

Tat protein and cellular transcription factors that are either

constitutively expressed in most cells (such as Sp1 and Oct-1) or

inducible in T cells and macrophages (such as NF-kB and NFAT),

and by the chromatin organization of the HIV-1 provirus [1]. In

addition to the 59LTR enhancer, our laboratory has previously

identified a phorbol 12-myristate 13-acetate (PMA)-inducible

intragenic enhancer located in the coding region of HIV-1 [2].

It is composed of two functional domains termed fragment 5103

(located at the end of the pol gene and encompassing nucleotides

(nt) 4079 to 4342, where nt +1 is the beginning of U3 in the

59LTR) and fragment 5105 (encompassing nt 4781 to 6026, which

correspond to vif and the first coding exon of tat). These fragments

both exhibit a PMA-inducible enhancer activity on the herpes

simplex virus (HSV) thymidine kinase (TK) promoter in the

human epithelial HeLa cell line, but no significant activity in T-

lymphoid and monocyte-macrophage cell lines [2].

Furthermore, our laboratory has studied the chromatin

organization of HIV-1 proviruses integrated in several latently-

infected cell line models of T-lymhoid (ACH2 and 8E5) or

monocytic (U1) origin [3,4,5]. Besides the anticipated presence of

DNaseI-hypersensitive sites in the two LTRs, a single major

hypersensitive site (named HS7) was identified in the part of the pol

gene coding for the integrase (centred around nt 4490–4766) [3,5],

thereby indicating a potential transcriptional regulatory role of this

region. This constitutive hypersensitive site was observed only in a

cell line of monocytic origin (U1) and not in two cell lines of
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lymphoid origin (8E5 and ACH2) [3], suggesting a certain cellular

specificity associated to this site. Interestingly, the HS7 is

positioned between the previously identified 5103 and 5105

fragments. Several ubiquitous and cell-specific transcription factors

have been shown to be recruited in the HS7 region (including Oct-

1, Sp1/Sp3 and PU.1) [5,6] and to be important for viral

infectivity [6]. Altogether, these results demonstrate the impor-

tance of the intragenic cis-regulatory region, whose complete

functional unit is composed of the 5103 fragment, the hypersen-

sitive site HS7 and the 5105 fragment (see Figure 1).

Given that the enhancer activity of the HIV-1 intragenic region

had been demonstrated to be inducible by phorbol-esters [2], our

laboratory has previously examined this region for the presence of

binding sites for PMA-inducible transcription factors (such as NF-

kB, AP-1, AP-2 and AP-4). In this context, we have identified

three AP-1 binding sites in fragment 5103 by in silico analyses

based on nucleotide sequence homologies to the consensus DNA

recognition motif of AP-1 transcription factors [59-(A/T)T(G/

T)(A/C)(G/C)TCA(G/C/A)-39] [7]. Short oligonucleotides con-

taining the two first AP-1 sites or the third AP-1 site were

demonstrated to bind in vitro affinity-purified AP-1/c-Jun or AP-1

present in PMA-induced HeLa nuclear extracts [7]. In addition to

the two AP-1 binding sites previously described in the 59LTR

negative regulatory element (NRE) of different HIV-1 neurotropic

strains [8], three AP-1 sites have been characterized by our

laboratory downstream of the transcription start site in a large

nucleosome-free region termed HS4 (nt 465-720), which functions

as an enhancer towards HIV-1 59LTR transcriptional activity [9].

The AP-1 transcription factors, originally identified by their

binding to the enhancer element of the simian virus 40 (SV40)

promoter [10], function as homo- or heterodimers composed of

members of the jun, fos and atf multigene families [11]. Dimerizing

via their basic leucine zipper domain and thereby members of the

wider B-ZIP family, AP-1 transcription factors bind DNA at

palindromic sequences, also known as 12-O-Tetradecanoylphor-

bol-13-acetate (TPA or PMA) Responsive Elements (TREs) [12],

to regulate both the constitutive and the inducible transcription of

a wide variety of cellular and viral genes [11,13]. The negative or

positive role of AP-1 in the transcriptional activity of a specific

target gene depends on cell type, dimer-composition, abundance

of each dimer partner, translational regulation mechanisms [14],

post-translational modifications [including phosphorylation

[15,16] and sumoylation [17,18]] and AP-1 interactions with

transcriptional (co)factors such as SWI/SNF [19]. Particularly,

phosphorylation of AP-1 by the protein kinase ERK1/2

(Extracellular Regulated Kinase 1/2) promotes AP-1 interaction

with NF-kB in the HIV-1 59LTR, leading to transcriptional

activation [20,21]. AP-1 activity is induced by a wide range of

stimuli such as growth factors, cytokines, bacterial and viral

infections and numerous physical and chemical stresses. AP-1

plays important roles in various cellular processes including

cellular proliferation and differentiation, apoptosis, signalling,

stress responses, cell migration and tumorigenesis [11].

In this report, we have characterized biochemically each of the

three intragenic AP-1 binding sites. We have examined the

functional role of these AP-1 binding sites (individually or in

combination) for the PMA-dependent enhancer activity of the

5103 fragment, in the presence or absence of the viral

transactivating Tat protein. Importantly, we have investigated

the biological significance of the intragenic AP-1 binding sites for

HIV-1 replication both in cell lines and in primary macrophages

(MDMs).

Materials and Methods

Cell lines and cell culture
The T-lymphoid cell lines Jurkat [22] and SupT1 [23] were

obtained from the AIDS Research and Reference Reagent

Programme (National Institute of Allergy and Infectious Diseases

[NIAID], National Institutes of Health [NIH]). The monocytic cell

line U937 was obtained from the American Type Culture

Collection (Manassas, VA). The U937, Jurkat and SupT1 cell

lines were maintained in RPMI 1640-Glutamax I medium

(Invitrogen) supplemented with 10% fetal bovine serum (FBS),

50 mg/ml streptomycin and 50 units/ml penicillin. The adherent

cell lines HeLa (a human epithelial cell line derived from a cervical

carcinoma and transformed by human papilloma virus type 18),

TZM-bl (an HeLa-derivative cell line that expresses high levels of

HIV-1 receptor CD4 and both co-receptors CXCR4 and CCR5,

Figure 1. Schematic representation of the intragenic cis-regulatory region of HIV-1. The complete functional unit of the intragenic cis-
regulatory region encompasses nt 4079 to nt 6026 and is composed of the 5103 fragment, the hypersensitive site HS7 and the 5105 fragment. The
three AP-1 binding sites of fragment 5103 are indicated as well as the previously characterized binding sites of the HS7 region (site B which binds
Oct-1 and a T cell specific complex termed B3 or the monocyte/macrophage lineage-specific complex PU.1, the GC-box which binds Sp1 and Sp3, site
C which binds Oct-1 and a T-cell specific complex termed C3 and site D which binds unidentified complexes [6]).
doi:10.1371/journal.pone.0019084.g001
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and contains b-galactosidase and luciferase reporter genes under

the control of the HIV-1 LTR) and 293T (a human embryonic

kidney cell line) were cultured in Dulbecco’s modified Eagle’s-

Glutamax I medium (Invitrogen) supplemented with 5% FBS,

50 mg/ml streptomycin and 50 units/ml penicillin (containing

1 mM sodium pyruvate for the 293T cells). All cells were grown at

37uC in an atmosphere of 5% CO2.

MDMs isolation and culture
Peripheral blood mononuclear cells (PBMCs) were isolated from

buffy coats of healthy seronegative donors (Centre de Transfusion

Sanguine Ile-de-France Rungis, Paris, France) by density centri-

fugation on a Ficoll-Hypaque gradient (PAA). Monocytes were

isolated from PBMCs by plastic adherence and differentiated into

macrophages by culturing for 7 to 11 days in MDM medium

(RPMI 1640 medium supplemented with 200 mM L-glutamine,

100 units/ml penicillin, 100 mg/ml streptomycin, 10 mM HEPES,

10 mM sodium pyruvate, 50 mM b-mercaptoethanol, 1% mini-

mum essential medium vitamins, and 1% nonessential amino

acids) containing 15% of human AB serum (PAA) in hydrophobic

Teflon dishes (LumoxTM, D Dutscher). Prior to infection

experiments, MDMs were harvested, washed and resuspended in

MDM medium containing 10% fetal calf serum.

Plasmid constructs and generation of mutated reporter
constructs by site-directed mutagenesis of the pol gene
AP-1 binding sites

The A-Fos dominant negative construct was kindly provided by

Dr. Charles Vinson (NCI, National Cancer Institute, Bethesda,

MD 20892, USA) [24]. The expression vectors coding either for

the one-exon form of Tat (72 amino acids, named pTat72) or the

two-exon form of Tat (101 amino acids, named pTat101) were

previously described [25]. The pTK reporter construct contains

the luciferase gene under the control of the HSV TK minimal

promoter and was generated by subcloning the XmaCI-XhoI

fragment from the pGL2-TK (see [26]) into the XmaCI-XhoI-

restricted pGL3-basic vector (Promega). The pLTR containing the

HIV-1 59LTR upstream of the luciferase gene in the context of the

pGL3-basic vector was previously described [6].

Mutations of the AP-1 binding sites were introduced in the 5103

fragment following the QuikChange site-directed mutagenesis kit

manufacturer’s protocol (Stratagene), using 50 ng of the pCV10

construct as a substrate (pBluescript II SK vector which contains

an ApaI-EcoRI fragment corresponding to nt 2011-5743 of the

HIV-1NL4.3 genome and previously described [6]) and the

following pairs of mutated oligonucleotide primers (mutations

are highlighted in boldface and the AP-1 motifs are underlined on

the coding strand): CV1364-CV1365 (site AP-1#1mut: FW: 59-

GCACAACCAGATAAGTCAGAATCAGAGT TAGTCAGT-

CAA-39; RV: 59-TTGACTGACTAACTCTGATTCTGACT-

TATCTGGT TGTGC-39), CV1366-CV1367 (site AP-1#2mut,

FW: 59-AAGAGTGAATCAGAGTT GGTTAGTCAAATAA-

TAGAG-39; RV: 59-CTCTATTATTTGACTAACCAACTCT-

GAT TCACTCTT-39), CV728-CV729 (site AP-1#3mut, FW:

59-CAAGTAGATAAATTGG TTAGTGCTGGAATC-39; RV:

59-GATTCCAGCACTAACCAATTTATCT ACTTG-39) and

CV1151-CV1152 (site AP-1#1+2mut, FW: 59-ACAACCAGA-

TAAGTCAGAATCA GAGTTGGTTAGTCAAATAATAG-39;

RV:59-CTATTATTTGACTAACCAACTCTGATT CTGACT-

TATCTGGTTGT-39). Following PCR, the samples were treated

for two hours with the endonuclease DpnI, which is specific for

methylated and hemi-methylated DNA (target sequence 59-

Gm6ATC-39) and digested the parental wild-type DNA template

to select for mutation-containing plasmids. Mutated clones were

fully resequenced between ApaI and EcoRI restriction sites after

identification (Genomex). The four mutated resulting pCV10-

derivative plasmids were designated pCV1208 (AP-1#1mut),

pCV1209 (AP-1#2mut), pCV1202 (AP-1#3mut) and pCV1210

(AP-1#1+2mut), respectively. A pCV10-derivative construct

containing a combination of the three AP-1 mutations described

above was also generated and designated pCV887 (AP-1#totmut).

The ApaI-EcoRI mutagenized fragments from pCV887,

pCV1202, pCV1208, pCV1209 and pCV1210 were introduced

into the unique ApaI-EcoRI sites of the two-LTRs-containing

infectious HIV-1 molecular clone pNL4.3 (reagent no. 114,

received from the AIDS Research and Reference Reagent

Program, NIAID, NIH) to generate pCV1352 (termed pHIV-1-

AP-1#totmut), pCV1393 (pHIV-1-AP-1#3mut), pCV1394

(pHIV-1-AP-1#1mut), pCV1395 (pHIV-1-AP-1#2mut) and

pCV1396 (pHIV-1-AP-1#1+2mut), respectively. As a control, a

nonmutated ApaI-EcoRI fragment was purified from pCV10 and

cloned in an identical manner into the unique ApaI-EcoRI sites of

the pNL4.3, construction now referred to as pHIV-1.

The pol gene fragment (nt 4079-4342) corresponding to the

5103 fragment from the infectious proviral molecular clone pNL4-

3 was amplified by PCR. XmaCI sites were introduced into the

PCR primers, and the XmaCI-restricted PCR fragment was

cloned into the unique XmaCI site of the pTK, placing the

amplified fragment upstream of the TK-luciferase transcriptional

unit in the sense or antisense orientation, thereby generating the

pTK-5103s-wt or the pTK-5103as-wt, respectively. The 59

oligonucleotide primer encompassed the coding strand sequence

from nt 4079 to 4099 and contained an added XmaCI restriction

site (underlined) at the 59 end (CV596: 59-TCCCCCGGGATC-

C[4079]AGATAAGAGTGAA TCAGAGTT-39). The 39 oligo-

nucleotide primer encompassed the complementary sequence

from nt 4328 to 4342 and contained an added XmaCI site

(underlined) at the 59 end (CV598: 59-TCCCCCGGGATCC-

CAGCTG [4342]GCTACTATTTCTTTT-39). Fragments con-

taining the 5103 region mutated in the three AP-1 binding sites

individually or in combination were PCR amplified from the

pCV887, pCV1202, pCV1208, pCV1209 and pCV1210 plasmids

(see above). The 59 and 39 oligonucleotide primers were as

described above except for the pCV887, pCV1208 and pCV1210

plasmids, which contain mutations in the AP-1#1 site. In these

latter cases, the 59 oligonucleotide primer was as follows: 59-

TCCCCCGGGATCC[4079]AGATAAGTCAGAATCAGAGT-

T-39 (the added XmaCI restriction site is underlined and

mutations in the AP1#1 site are highlighted in boldface). The

different amplified fragments were digested with XmaCI and then

ligated into the unique XmaCI site of pTK in the antisense

orientation, thereby generating the pTK-5103as-AP-1#totmut,

the pTK-5103as-AP-1#3mut, the pTK-5103as-AP-1#1mut, the

pTK-5103as-AP-1#2mut and the pTK-5103as-AP-1#1+2mut

constructs, respectively.

Electrophoretic Mobility Shift Assays (EMSAs)
Nuclear extracts were prepared from cells using a rapid protocol

described by Osborn et al. [27]. All buffers contained the following

protease inhibitors: antipain (10 mg/ml), aprotinin (2 mg/ml),

chymostatin (10 mg/ml), leupeptin (1 mg/ml) and pepstatin

(1 mg/ml). Protein concentrations were determined according to

the Bradford methodology [28], with bovine serum albumin (BSA)

as a standard. The DNA sequences of the coding strand of the

wild-type and mutated versions of the AP-1#1, AP-1#2 and AP-

1#3 probes used in this study are listed in Figures 2A and 3A,

respectively. The various lengths of these oligonucleotides, which

Intragenic AP-1 Sites Role in HIV-1 Replication
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Figure 2. AP-1 transcription factors specifically bind in vitro to each of the three intragenic AP-1 sites of fragment 5103. (A) The
nucleotide sequence of the wild-type AP-1#1, AP-1#2 and AP-1#3 site oligonucleotides used as probes in our EMSAs are shown properly aligned
with the AP-1 consensus sequence. The position of the AP-1 binding site is indicated by an arrow on each coding strand and mismatches in the AP-1
sites with respect to the AP-1 consensus sequence are designated by asterisks. The conservation of the intragenic AP-1 sites was assessed by
comparing their sequences at the nucleotide level based on the full spectrum of HIV and SIV sequences compiled in the HIV compendium database
(hiv-web.lanl.gov). Sequence logos that represent the frequency of the nucleotide present at each position in the intragenic AP-1 binding sites were
generated based on these sequence analyses for each intragenic AP-1 site. (B) The AP-1#1, AP-1#2 and AP-1#3 oligonucleotide probes were
incubated with nuclear extracts (10 mg) from mock-treated (lane 1) or PMA-treated (lanes 2 to 6) HeLa cells in the absence of competitor (lanes 1 and
2) or in the presence of a molar excess (5 fold) of a competitor corresponding to the homologous AP-1 site (lane 3), to the heterologous Sp1
consensus (lane 4; nucleotide sequence of the coding strand: 59-ATTCGATCGGGGCGGGGCGAGC-39), to the AP-1 consensus (lane 5; nucleotide
sequence of the coding strand: 59-CGCTTGATGACTCAGCCGGAA-39) or to the mutated AP-1 consensus (lane 6; nucleotide sequence of the coding
strand: 59-CGCTTGATGACTTGGCCGGAA-39, where mutations compared to the consensus are indicated in bold). The figure shows the specific
retarded bands of interest, which are indicated by arrows. The terms C1, C2 and C3 refer to complexes 1, 2 and 3. (C) Nuclear extracts from PMA-
treated HeLa cells (10 mg) were incubated, before the addition of the AP-1 probe, either with a purified rabbit IgG as a negative control (lane 1), or with
an antibody directed against AP-1 family members including c-Fos (lane 2), FosB (lane 3), Fra-1 (lane 4), Fra-2 (lane 5), c-Jun (lane 6), JunB (lane 7) and
JunD (lane 8), or with an antibody directed against other members of the B-ZIP family such as CREB (lane 9), CREM (lane 10), ATF-1 (lane 11), ATF-2 (lane
12), C/EBPa (lane 13), C/EBPb (lane 14) and C/EBPd (lane 15), or with an antibody directed against Ets-1 (lane 16). The figure shows the specific retarded
bands of interest indicated by arrows. Supershifted complexes are indicated by asterisks. (D) Ten mg of nuclear extracts from PMA-treated HeLa cells
were incubated with an antibody directed against c-Fos (lane 18), an antibody directed against JunB (lane 19) or a combination of both antibodies (lane
20). A purified rabbit IgG was used as a negative control (lane 17). The AP-1#1, AP-1#2 or AP-1#3 oligonucleotide probe was then added to the
mixture. The figure shows the specific retarded bands of interest indicated by arrows. The supershifted complexes are indicated by asterisks.
doi:10.1371/journal.pone.0019084.g002
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results from design constraints, may account for the different

numbers of complexes observed with the different probes. EMSAs

were performed as described previously [26]. Briefly, nuclear

extracts (10 mg of protein) were first incubated for 10 min in the

absence of probe and specific competitor DNA in a 16 ml reaction

mixture containing 10 mg of DNase-free BSA (Amersham

Biosciences), from 0.5 to 2 mg of poly(dI-dC) (Amersham

Biosciences) as non-specific competitor DNA, 50 mM ZnCl2,

0.25 mM DTT, 20 mM HEPES (pH 7.3), 60 mM KCl, 1 mM

MgCl2, 0.1 mM EDTA and 10% (v/v) glycerol. 30,000 cpm of

probe (80 - 100 fmol) were then added to the mixture with or

without a molar excess of an unlabeled specific DNA competitor,

and the mixture incubated 20 min at room temperature. Samples

were subjected to electrophoresis on 6% polyacrylamide gels at

120 V for 2-3 h in 1x TGE buffer [25 mM Tris-acetate (pH 8.3),

190 mM glycine and 1 mM EDTA]. Gels were dried and

autoradiographed for 24-48 h at -80uC. For supershift assays,

antibodies against c-Fos (sc-52X), FosB (sc-48X), Fra-1 (sc-605X),

Fra-2 (sc-171X), c-Jun (sc-44X), JunB (sc-73X), JunD (sc-74X),

CREB (sc-240X), CREM (sc-440X), ATF-1 (sc-243X), ATF-2 (sc-

242X), C/EBPa (sc-9314X), C/EBPb (sc-150X), C/EBPd (sc-

151X) and Ets-1 (sc-350X) or a purified rabbit immunoglobulin

(IgG; sc-2027) were added to the reaction mixture and incubated

for 30 min on ice before the addition of the radiolabelled probe.

Transient transfection and luciferase reporter assays
HeLa cells were transiently transfected using JetPEITM

(POLYplus) according to the manufacturer’s protocol. Briefly,

one day before transfection, cells were seeded at a density of

86103 cells/well in 96-well plates. For each well, 200 ng of DNA

were diluted into 25 ml of 150 mM NaCl. The transfection reagent

JetPEITM (0.45 ml/well) was diluted into 150 mM NaCl (25 ml/

well). An aliquot of 25 ml of this JetPEITM/NaCl solution was

added to the 25 ml DNA solution, and the JetPEITM/NaCl/DNA

mixture incubated for 15 min at room temperature before being

added dropwise to each well. All transfection mixtures contained

the pRL-TK (in which a cDNA encoding the Renilla luciferase is

under the control of the HSV TK promoter region) as an internal

control for transfection efficiency. At 24 hours after transfection,

cells were mock-treated or treated with PMA (20 nM) (Sigma). At

24 post-treatment, transfected cells were lysed and assayed for

luciferase activity. Firefly luciferase activities derived from the HSV

TK promoter were normalized with respect to the Renilla

luciferase activities by using the DualGlo-luciferase reporter assay

system (Promega), and to protein concentrations using the

Bradford quantification method [28]. Statistical analyses of the

data were performed and p-values are indicated in the figure

legends.

Chromatin immunoprecipitation assays
The chromatin immunoprecipitation (ChIP) assays were

performed as previously described by Flanagin et al. [29,30] with

minor modifications. Briefly, cells in exponential growth phase

were cross-linked for 10 min at room temperature with 1%

formaldehyde (whose action was then neutralized with TRIS-

Glycin 12.5 mM), washed twice with phosphate-buffered saline

(PBS) and lysed in IP buffer (150 mM NaCl, 50 mM Tris–HCl

pH 7.5, 5 mM EDTA, 0.5% NP-40, 1% Triton X-100)

containing protease inhibitors (Roche). To detect chromosomal

flanking regions, pellets were sonicated (Bioruptor sonicator) to

obtain DNA fragments of an average size of 400 nt. Chromatin

immunoprecipitations were performed in commercially available

protein-A-coated 96 well plates (Pierce). After two washes (200 ml

PBS/well), well walls were blocked with 200 ml blocking buffer (IP

buffer completed with 5% BSA and 100 mg/ml sheared salmon

sperm DNA) for 30 min. Wells were cleared and then incubated

with antibodies (0.5 mg) in 100 ml blocking buffer/well for 60 min.

Wells were cleared and chromatin samples (80,000 cells in 100 ml

blocking buffer) were added and incubated overnight at 4uC. Wells

were then washed three times with 200 ml IP buffer and once with

200 ml TE buffer, before being incubated with 100 ml elution

buffer (25 mM Tris base, 1 mM EDTA, pH 9.8, 200 mg/ml

proteinase K) for 15 min at 55uC, followed by 30 min at 75uC.

DNA samples were stored (220uC) in the same Matrix ChIP

plates for repeated use. Antibodies directed against AP-1 family

members used in this study were described above, an antibody

Figure 3. Identification of point mutations which abolish AP-1 transcription factors’ in vitro binding to their respective binding sites
located in fragment 5103. (A) The wild-type and mutated AP-1#1, AP-1#2 and AP-1#3 oligonucleotide sequences are indicated as well as the
corresponding underlying amino acid sequence of the viral reverse transcriptase. Base pairs which were modified in the mutated versions of the AP-1
binding sites relative to the wild-type versions are indicated by asterisks. (B) The AP-1#1, AP-1#2 and AP-1#3 oligonucleotide probes were
incubated with nuclear extracts (10 mg) from mock-treated (lane 1) or PMA-treated (lanes 2 to 6) HeLa cells in the absence of competitor (lanes 1 and
2) or in the presence of increasing molar excesses (2 and 4 fold) of each respective homologous AP-1 oligonucleotide (lanes 3 and 4) or of the
corresponding mutated AP-1 oligonucleotide (lanes 5 and 6). The figure shows the specific retarded bands of interest, which are indicated by arrows.
doi:10.1371/journal.pone.0019084.g003
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directed against RNA polymerase II (sc-899) was also used, and a

purified IgG (I-1000, Vector Laboratories) was used as a control

for immunoprecipitation to test aspecific binding to the plate.

Quantitative real-time PCR (qPCR) reactions were performed

using the MesaGreen qPCR mastermix (Eurogentec) with 5 ml of

the eluted DNA product. Relative quantification using the

standard curve method was performed for each primer pair and

96-well Optical Reaction plates were read in an Applied

Biosystems AbiPrism 7300 real-time PCR instrument (Absolute

Quantification Method). Fold enrichments were calculated as

percentages of input values. Primer sequences used for quantifi-

cation in the 5103 fragment region (FW: 59- GGGAATCATT-

CAAGCACAACC-39; RV: 59- TCTTGGGCCTTATC TATT-

CCATC-39), in the nuc-1 region ([31]; FW: 59- GACTGGT-

GAGTACGCCAAA -39; RV: 59- TAATACTC GACGCTC-

TCGC -39) and in an unrelated viral region corresponding to the

vpr gene (FW: 59- GCAACAACTGCTGTTTATCCATT-39; RV:

59- TTTCTTGCTCTCCTCTGTCGAG-39) were designed us-

ing the software Primer Express 2.0 (Applied Biosystems).

Production of viral stocks
The generated wild-type and mutated full-length molecular

clones were used to produce stocks of wild-type and mutant viruses

(termed HIV-1, HIV-1-AP-1#totmut, HIV-1-AP-1#1mut, HIV-

1-AP-1#2mut, HIV-1-AP-1#3mut and HIV-1-AP-1#1+2mut).

The infectious DNAs (750 ng) were transiently transfected into 107

Jurkat cells using the DEAE-dextran procedure. At 24 h

posttransfection, cultures were co-cultivated with 107 SupT1 cells

to allow rapid and efficient recovery of progeny viruses. HIV-1

stocks were prepared from culture supernatants after filtration

through a 0.45-mm-pore-size membrane (Nalgene) and were

quantified by determining p24 antigen concentration using an

enzyme-linked immunosorbent assay (ELISA) (Innogenetics). Each

viral stock was verified by sequence analyses of HIV-1 genomic

RNA in order to confirm the presence of the originally introduced

mutations using the following procedure: viral particles from each

stock were pelleted by ultracentrifugation (at 20,0006 g for 2 h at

4uC) and digested with RNase-free DNase I (110 U/ml for 15 min

at room temperature [Invitrogen]) in the presence of RNaseOUT

(40 U/ml; Invitrogen) to remove contaminating DNA. HIV-1

genomic RNA was purified using the High Pure Viral RNA Kit

(Roche Applied Science) following the manufacturer’s protocol.

cDNA synthesis was performed by the Titan One Tube RT-PCR

Kit method (Roche Applied Science). cDNAs were then amplified

by PCR with a 59 oligonucleotide primer corresponding to nt

3882–3907 (59-GCAGCCAATAGG GAAACTAAATTAGG-39)

and a 39 oligonucleotide primer corresponding to nt 5056–5035

(59-GCCATCTGTTTTCCATAATCCC-39). PCR fragments

were subcloned into the vector pCR4 Blunt-TOPO (Zero Blunt

TOPO PCR Cloning Kit [Invitrogen]). After identification of

recombinant clones, three inserts from each construct were

sequenced (Genomex). The nucleotide sequences of all three

clones were identical and confirmed the presence of originally

introduced mutations.

Infection assays in cell lines
First, infectivity of wild-type and mutant viruses was assessed in

TZM-bl cells. In brief, exponentially growing cells were seeded at

66103 cells/200 ml in 96 well plates and were infected or not with

equal amounts of wild-type or mutant viruses (corresponding to

20 ng of p24 antigen). At 72 h post-infection, TZM-bl cells were

lysed in PBS and luciferase activity was measured (Promega).

Second, infections of Jurkat and U937 cells were performed by

incubating 0.56106 cells with 50 ng of p24 protein of wild-type or

mutant viruses (at 37uC for 2 h in 500 ml of culture medium). After

infection, cells were pelleted at 3006 g, washed three times with

1 ml of culture medium, resuspended in 1 ml of culture medium,

and grown under standard conditions. Every 2 or 3 days, aliquots

of 200 ml were removed from the infected cultures and replaced by

fresh medium. The aliquots were assayed for p24 concentration in

triplicate in order to monitor the kinetics of viral replication. In

addition, total RNA was extracted from infected cells at days 5, 10

and 15 post-infection using the RNeasy Plus Mini Kit (Qiagen)

and digested with TURBO DNase I (Ambion) to ensure the

removal of genomic DNA. First strand cDNA was synthesized

using SuperScript III Reverse Transcriptase and random primers

(Invitrogen). qPCR reactions were performed as described above

with the comparative Ct (DDCt) quantification method. The

following sets of primers were used for amplification of initiated

viral transcripts (TAR: FW: 59-GTTAGACCAGATCT-

GAGCCT-39; RV: 59-GTGGGTTCCCTAG TTAGCCA-39)

and elongated transcripts (Tat mRNAs: FW: 59- ACTCGACA-

GAGGAGAGCA AG-39; RV: 59- GAGTCTGACTGTTCT-

GATGA-39), using b-actin (FW: 59- GTCGACAACGGCT

CCGGC-39; RV: 59- GGTGTGGTGCCAGATTTTCT-39) to

normalize the results.

Production of VSV-G pseudotyped viruses and single-
round infectivity assays in MDMs

HIV-1/VSV-G (Vesicular Stomatitis Virus Glycoprotein)

pseudotypes were produced by transiently cotransfecting 293T

cells with the generated HIV-1NL4.3 wild-type or mutant full length

molecular clones and the pMD2 VSV-G expression vector.

Supernatants containing pseudotyped viral particles were collected

at 48 h post-transfection, filtered through a 0.45-mm-pore-size

membrane and stored at 280uC. Viral stocks were termed HIV-

1VSV-G, HIV-1-AP-1#1mutVSV-G, HIV-1-AP-1#2mutVSV-G,

HIV-1-AP-1#3mutVSV-G, HIV-1-AP-1#1+2mutVSV-G and HIV-

1-AP-1#totmutVSV-G. HIV-1 p24 antigen in viral stocks was

quantified using an ELISA kit (Innogenetics). Each viral stock was

verified by sequence analyses of HIV-1 genomic RNA in order to

confirm the presence of the originally introduced mutations as

described above. For single-round infections, MDMs (0.86105

cells/well in 96 well plates) were infected in triplicate with 100 ml

of HIV-1/VSV-G pseudotyped viruses (containing equivalent

concentrations of p24) using a spinoculation protocol (1 h

centrifugation at room temperature at 1,2006 g followed by 1 h

incubation at 37uC). Cells were then washed with PBS and

cultured in MDM medium. At days 3 and 6 post-infection, the

supernatant of each well was replaced by fresh medium and at day

10 post-infection, p24 concentration in the supernatants was

measured by ELISA.

Western blotting
HIV-1 lysates were prepared by ultracentrifugation of each

virus stock (500 ng of p24 at 20,0006 g for 2 h at 4uC) and the

pellets were resuspended in Laemmli buffer at a concentration of

8.3 ng of p24/ml. Lysates were heated at 95uC for 5 min,

separated by electrophoresis on a 10% polyacrylamide gel and

transferred onto a polyvinylidene difluoride membrane. The

membrane was then blocked in Tris-buffered saline (TBS)

containing 5% non-fat dry milk and incubated with a purified

human anti-HIV-1 IgG (NIH AIDS Research and Reagent

Program, reagent no. 192 donated by Dr Alfred Prince). A

horseradish peroxidase-conjugated goat anti-human IgG (Pierce)

was then used for enhanced chemiluminescence detection (Cell

Signalling). The dominant negative A-Fos mutant was detected in

nuclear extracts from transiently transfected cells using an anti-
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FLAG antibody (Sigma) followed by a second horseradish

peroxidase-conjugated anti-mouse IgG used for enhanced chemi-

luminescence detection (Cell Signalling).

Results

AP-1 transcription factors specifically interact in vitro with
each of the three AP-1 sites located in the HIV-1 5103
fragment

Our laboratory has previously identified three AP-1 binding

sites in the 5103 fragment of the HIV-1 intragenic cis-regulatory

region by in silico analyses [7]. Short oligonucleotides containing

the two first AP-1 binding sites or the third AP-1 binding site,

respectively, were previously demonstrated by our laboratory to

bind in vitro affinity-purified AP-1/c-Jun or AP-1 present in PMA-

treated HeLa nuclear extracts by EMSAs (competition experi-

ments) [7]. In order to pursue the in vitro characterization of the

intragenic AP-1 sites, we performed additional EMSAs using three

oligonucleotide probes containing each site individually (termed

AP-1#1, AP-1#2 and AP-1#3 probe, respectively, and designed

based on the nucleotide sequence of the infectious HIV-1NL4.3

isolate). The three intragenic AP-1 binding sites are very well

conserved at the nucleotide level as represented in Figure 2A by

sequence logos that symbolize the frequency of the nucleotide

present at each position in these binding sites based on sequence

analyses of the full spectrum of HIV and SIV (Simian

Immunodeficiency Virus) sequences compiled in the HIV

compendium database (hiv-web.lanl.gov). Of note, the third AP-

1 binding site sequence is slightly different in the HIV-1NL4.3 strain

compared to the other strains since it contains a guanine residue at

position 4 in the TRE sequence instead of an adenine or a cytosine

(as in the AP-1#3 site from most of other HIV-1 strains or in the

AP-1 consensus sequence), a mutation that has been shown in the

literature to impede AP-1 binding to TREs [32].

The radiolabelled probes were incubated with nuclear extracts

from mock-treated (Figure 2B, lane 1) or PMA-treated (20 nM for

one hour; lanes 2 to 6) HeLa cells in the absence (lanes 1 and 2) or

presence of different unlabelled double-stranded oligonucleotides

as competitors, corresponding either to the homologous sequence

(i.e. the same sequence as that of the radiolabelled probe; lane 3),

or to the heterologous Sp1 binding site consensus (lane 4), or to the

AP-1 binding site consensus (lane 5; named AP-1 cons), or to a

mutated version of the AP-1 binding site consensus (lane 6; named

AP-1 cons mut). As shown in Figure 2B, incubation of the AP-1#1

probe with nuclear extracts from mock-treated HeLa cells resulted

in the formation of a broad retarded complex designated AP-1#1-

C1 (Fig. 2B, top panel, lane 1). When nuclear extracts from PMA-

treated HeLa cells were used, the intensity of the AP-1#1-C1

complex increased markedly (Fig. 2B, top panel, lane 2).

Moreover, formation of the AP-1#1-C1 complex was competed

for by a molar excess of the unlabeled homologous AP-1#1

oligonucleotide (Fig. 2B, top panel, lane 3), but not by the same

molar excess of a heterologous oligonucleotide of unrelated

sequence (Fig. 2B, top panel, lane 4), thereby demonstrating the

sequence specificity of complex AP-1#1-C1 binding to the AP-

1#1 probe. Furthermore, the addition of a molar excess of an

unlabeled oligonucleotide corresponding to an AP-1 binding site

consensus (Fig. 2B, top panel, lane 5) hindered the formation of

the AP-1#1-C1 complex, whereas this complex formation was not

competed for by the same molar excess of a mutated version of the

AP-1 consensus (Fig. 2B, top panel, lane 6), thereby demonstrating

that the AP-1#1-C1 complex is specific to the AP-1 motif.

Incubation of the AP-1#2 probe with nuclear extracts from

mock-treated HeLa cells resulted in the formation of three

retarded complexes designated AP-1#2-C1 to AP-1#2-C3

(Fig. 2B, middle panel, lane 1) that were all specific to the AP-

1#2 sequence as demonstrated by competition with homologous

and heterologous oligonucleotides (Fig. 2B, middle panel, lanes 3

and 4). The slower migrating complex AP-1#2-C1 was strongly

induced following PMA-treatment of the cells (Fig. 2B, middle

panel, lane 2). A molar excess of the unlabelled AP-1 consensus

oligonucleotide (Fig. 2B, middle panel, lane 5), but not of its

mutated version (Fig. 2B, middle panel, lane 6), specifically

inhibited the formation of this PMA-inducible AP-1#2-C1

complex, whereas no differences in the binding of the AP-1#2-

C2 and AP-1#2-C3 complexes were observed, thereby showing

that the AP-1#2-C1 complex is specific to the AP-1 motif.

Finally, three retarded complexes were observed using the AP-

1#3 probe, including a PMA -inducible complex termed AP-1#3-

C3 (Fig. 2B, bottom panel, lanes 1 and 2). These three retarded

complexes were shown to be specific to the AP-1#3 sequence by

competition experiments with homologous and heterologous

competitors (see Fig. 2B, bottom panel, lanes 3 and 4, respectively).

Moreover, the AP-1#3-C3 complex was demonstrated to be

specific to the AP-1 motif since its formation was completely

inhibited by a molar excess of the AP-1 consensus oligonucleotide

(Fig. 2B, bottom panel, lane 5), but only slightly affected by the

same molar excess of the mutated AP-1 consensus oligonucleotide

(lane 6). However, even with a low concentration of poly(dI-dC), a

non-specific DNA competitor, the AP-1#3-C3 complex was

difficult to observe. These low affinity binding properties are in

good correlation with the presence of a guanine residue at position

4 in the TRE of the AP-1#3 site in the HIV-1NL4-3 isolate, which

markedly decreases AP-1 binding efficiency [32].

In order to directly identify the factors present in the PMA-

inducible AP-1#1-C1, AP-1#2-C1 and AP-1#3-C3 complexes,

we performed supershift assays using antibodies directed against

individual members of the AP-1 family and against members of

the related C/EBP family of B-ZIP transcription factors

(Figures 2C and 2D). Radiolabelled AP-1 probes incubated with

PMA-treated HeLa nuclear extracts and either a purified rabbit

IgG (Fig. 2C, lane 1) as a negative control or an antibody directed

against c-Fos, FosB, Fra-1, Fra-2, c-Jun, JunB, JunD, CREB,

CREM, ATF-1, ATF-2, C/EBPa, C/EBPb, C/EBPd or Ets-1

(Fig. 2C, lanes 2 to 16).

The addition of an antibody directed against JunD or against c-

Fos interfered with the formation of complex AP-1#1-C1 and led

to the appearance of a supershifted complex of decreased mobility

(Fig. 2C, top panel, lane 8; Fig. 2C, top panel, lane 2 and Fig. 2D,

top panel, lane 18, respectively). The addition of an anti-JunB

antibody also hindered the formation of complex AP-1#1-C1,

generating two supershifted complexes (Fig. 2C, top panel, lane 7;

Fig. 2D, top panel, lane 19). The AP-1#1-C1 complex intensity

decreased less markedly following the addition of an antibody

directed against JunD than following the addition of an anti-cFos

or an anti-JunB antibody (Fig. 2C, top panel; compare lane 8 with

lanes 2 and 7), suggesting a smaller contribution of JunD in the

composition of the AP-1#1-C1 complex. Interestingly, when both

anti-cFos and anti-JunB antibodies were included in the same

binding reaction, the AP-1#1-C1 complex entirely disappeared

(Fig. 2D, top panel, lane 20), confirming that c-Fos and JunB

corresponded to the predominant AP-1 species which bound to

the AP-1#1 site. In contrast, the binding pattern observed

following incubation of the AP-1#1 probe with PMA-treated

HeLa nuclear extracts was weakly affected or not affected at all by

the addition of antibodies directed either against the other AP-1

family members (Fig. 2C, top panel, lanes 3 to 6), or against other

members of the B-ZIP family (Fig. 2C, top panel; lanes 9 to 15) or
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against the Ets-1 transcription factor (Fig. 2C, top panel; lane 16),

supporting the notion that the PMA-inducible retarded complex

AP-1#1-C1 did not contain these other proteins. As a control, all

the antibodies that did not supershift AP-1 complexes in this study

were demonstrated to be functional in EMSAs with other

radiolabelled probes (data not shown). Moreover, no retarded

band was affected neither by the addition of a purified rabbit IgG

used as a negative control (Fig. 2C, top panel, lane 1; Fig. 2D, top

panel, lane 17) nor by the addition of antibodies to the probe alone

(data not shown), indicating the specificity of the protein-antibody

interactions. Similar results were obtained for the AP-1#2-C1 and

AP-1#3-C3 complexes (Fig. 2C and 2D, middle and bottom

panels, respectively).

Taken together, our results demonstrate that each of the three

intragenic AP-1 sites located in the pol gene 5103 fragment bind in

vitro the c-Fos, JunB and to a lesser extent JunD transcription

factors of the AP-1 family.

Identification of mutations abolishing AP-1 binding to
the AP-1 sites of fragment 5103

To further characterize biochemically and functionally the AP-1

sites located in fragment 5103, we designed point mutations aimed

at abolishing AP-1 binding to their respective binding site, without

altering the underlying amino acid sequence of the viral reverse

transcriptase.

We substituted the adenine residue at position 4086, the

guanine residue at position 4087 and the thymine residue at

position 4088 from the AP-1#1 probe by a thymine, a cytosine

and an adenine residue, respectively (see Figure 3A, top panel) to

generate its mutated version designated AP-1#1mut. We

evaluated the impact of this 3-bp mutation on AP-1 binding by

competition EMSAs with the AP-1#1 oligonucleotide as a probe

and nuclear extracts from mock-treated and PMA-treated HeLa

cells (Fig. 3B, top panel, lane 1 and lanes 2 to 6, respectively). As

expected, the PMA-inducible AP-1#1-C1 specific complex was

inhibited by competition with increasing molar excesses of the

homologous AP-1#1 oligonucleotide (Fig. 3B, top panel, lanes 3

to 4). However, this complex was not competed for by the same

molar excesses of the AP-1#1mut oligonucleotide (Fig. 3B, top

panel, lanes 5 to 6), thereby demonstrating that selected mutations

abolish AP-1 binding to the AP-1#1 site. Moreover, we confirmed

the lack of AP-1 binding to the mutated AP-1#1mut probe and

the absence of new complexes compared to the pattern observed

with the wild-type probe (data not shown).

The same approach was followed to identify mutations

hindering AP-1 binding to the AP-1#2 and AP-1#3 sites of

fragment 5103 and to demonstrate their ability to abolish in vitro

AP-1 binding to their respective sites (Figures 3A and 3B,

respectively). Moreover, we confirmed the lack of AP-1 binding

to the mutated AP-1#2mut and AP-1#3mut probes (data not

shown).

In conclusion, we identified selected mutations which abrogate

AP-1 binding to their respective binding site without altering the

underlying amino acid sequence of the HIV-1 reverse transcrip-

tase.

The intragenic AP-1 binding sites are fully responsible for
the PMA-dependent enhancer activity of fragment 5103

In order to address the potential functional role of the three

intragenic AP-1 binding sites in the context of the whole 5103

fragment, we inserted this 264-bp fragment into the pTK reporter

construct immediately upstream of the TK-luciferase transcrip-

tional unit in the sense or antisense orientation, thereby generating

the pTK-5103s-wt and the pTK-5103as-wt, respectively. The

constructs pTK, pTK-5103s-wt and pTK-5103as-wt were tran-

siently cotransfected into the human epithelial HeLa cell line with

the pRL-TK (in which a cDNA encoding the Renilla luciferase is

under the control of the HSV TK promoter region) used as an

internal control for transfection efficiency. Twenty-four hours

post-transfection, cells were mock-treated or treated with PMA.

Twenty-four hours post-treatment, cells were lysed and assayed for

luciferase activity.

As shown in Figure 4, the plasmids pTK-5103s-wt and pTK-

5103as-wt presented no significant activity compared to that of

the control vector pTK in basal conditions. However, in the

presence of PMA, transfection of plasmid pTK-5103s-wt or of

plasmid pTK-5103as-wt resulted in a 1.93-fold ( = 2.68/1.39)

or in a 5.11-fold ( = 7.41/1.45) induction of the measured

luciferase activity, respectively. By normalizing the results in

agreement with the control vector pTK activity (1.28-fold)

following PMA-treatment of the cells, the observed increases in

luciferase activity of these constructs represent a 1.51-fold

( = 1.93/1.28) or a 4.00-fold ( = 5.11/1.28) activation, respec-

tively. These results indicate that the PMA-dependent enhancer

activity of fragment 5103 shows a strong preference for the

antisense orientation of this fragment with respect to the

luciferase transcriptional unit.

We next investigated the relative contribution of each AP-1

binding site (AP-1#1, AP-1#2 and AP-1#3) to the PMA-

dependent enhancer activity of fragment 5103. To this end, the

mutations identified above as able to abolish AP-1 in vitro binding

to their respective recognition sequence were introduced individ-

ually or in combination in the context of the pTK-5103as-wt by

site-directed mutagenesis. The mutated plasmids were designated

pTK-5103as-mut1, pTK-5103as-mut2, pTK-5103as-mut3, pTK-

5103as-mut1+2 and pTK-5103as- totmut, and were tested for

their PMA-responsiveness by transient transfection experiments in

HeLa cells (Figure 4).

In basal conditions, the mutated constructs exhibited luciferase

activities similar to that obtained with the control vector pTK,

such as what we observed with the wild-type construct pTK-

5103as-wt. Remarkably, following PMA-treatment of the cells, the

plasmid pTK-5103as-totmut (where the three intragenic AP-1 sites

have been mutated simultaneously) exhibited a luciferase activity

similar to that obtained with the control vector pTK under the

same conditions (Fig. 4), thereby indicating that the PMA-

dependent enhancer activity of fragment 5103 required the

integrity of the AP-1 motifs located in this fragment. In addition,

transfection of plasmids pTK-5103as-mut1, pTK-5103as-mut2

and pTK-5103as-mut3 resulted in a 2.63-fold ( = 3.78/1.43), 3.11-

fold and 4.40-fold PMA induction, respectively, compared to the

5.11-fold PMA induction obtained with the wild-type construct

pTK-5103as-wt (Fig. 4). This corresponds to a 49% and 39% loss

in the PMA-dependent enhancer activity of fragment 5103 when

the AP-1#1 or the AP-1#2 site were mutated, respectively,

whereas mutation in the AP-1#3 binding site resulted in a less

pronounced loss of this activity (14% loss). Of note, the plasmid

pTK-5103as-mut1+2 exhibited a PMA-responsiveness analogous

to that obtained with the pTK-5103as-totmut (1.69-fold),

suggesting that the two first AP-1 binding sites played a major

role in the PMA-dependent enhancer activity of fragment 5103.

In conclusion, these results demonstrate that the PMA-

dependent enhancer activity of fragment 5103 displays a strong

preference for the antisense orientation of this fragment with

respect to the transcriptional unit. Moreover, the loss of AP-1

binding to fragment 5103 significantly altered its PMA-dependent

enhancer activity.
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The PMA-dependent enhancer activity of fragment 5103
is impaired by ectopically expressed dominant-negative
A-Fos mutant

To further confirm the crucial role played by AP-1 transcription

factors in the PMA-dependent enhancer activity of fragment 5103,

we evaluated the effects of overexpression of a dominant negative

A-Fos mutant on this activity in transient transfection experiments.

The dominant negative A-Fos mutant contains an acidic

amphipathic protein sequence appended onto the N-terminus of

the Fos leucine zipper, replacing the normal basic region critical

for DNA binding [24]. This acidic extension and the Jun basic

region form a heterodimeric coiled-coil structure that stabilizes the

complex and prevents the basic region of Jun from binding to

DNA, thereby titrating the functionally active AP-1 heterodimer

concentration in the cell without altering the function of other B-

ZIP proteins [24,33]. We transiently cotransfected the control

vector pTK, the pTK-5103as-wt or the pTK-5103as-totmut

construct with increasing amounts of the expression vector

encoding the A-Fos mutant (pCG-AFos). Twenty-four hours

post-transfection, HeLa cells were mock-treated or treated with

PMA. Twenty-four hours post-induction, cell lysates were assayed

for luciferase activity (Figure 5A).

In agreement with the results presented in Figure 4, in the

absence of A-Fos, transfection of the plasmid pTK-5103as-wt

caused a 4.30-fold ( = 4.85/1.13) increase in luciferase activity

following PMA-treatment of the cells (Figure 5A), whereas

mutations present in pTK-5103as-totmut impeded the PMA-

dependent enhancer activity of the 5103 fragment (Fig. 5A).

Moreover, ectopic expression of A-Fos inhibited the PMA-

dependent enhancer activity of fragment 5103 in a dose-

dependent manner, while it did not affect the transcriptional

activity of the control vector pTK (Fig. 5A). These results

confirmed the important functional role of AP-1 transcription

factors in the PMA-dependent enhancer activity of the 5103

fragment. Furthermore, as ectopic expression of A-Fos did not

significantly affect the luciferase activity of the pTK-5103as-totmut

construct neither in mock-treated nor in PMA-treated HeLa cells

(Fig. 5A), we assumed that inhibition of the enhancer activity of

fragment 5103 by A-Fos required intact intragenic AP-1 binding

sites. Using the N-terminal FLAG epitope present on the

dominant negative A-Fos mutant, we verified by western blot

experiments that A-Fos was effectively expressed in a dose-

dependent manner and that its production was not affected by

PMA-treatment of the cells (see Figure 5B).

Altogether, these results demonstrate that AP-1-dimerizing

proteins are the transcription factors fully responsible for the

PMA-dependent enhancer activity of fragment 5103 through

interaction with the intragenic AP-1 binding sites.

The binding and functional properties of the AP-1 sites
located in fragment 5103 are independent of HIV-1 Tat
protein expression

HIV-1 transcription is boosted by the viral transactivating

protein Tat, which binds to the cis-acting RNA TAR (Transacti-

vation Response element) element located at the 59end of all

nascent viral transcripts in order to promote processive elongation

Figure 4. The intragenic AP-1 binding sites are fully responsible for the PMA-dependent enhancer activity of fragment 5103. HeLa
cells were transiently transfected with 200 ng of the following constructs: the control vector pTK, the pTK-5103s-wt, pTK-5103as-wt, pTK-5103as-
totmut, pTK-5103as-mut1, pTK-5103as-mut2, pTK-5103as-mut3 or pTK-5103as-mut1+2 reporter construct. All transfection mixtures additionally
contained the pRL-TK (1 ng), in which a cDNA encoding the Renilla luciferase gene is under the control of the HSV TK promoter. At 24 h post-
transfection, cells were mock-treated (-) or treated with PMA (+) (20 nM). Luciferase activities (Firefly and Renilla) were measured in cell lysates 48 h
after transfection. Results are expressed as LuciferaseFirefly/[Proteins]*LuciferaseRenilla and presented as histograms indicating the luciferase activities of
each construct relative to that of the control vector pTK, which was assigned an arbitrary value of 1 in absence of PMA. Means and standard errors of
the means from three independent transfection experiments each performed in triplicate are indicated. The PMA induction of each TK construct is
written in the upper part of the Figure (in fold). * indicates p,0.05 compared with the wild-type construct.
doi:10.1371/journal.pone.0019084.g004
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[34]. In addition to viral transactivation, Tat has been shown to

modulate the activity of several transcription factors either via

direct interaction (such as previously reported for Oct-2 [35] and

NFAT [36]) or via indirect mechanisms (including Tat-mediated

alteration of Sp1 [37], NF-kB [38] and AP-1 [36] transcriptional

activities). This prompted us to test whether Tat could alter the

functional role of the intragenic AP-1 sites.

To determine whether Tat expression affects the in vitro binding

of AP-1 factors to each individual intragenic AP-1 binding site, we

performed EMSAs with nuclear extracts from mock-treated or

PMA-treated HeLa cells expressing the one-exon form of Tat

(pTat72, see the Materials and Methods section), or the two-exon

form of Tat (pTat101) (Figure 6A). Both forms of the Tat protein

were studied because Tat101 is expressed both early and late in

the virus life cycle, while Tat72 is only expressed in the late phase

[39]. We observed no significant differences when we compared

the retarded complexes in absence of Tat versus in presence of Tat

(Figure 6A, compare lane 1 to lanes 3 and 5; lane 2 to lanes 4 and

6), neither in basal nor in PMA-induced conditions. Tat expression

in these nuclear extracts was verified by ELISA (data not shown).

These results show that Tat expression does not modulate the in

vitro binding of AP-1 to fragment 5103.

We next evaluated the potential impact of Tat expression on the

PMA-dependent enhancer activity of fragment 5103. Therefore, we

transiently cotransfected HeLa cells with the control vector pTK, the

pTK-5103as-wt or the pTK-5103as-totmut constructs and with an

expression vector encoding the Tat protein (pTat72, pTat101 or the

corresponding empty vector pREP9). Twenty-four hours post-trans-

fection, cells were mock-treated or treated with PMA. Twenty-four

hours post-induction, cells were lysed and assayed for luciferase activity.

As shown in Figure 6B, the PMA-dependent enhancer activity

of fragment 5103 observed in the absence of Tat (a 6.11-fold

increase in luciferase activity following PMA-treatment of the cells

with the pTK-5103as-wt construct compared to the activity of the

pTK) was not affected neither by Tat72 expression nor by Tat101

expression (Fig. 6B; increasing concentrations of the Tat

expression vectors were used but only the highest dose is shown).

Control experiments confirmed that Tat was expressed and was

functional in terms of transactivation of the HIV-1 promoter in

our experimental conditions (data not shown).

In conclusion, these results indicate that the in vitro binding of

AP-1 factors to the three intragenic AP-1 sites and the functional

role of these sites in the PMA-dependent enhancer activity of

fragment 5103 are independent of Tat protein expression.

Figure 5. Overexpression of the dominant negative A-Fos mutant impairs the PMA-dependent enhancer activity of fragment 5103.
(A) HeLa cells were transiently cotransfected with 100 ng of the pTK, pTK-5103as-wt or pTK-5103as-totmut reporter construct and with increasing
amounts (0, 50 or 100 ng) of the dominant negative construct pCG-AFos. To maintain the same amount of transfected DNA and to avoid squelching
artifacts, the different quantities of A-Fos expression vector cotransfected were complemented to 100 ng of DNA by using the empty vector pCG.
Cells were additionally cotransfected with 1 ng of pRL-TK. Twenty-four hours post-transfection, cells were mock-treated (-) or treated with PMA (+).
Luciferase activities (Firefly and Renilla) were measured in cell lysates 48 h after transfection. Results are expressed as LuciferaseFirefly/LuciferaseRenilla

and presented as histograms indicating the relative luciferase activity of each construct with respect to the activity of the same reporter construct in
the absence of both PMA and A-Fos, which was assigned an arbitrary value of 1. Means and standard errors of the means from three independent
transfection experiments each performed in triplicate are indicated, with p,0.01 compared with the empty vector pTK indicated by an asterisk. (B)
A-Fos mutant expression is efficient and not affected by PMA-treatment of the cells. HeLa cells were transiently transfected with
increasing amounts (0, 2 or 4 mg) of the dominant negative construct pCG-AFos. To maintain the same amount of transfected DNA, the different
quantities of A-Fos expression vector transfected were complemented to 4 mg of DNA by using the empty vector pCG. Twenty-four hours post-
transfection, cells were mock-treated (mock) or treated with PMA (PMA) for one hour. Nuclear extracts were then prepared and analysed by western
blot with an antibody directed against the N-terminal FLAG epitope of the A-Fos mutant.
doi:10.1371/journal.pone.0019084.g005
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Figure 6. Binding and functional properties of intragenic AP-1 sites are independent of Tat protein expression. (A) HeLa cells were
transiently transfected with the expression vector pTat72 encoding the one-exon form of Tat (72 amino acids named Tat72), the expression vector
pTat101 encoding the two-exon form of Tat (101 amino acids or Tat101), or with the corresponding empty vector pREP9 used as a control. Twenty-
four hours post-transfection, cells were mock-treated (-) or treated with PMA (+) for one hour. Nuclear extracts from these transiently transfected cells
were prepared and used in EMSA experiments. The AP-1#1, AP-1#2 and AP-1#3 probes incubated with 10 mg of nuclear extracts from HeLa cells
(lanes 1 and 2), HeLa cells expressing Tat72 (lanes 3 and 4) or HeLa cells expressing Tat101 (lanes 5 and 6), which were mock-treated (lanes 1, 3 and 5)
or treated with PMA (lanes 2, 4 and 6). Retarded bands of interest are shown and indicated by arrows. (B) HeLa cells were transiently cotransfected
with 100 ng of the pTK, pTK-5103as-wt or pTK-5103as-totmut reporter construct and with 200 ng of an expression vector encoding either the one-
exon form of Tat (pTat72) or the two-exon form of Tat (pTat101) or of the corresponding empty vector pREP9. All transfection mixtures contained
1 ng of pRL-TK as a control of transfection efficiency. Twenty-four hours post-transfection, cells were mock-treated (-) or treated with PMA (+).
Luciferase activities (Firefly and Renilla) were measured in cell lysates 48 h post-transfection. Results are expressed as LuciferaseFirefly/
[Proteins]*LuciferaseRenilla and presented as histograms indicating the relative luciferase activities with respect to the activity of the control vector
pTK in the absence of PMA, which was assigned an arbitrary value of 1. Means and standard errors of the means of one representative experiment
from three independent transfection experiments each performed in triplicate are indicated. * indicates p,0.01 compared to the empty vector pTK.
doi:10.1371/journal.pone.0019084.g006
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Mutations in the intragenic AP-1 binding sites impair
c-Fos, JunB and JunD in vivo recruitment to the 5103
fragment and lead to a decreased recruitment of RNA
polymerase II to the viral promoter

In order to determine whether endogenous AP-1 transcription

factors are recruited in vivo to the HIV-1 5103 fragment, we

conducted chromatin immunoprecipitation (ChIP) experiments.

HeLa cells were transiently transfected with the wild-type plasmid

pHIV-1 (HIV-1 full-length molecular clone pNL4-3) or with its

mutated counterpart pHIV-1-AP-1#totmut (mutated in the three

intragenic AP-1 sites simultaneously). Twenty-four hours post-

transfection, cells were mock-treated or treated with PMA.

Twenty-four hours post-induction, chromatin was prepared from

these cells and immunoprecipitated with specific antibodies

directed against c-Fos, JunB, JunD, Fra-1, RNA polymerase II

(RNAPII) or with a purified IgG antibody as a control. Three

different primer pairs were designed in the 5103 fragment region

of interest, in the nuc-1 region where AP-1 binding sites had been

previously reported [8,9] and in the vpr gene, where neither the

literature nor our in silico analyses have revealed the presence of

potential AP-1 binding sites (data not shown).

As shown in Figure 7A (central panels), we observed the in vivo

recruitment of c-Fos, JunB and JunD, but not of Fra-1, to the 5103

fragment region. This recruitment increased following PMA-

treatment of the cells (compare lanes 1 and 3). These results are in

good agreement with our in vitro binding studies (see above

Figure 2B). Importantly, AP-1 recruitment to the 5103 fragment

region was significantly affected by mutations introduced in the

three intragenic AP-1 binding sites of the pHIV-1#totmut

construct, both in absence (Fig. 7A; compare lanes 1 and 2) and

in presence (compare lanes 3 and 4) of PMA. Interestingly, c-Fos,

JunB and JunD (but not Fra-1) were shown to be recruited to the

nuc-1 region (Fig. 7A, left panels), where they had been previously

demonstrated to bind (or not to bind concerning Fra-1) in vitro to

the AP-1 binding sites identified in the 59LTR [40]. As a control,

no binding of AP-1 family members was observed in the HIV-1 vpr

gene region (see Fig. 7A, right panels).

Moreover, the in vivo recruitment of RNA polymerase II to the

59LTR region increased following PMA treatment of the cells

(Figure 7B; left panel). Remarkably, the combined mutation of the

three intragenic AP-1 binding sites decreased by , two fold the

PMA-mediated RNAPII in vivo recruitment to the viral promoter

(Fig. 7B, left panel), thereby supporting the notion that the 5103

fragment AP-1 binding sites are important for HIV-1 transcrip-

tional activity.

Altogether, these results indicate that c-Fos, JunB and JunD (but

not Fra-1) are recruited in vivo to the 5103 fragment region in a

PMA-inducible manner in the context of our transient transfection

experiments. They also confirm that the designed mutations affect

c-Fos, JunB and JunD in vivo recruitment to the 5103 fragment

region without altering AP-1 recruitment to the nuc-1 region.

Importantly, mutations of the three intragenic AP-1 sites decrease

RNAPII in vivo recruitment to the viral promoter, supporting the

notion that these sites are important for HIV-1 transcriptional

activity.

The intragenic AP-1 binding sites are important for viral
replication

We next studied the biological significance of the 5103 fragment

AP-1 binding sites for HIV-1 replication. Stocks of wild-type and

mutant HIV-1 infectious viruses were produced as described in the

Materials and Methods section and used in infection assays. In

order to check that the potential effects of introduced mutations on

HIV-1 replication do not result from a serious defect in HIV-1

protein content or in HIV-1 RNA genome packaging of the virus

stocks used to perform infectivity studies, lysates and viral RNA

from equal amounts of p24 from the wild-type and mutant virus

stocks were respectively analysed by western blotting with a

purified human anti-HIV-1 IgG antibody and by RT-qPCR to

quantify the amount of viral genomic RNA in each virus stock

(Figures 8A and 8B, respectively). Similar amounts of each HIV-1

detected proteins, including the reverse transcriptase which is

partially encoded by fragment 5103, and of viral genomic RNA

were observed in all samples, supporting the notion that all virus

stocks used in the infection studies were structurally similar at both

the protein and RNA levels.

In order to evaluate the importance of the intragenic AP-1 sites

for viral expression, we infected TZM-bl cells with the wild-type

(HIV-1) and mutant (HIV-1-AP-1totmut; HIV-1-AP-1#1mut,

HIV-1-AP-1#2mut, HIV-1-AP-1#3mut and HIV-1-AP-1#1

+2mut) viral stocks (Figure 8C). TZM-bl cells, that contain the

luciferase gene under the control of the HIV-1 LTR, are easily

infected by HIV-1 since they express the receptor CD4 and both

co-receptors CXCR4 and CCR5. Once integrated into the

cellular genome, the virus begins expressing the viral Tat

protein, which then activates luciferase expression by trans-

activating the LTR transcriptional activity. Thus, luciferase

expression in those cells is a reliable reporter for viral expression.

As shown in Figure 8C, mutations in the intragenic AP-1 binding

sites affected luciferase expression compared to the wild-type

HIV-1, especially mutation in the first and second AP-1 sites

which caused a decrease of luciferase expression of 50.7% and

53.3%, respectively.

Altogether, these results show that mutations in the 5103

fragment AP-1 sites affect HIV-1 expression. These deleterious

effects observed with mutant viral stocks are likely to be a direct

consequence of impaired AP-1 binding to the mutated 5103

fragment since wild-type and mutant HIV-1 particles from the

viral stocks used in the infection studies are structurally similar at

both the RNA and protein levels.

Mutations in the intragenic AP-1 sites alter HIV-1
replication in T-lymphoid and promonocytic cell lines

In order to address the importance of the 5103 fragment AP-1

binding sites for HIV-1 replication in the two major cell targets of

HIV-1, i.e. T cells and macrophages, we infected T-lymphoid

Jurkat and promonocytic U937 cells with the wild-type and

mutant viral stocks. We subsequently monitored the growth

kinetics of the infection by measuring p24 production in the cell

supernatants over a period of 17 days and by quantifying viral

mRNA production at days 5, 10 and 15 post-infection. Figures 9A

and 9B show a representative replication curve of three

independent replication assays (each performed in triplicate) for

Jurkat and U937 cells, respectively.

Infection of T-lymphoid Jurkat cells with the wild-type virus

resulted in a strong viral production (Fig. 9A), whereas mutant

viruses revealed differences in replication rate and/or virus

production levels compared to the wild-type virus. At day 20

and later on, a rapid decrease in p24 production was observed,

reflecting the heavy reduction of viable cell counts (data not

shown). Mutant viruses HIV-1-AP-1#3mut, HIV-1-AP-1#1mut,

HIV-1-AP-1#1+2mut and HIV-1-AP-1#totmut exhibited repli-

cation kinetics analogous to that observed with the wild-type

control virus HIV-1, but with lower levels of viral production

(corresponding to a 46%, 49%, 53% and 53% decrease,

respectively, of p24 release from infected cultures on day 17

compared to the p24 release observed with the wild-type HIV-1)
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Figure 7. The AP-1 transcription factors c-Fos, JunB and JunD are recruited in vivo to the 5103 fragment region. HeLa cells were
transiently transfected with the wild-type pHIV-1 or the mutated pHIV-1-AP-1#totmut construct. Twenty-four hours post-transfection, cells were
mock-treated (-) or treated with PMA (+). Twenty-four hours post-induction, cells were cross-linked for 10 min at room temperature with 1%
formaldehyde. To detect chromosomal flanking regions, pellets were sonicated to obtain DNA fragments of an average size of 400 bp. Chromatin
immunoprecipitations were performed with specific antibodies directed against c-Fos, JunB, Fra-1 or JunD. To test aspecific binding to the beads, a
purified IgG was used as a control for immunoprecipitation. Quantitative PCR reactions were performed with oligonucleotide primers hybridizing
either in the nuc-1 region (termed nuc-1), or in a region overlapping the three AP-1 binding sites of the 5103 fragment (termed 5103 fragment), or in
the vpr gene (termed vpr gene) where no AP-1 binding sites have been previously reported. Fold enrichments were calculated as percentages of
immunoprecipitated DNA following the formula ‘‘Immunoprecipitated DNA (IP)*100/Input DNA (INP)’’. Values represent the means of triplicate
samples and standard errors of the means are indicated. An experiment representative of three independent ChIP assays is shown. (B) Mutations in
the intragenic AP-1 sites affect the PMA-inducible in vivo recruitment of RNA polymerase II to the HIV-1 59LTR region. Chromatin
immunoprecipitations were performed with a specific antibody directed against RNAPII and a purified IgG as a control. Quantitative PCR reactions
were performed with the same oligonucleotide primers and fold enrichments were calculated as in panel (A). Means and standard errors of the
means from one experiment representative of three independent ChIP assays are shown.
doi:10.1371/journal.pone.0019084.g007
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(Fig. 9A), thereby indicating a deleterious effect of the introduced

mutations for HIV-1 viral production. Moreover, infection of

Jurkat cells with the HIV-1-AP-1#2mut virus led to a very low

p24 release (reaching 88% decrease on day 17 compared to the

wild-type virus), reflecting severely reduced replication properties

(Fig. 9A). As shown in Figure 9B, all viruses produced lower

concentrations of viral p24 in promonocytic U937 cells and

mutant viruses affected HIV-1 replication in a similar manner

than what was observed in T-lymphoid Jurkat cells, except for

mutant HIV-1-AP-1#3mut. Of note, the HIV-1-AP-1#2mut

virus exhibited severely reduced replication properties, reaching

83% decrease of the p24 production at day 17. A second round of

Figure 8. Viral particles from mutant and wild-type virus stocks are similar at the protein and at the RNA levels. (A) Equivalent
amounts of viral particles (as assessed by p24 ELISA assays) from the wild-type and each AP-1 mutant virus stocks were pelleted by centrifugation,
lysed in Laemmli buffer and analyzed by Western blotting with an anti-HIV-1 immunoglobulin. The bands corresponding to the HIV-1 glycoprotein
gp160, reverse transcriptase p66/p51, integrase p32 and capsid p24 proteins are indicated. MW, molecular weight (indicated in kDa). (B) Viral RNAs
from equal amounts of viral particles were digested with DNase I and subsequently reverse-transcribed with random primers. First-strand viral cDNAs
were then quantified by qPCR with primers hybridyzing in the TAR region (as described in the Materials and Methods section). An arbitrary value of 1
was assigned to the result obtained with the wild type virus stock HIV-1. Means and standard errors of the means from two independent experiments
each performed in triplicate are indicated. (C) Mutations in the intragenic AP-1 binding sites affect HIV-1 expression. TZM-bl cells (66103

cells) were infected or not with equal amounts of wild-type HIV-1 or mutant virus stocks. At 72 h post-infection, TZM-bl cells were lysed and luciferase
activity was measured in cell lysates. Results are presented as histograms indicating the LuciferaseFirefly activity of the TZM-bl cells following infection
with wild-type versus mutant viruses. An arbitrary value of 100% was attributed to the result obtained with the wild-type HIV-1. Means and standard
errors of the means from one representative from three independent experiments each performed in triplicate are indicated. * indicates p,0.05
compared to the wild-type virus HIV-1.
doi:10.1371/journal.pone.0019084.g008
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infection of target Jurkat and U937 cells with supernatants

collected 18 days after the first infection allowed us to conclude

that all mutant viruses were competent in terms of infectivity in

both cell lines (data not shown).

In parallel, we quantified initiated (TAR) and elongated (Tat)

viral mRNAs produced in Jurkat and U937 infected cells at days 5,

10 and 15 post-infection (see Figures 9C and 9D, respectively). We

observed similar patterns of viral production with mutant versus

wild-type viral stocks than those observed by measuring p24

production in cell supernatants. Indeed, mutant HIV-1-AP-

1#2mut exhibited a highly affected replication profile in both

cell lines (reaching a 87% and 82% decrease of elongated

transcripts in Jurkat and U937 cells at day 15 post-infection,

respectively; Figures 9C and 9D). Mutant viruses HIV-1-AP-

1#3mut, HIV-1-AP-1#1mut, HIV-1-AP-1#1+2mut and HIV-1-

AP-1#totmut exhibited a similar behaviour than previously

measured in p24 assays since we observed a 48%, 52%, 39%

and 40% (17%, 54%, 37% and 52%) decrease of elongated

transcripts in Jurkat (U937) cells at day 15 post-infection.

The HIV-1-AP-1#totmut and the HIV-1-AP-1#1+2mut

viruses were less affected than the virus containing the individual

AP-1#2 site mutation, suggesting partial compensatory mecha-

nisms turned on by the virus when two or three intragenic AP-1

sites are mutated simultaneously to ensure its replication. These

mechanisms could, for example, involve the recruitment of other

transcription factors or co-factors in the intragenic region.

Noteworthy, we verified that mutations introduced in the

intragenic AP-1 sites did not significantly modify the splicing

pattern of viral transcripts by quantifying unspliced full-length

(9 kb), singly-spliced (4 kb) and multiply-spliced (2 kb) transcripts

for each mutant virus after infection (see Figure 10). We also

demonstrated that the reduced replication phenotypes observed

with the AP-1 mutant viruses were not due to a defect neither in

the protein nor in the RNA content of viral particles (Figures 8A

and 8B, respectively). Moreover, our ChIP results showed that the

role of intragenic AP-1 sites in HIV-1 replication takes place, at

least partly, at the transcriptional level since the increased RNAPII

in vivo recruitment to the viral promoter following PMA treatment

of the cells was affected by mutations in the intragenic AP-1

binding sites (Figure 7B).

Taken together, our results demonstrate that the integrity of the

5103 fragment AP-1 binding sites located 4 kb downstream of the

HIV-1 transcription start site is important, notably at the

transcriptional level, for an efficient HIV-1 replication in human

Figure 9. The AP-1 binding sites located in the 5103 fragment are important for viral replication. Jurkat (A and C) or U937 (B and D) cells
were infected with equivalent amounts of p24 concentration of wild-type (HIV-1), totally mutated (HIV-1-AP-1totmut), partially mutated (HIV-1-AP-
1#1+2mut) or individually mutated (HIV-1-AP-1#1mut, HIV-1-AP-1#2mut and HIV-1-AP-1#3mut) viral infectious stocks as described in the Materials
and Methods section. (A and B) Viral production in cell supernatants was quantified by measuring p24 antigen concentration in the culture
supernatants at different times following infection. The experiment shown is representative of at least 3 independent infection experiments (each
performed in triplicate). The means are presented and the variation for a given mutant between different experiments was ,15% in each case. (C and
D) Total RNA was extracted from infected cells at days 5, 10 and 15 post-infection, digested with DNase I and reverse-transcribed using random
primers. First-strand cDNAs were analyzed by qPCR with the comparative Ct (DDCt) quantification method using the two following sets of primers:
initiated transcripts (TAR primers) and elongated transcripts (Tat primers) were quantified using b-actin to normalize the results. Means and standard
errors of the means from two independent experiments each performed in triplicate are indicated. * and ** indicate p,0.05 and p,0.1 compared to
the wild-type virus HIV-1 at day 15 post-infection.
doi:10.1371/journal.pone.0019084.g009
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CD4+ T-lymphocytes and promonocytic cell lines, indicating a

positive regulatory function of the intragenic AP-1 sites.

Single-round HIV-1 infections of MDMs are affected by
mutations in the pol gene AP-1 binding sites

AP-1 transcription factors are known to play an important role

in myeloid cells [41]. Moreover, the DNaseI-hypersensitive site

HS7, which is part of the intragenic region, has been identified in a

cell line of monocytic origin (U1), whereas it was absent in two cell

lines of lymphoid origin (ACH2 and 8E5) [3,5]. Therefore, we

further evaluated the importance of the three AP-1 binding sites of

fragment 5103 on HIV-1 replication in primary monocyte-derived

macrophages (MDMs). Since HIV-1NL4.3 strain is not able to

infect human MDMs [42], we used wild-type and mutant HIV-1

viruses pseudotyped with the VSV-G glycoprotein to assess the

impact of the AP-1 mutations on viral expression in single-round

infections. p24 production in infected cell supernatants was used as

a marker of viral expression. Results of experiments performed

with MDMs from 3 different donors are presented as percentages

of p24 levels at day 10 for each mutant virus compared to the wild-

type virus (Figure 11).

p24 production resulting from MDMs transduction by the

mutants HIV-1-AP-1#1mutVSV, HIV-1-AP-3#totmutVSV, HIV-

1-AP-1#1+2mutVSV and HIV-1-AP-1#totmutVSV viruses was

reduced compared to that observed with the wild-type HIV-1VSV

(leading to a 40.1%, 31.7%, 37.6% and 52.2% decrease,

respectively). Importantly, mutation in the AP-1#2 site strongly

impaired MDMs transduction (80.3% decrease in p24 production

compared to the wild-type). Interestingly, mutation in the second

AP-1 site was the most deleterious in both cell lines and primary

macrophages, indicating an important role of the AP-1#-2 site for

HIV-1 replication. PCR quantification of late reverse transcriptase

products did not show substantial reductions in MDMs infected

with AP-1 mutated viruses compared to MDMs infected with the

wild-type HIV-1 virus, which could have explained the reduction

in p24 production we observed in our infection studies with

mutated viruses compared to wild-type virus (data not shown).

Therefore, these results suggest that the defect in viral expression

in MDMs transduced by the AP-1 mutated viruses is not caused by

pre-integration blocks.

Altogether, these results demonstrate the importance of the

intragenic AP-1 binding sites for efficient HIV-1 replication in

macrophages as a decrease in viral expression of AP-1 site mutant

viruses, and especially of the AP-1#2 site mutant virus, was

detected in transduction of primary MDMs with VSV-G

pseudotyped viruses (during single-round infections).

Discussion

Our laboratory has previously identified an important intra-

genic region in the HIV-1 genome, whose complete functional

unit is composed of the 5103 fragment, the hypersensitive site HS7

and the 5105 fragment [2,3,5,6] (Figure 1). These two fragments

(5103 and 5105) both exhibit a PMA-inducible enhancer activity

on the HSV TK promoter in HeLa cells, but no significant activity

in T-lymphoid and monocyte-macrophage cell lines [2]. AP-1

transcription factors are typically absent in quiescent cells but

significantly induced upon cellular activation, notably following

phorbol ester treatment of the cells [43]. In this regard, the three

AP-1 binding sites of fragment 5103 [7] were good candidates to

investigate the PMA-dependent enhancer activity of this fragment.

In the present report, we characterized biochemically and

functionally these three intragenic AP-1 binding sites by showing

the PMA-inducible in vitro binding and in vivo recruitment of the

AP-1 family members c-Fos, JunB and JunD to the 5103 fragment.

Our ex vivo transient transfection assays in the heterologous context

of the HSV TK promoter demonstrated that the intragenic AP-1

sites are fully responsible for the PMA-dependent enhancer

activity of fragment 5103. We further demonstrated that this

activity was completely inhibited by the overexpression of a

Figure 10. The splicing pattern of HIV-1 transcripts is unaffected by the mutations introduced in the intragenic AP-1 binding sites.
Total RNA was extracted from infected Jurkat or U937 cells (with wild-type or mutant virus stocks) at 5 days post-infection. After DNase I treatment,
total RNA was reverse-transcribed with random primers and first strand cDNAs were quantified with primers designed to quantify full-length
unspliced viral mRNAs, singly-spliced viral mRNAs and multiply-spliced viral mRNAs. The total amount of viral mRNAs for each virus was arbitrarily
attributed a value of 100% and the proportion of each type of transcript is presented as histograms indicating the means and standard errors of the
means from two independent experiments performed in duplicate.
doi:10.1371/journal.pone.0019084.g010
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dominant-negative A-Fos mutant. Moreover, we investigated the

biological significance of the intragenic AP-1 sites for HIV-1

replication. We produced wild-type and mutant viral stocks and

demonstrated the importance of the 5103 fragment AP-1 sites for

viral expression in HeLa-derived TZM-bl cells. Importantly,

infection of T-lymphoid Jurkat and promonocytic U937 cell lines

with wild-type and mutant viruses showed that mutation of the

intragenic AP-1 sites individually or in combination altered HIV-1

replication. Our ChIP results demonstrated that the deleterious

effect observed on HIV-1 replication with mutant viruses occurs

(at least partly) at the transcriptional level since we measured a ,
two fold decrease of the PMA-mediated RNAPII in vivo

recruitment to the viral promoter when the three intragenic AP-

1 sites were mutated simultaneously. Remarkably, mutations in the

pol gene AP-1 sites also affected viral replication in MDMs in

single-round infection experiments, in agreement with the

important role played by AP-1 in myeloid cells. Interestingly, at

day 15 post-infection with the AP-1 mutant viruses, we observed

the emergence of a low percentage (5 to 10%) of viruses that

reverted to the wild-type sequence or that harboured additional

mutations around the AP-1 sites possibly to counteract the

negative effects of the intragenic AP-1 sites mutations on viral

replication.

In this study, we observed some divergences between ex vivo

transient transfection assays and in vivo infection experiments

regarding the effects of certain AP-1 mutants. Several phenomena

may explain these differences. They may result from the fact that

our studies were performed in the heterologous context of the

HSV TK promoter (for transfection assays) and in the homologous

context of the entire HIV-1NL4.3 isolate (for infection experiments).

Indeed, viral replication involves other transcription factors that

bind elsewhere in the HIV-1 provirus, cis-regulating elements

adjacent to fragment 5103 and the chromatin organization of the

integrated provirus, notably of the intragenic region. In this

regard, transient transfection experiments may not reflect the

regulation found in vivo since transiently transfected DNA is not

assembled into physiological chromatin. In addition, the pool of

cellular transcription factors differs from one cell type to another,

the differences in the availability of AP-1 (or of certain members of

the AP-1 family) or of another co-factor important for AP-1

activity in those particular cell lines may have consequences on the

observed effect of the intragenic AP-1 binding sites mutations for

HIV-1 replication and/or for the 5103 fragment enhancer activity.

Similar divergences between transient transfection studies and in

vivo functional studies have been previously reported for HIV-1 by

different groups including our laboratory [5,6,9,44,45,46]. More-

over, it may seem surprising that the HIV-1 AP-1#2 mutant virus

was more deleterious for HIV-1 replication than the HIV-

1#1+2mut and the HIV-1#totmut viruses, which also contain

the AP-1#2 site mutation. However, since HIV-1 suffers from a

high error rate during the reverse transcription step, it has

developed rescue mechanisms. Here, the virus may activate such

rescue mechanisms when two or three AP-1 sites are defective, by

recruiting other transcription factors or co-factors for instance,

while mutation of a unique intragenic AP-1 site may not be

sufficient to turn on these rescue mechanisms.

AP-1 transcription factors are known to play important roles in

myeloid development [41], whereas they are slightly expressed in

Jurkat cells [47]. The binding and functional studies reported here

were performed in epithelial HeLa cells, which contain a high

endogenous level of AP-1 transcription factors [47], because we

could not observe PMA-mediated activation of AP-1 in the two

other cell lines used (Jurkat and U937) despite many attempts (data

not shown). Indeed, it has been reported that transformed cells

often have demonstrable defects in cell signalling. For instance,

Ras-mediated extracellular regulated kinase (ERK) activation

varies between primary T cells and Jurkat T cells [48,49].

Wabnitz and colleagues have reported that, whereas it is not the

case in Jurkat lymphoma cells, in peripheral blood T lymphocytes,

phorbol esters activate Ras and the phosphatidylinositol-3-kinase

(PI3K) substrate Akt [50].

Importantly, our single-round infections of MDMs strongly

supported the importance of the intragenic AP-1 sites for an

efficient HIV-1 replication in macrophages since their mutation

affected viral expression in transduced cells. Interestingly, the

hypersensitive site HS7 has been identified in the latently-infected

monocytic (U1) cell line, but not in the T-lymphoid (ACH2 and

8E5) cell lines [3], supporting a cell-type specific role of the

intragenic region. Such cell-type-specific properties could result

from the presence of several binding sites for other transcription

factors, such as binding sites for the macrophage and B-cell specific

transcription factor PU.1 that we identified in the intragenic

region ([6] and unpublished data from our laboratory). Indeed,

previous studies have reported that AP-1 and PU.1 can cooperate

in the regulation of cellular genes in macrophages [48], such as for

the adipose differentiation-related protein gene [51]. Interestingly,

c-Jun homodimers can function as coactivators for PU.1 in

macrophages as demonstrated on the monocyte-specific macro-

phage colony-stimulating factor (M-CSF) receptor promoter [52].

Further investigations concerning the functional interplay between

the AP-1 and PU.1 binding sites in the intragenic region will be

Figure 11. Single-round HIV-1 infections of MDMs are affected
by mutations in the intragenic AP-1 binding sites. Monocyte-
derived macrophages from three healthy donors were isolated and
individually infected with VSV-G pseudotyped HIV-1NL4.3 viruses (HIV-
1VSV, HIV-1-AP-1#totmutVSV, HIV-1-AP-1#1mutVSV, HIV-1-AP-
1#2mutVSV, HIV-1-AP-1#3mutVSV, HIV-1-AP-1#1+2mutVSV). Production
of p24 in the culture supernatant was measured by ELISA at day 10
post-infection. Results are presented as histograms indicating the p24
production level of each mutant virus compared to the wild-type virus
HIV-1VSV, which was assigned an arbitrary value of 100%, and
correspond to results obtained from three independent donors in
order to take into account the variability that may exist between
donors. Means and standard errors of the means are indicated.
* indicates p,0.05 compared to the wild-type virus HIV-1VSV.
doi:10.1371/journal.pone.0019084.g011
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needed to unveil possible mechanisms involved in the cell-type-

specific role of the intragenic region in macrophages. Other viruses

have been shown to possess such intragenic regulatory regions

contributing to transcriptional regulation by adding a cellular

specificity, including the human hepatitis B virus and the closely

related woodchuck hepatitis virus [53,54].

Previous studies about the role played by AP-1 in HIV-1

transcription and expression were centred on the AP-1 binding

sites present in the 59LTR and leader region of HIV-1. TRE

elements have been previously characterized in the NRE region (at

positions nt 151-175 and nt 213-233) of different neuronal strains

[8] and downstream of the transcription start site in the HS4

region [the AP-1(I) site (nt 541 to 547), AP-1(II) site (nt 572 to 578)

and AP-1(III) site (nt 609 to 614)] [9]. Other viruses including

feline immunodeficiency virus [55], foamy viruses [56,57],

Kaposi’s sarcoma associated herpes virus [58,59], human

papillomavirus [60,61], visna virus [62] or human T-cell

leukemia/lymphoma virus type I (HTLV-I) [63,64] use AP-1

factors either to regulate their own replication or to interfere with

host cell gene regulation. In recent years, the interest for the role

played by chronic immune activation and inflammation in HIV-1

pathogenesis increasingly raised. Indeed, quite paradoxically,

chronic immune activation has been associated with high levels

of viremia and is a primary driver of HIV-1 progression to AIDS.

Of note, inducible transcription factors such as AP-1 or NF-kB are

involved in inflammation processes and activate transcription of

antiviral and inflammatory genes. They also increase HIV-1

expression level by binding to the viral 59LTR and leader region

and, concerning AP-1, in the intragenic cis-regulatory region. In

this context, AP-1 proteins, among other inducible cellular

transcription factors, might play a role both in the transactivation

of viral gene expression and in the inflammation process that

together lead to chronic immune activation in HIV-infected

patients.

In conclusion, the 5103 fragment, containing the three

intragenic AP-1 binding sites characterized in this report, in

cooperation with the adjacent HS7 region and the 5105 fragment

(Fig. 1) are the components of a large intragenic regulatory region

that could either bring an additional cellular specificity, and/or

increase the strength of the promoter/enhancer unit located in the

HIV-1 59LTR, and/or allow viral responses to a broader variety

of exogenous stimuli. The intragenic AP-1 binding sites corre-

spond to an additional factor in an already complex network of

regulators affecting HIV-1 replication at the transcriptional level,

thereby contributing to an efficient viral control of the infection.
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